Algorithmic Thinking:

Loops and Conditionals

Announcements

Programming Assignment 2 due tonight at 11:59 via
Autolab

Tomorrow:

O Problem Set 3

O Lab 3

O Programming Assignment 3
Note: updated test file

Today

O A control flow structure:
for loop
While loop

O Range

O Nesting control structures

The notion of an algorithm
Moving from algorithm to code

Python control structures:
O Conditionals

Lists (?)

lteration with for loops

def testl(): What determines how
for i in range(1l,6): many times “Woof" is
print ("Woof") printed is the number of

elements in the range.

>>> testl
O Any expression that gives 5

Woof elements in the range
Woof would give the same
Woof output.

Woof For example, range(5),

Woof range(0,5), ...

lteration with for loops

def test2():
for i in range(1l,6):
print (i) range(5)
range(0, 5)

>>S>S test2() range(l, 10, 2)
range(2, 10, 2) ?

range(1l0, 1, -1) ?

O & WD

lteration with for loops

def test3():
for i in range(1l,6):
print ("Woof" * 1)

>>> test3()
Woof
WoofWoof
WoofWoofWoof
WoofWoofWoofWoof
WoofWoofWoofWoofWoof

This expression creates a string
that concatenates i number
of "Woof"s.

Analogy:

3 * 4is equivalent to 4+4+4

3*"a" is equivalent to
"a" + "a" + "a"

An epidemic

Each newly infected person infects 2 people the next day.
The function returns the number of sick people after n days.

def compute sick(d):
computes total sick after d days
newly sick = 1 # initially 1 sick person
total sick =1

for day in range (2, d + 1):
each iteration represents one day

newly sick = newly sick * 2
total sick = total sick + newly sick

return total sick

Variation on the Epidemic Example

Let’s write a function that
O Inputs the size of the population

O Ouvuiputs the number of days left before all the population
dies out

How can we do that using iteration (loops)?
Keep track of the number of sick people.

But do we know how many times we should loop?

Recall the Epidemic Example

def days left(population):
computes the number of days until extinction
days = 1
newly sick =1
total sick =1
while total sick < population:
each iteration represents one day
newly sick = newly sick * 2
total sick = total sick + newly sick
days days + 1
print(days, ” days for the population to die off")
return days

10

while [OOpP

Formart:

while condition:

loop body

N

one or more instructions
to be repeated

If the loop condition becomes false
during the loop body, the loop body
still runs o completion before we exit

the loop and go on with the next step.

false m

true

LOOP
BODY

11

Recall the Epidemic Example

def days left(population):
computes the number of days until extinction

days = 1
newly sick =1
total sick = 1 Loop condition

. """
while| total sick < population:

#each iteration represents one day

newly sick = newly sick * 2

total sick = total sick + newly sick

days days + 1
print(days, "days for the population to die off")
return days

12

While Loop Examples

How about the following?

i=1 i=20

while 1 < 11: while 1 < 10:
print(1i) i=1i+1
i=1+1 print(1i)

What is the value of i when
we exit the loop?

13

While vs. For Loops

1i=1 for i in range(1l,11):
while 1 < 11: print(1i)
print(1i)

i=1+1

14

When to use for or while loops

If you know in advance how many times you want to run
a loop use a for l00OP.

When you don’t know the number of repetition needed,
use dwhile lOooOp.

\lelellialagh

An algorithm is “a precise rule (or set of rules)
specifying how to solve some problem.”
(thefreedictionary.com)

The study of algorithms is one of the foundations
of computer science.

Mohammed al-Khwarizmi (&l-khowdaréz” me)
Persiaon mathematician of the court of Mamun in Baghdad...the
word algorithm is said to have been derived from his name. Much

of the mathematical knowledge of medieval Europe was derived
from Lafin translations of his works. (encyclopedia.com)

An algorithm is like a function

F(X) 2>y

INPUT ALGORITHM OUTPUT

Input specification
e Recipes: ingredients, cooking utensils, ...

e Knitting: size of garment, length of yarn, needles ...
e Tax Code: wages, interest, tax withheld, ...

Input specification for computational algorithms:
 What kind of data is required?

* |In what form will this data be received by the algorithm®e

19

Computation

An algorithm requires clear and precisely stated

steps that express how to perform the operations to
vield the desired resulfs.

Algorithms assume a basic set of primitive operations
that are assumed to be understood by the executor
of the algorithm.

e Recipes: beat, stir, blend, bake, ...

e Knitting: casting on, slip loop, draw yarn through, ...

e Tax code: deduct, look up, check box, ...

e Computational: add, set, modulo, output, ...

20

Qutput

Output specification

e Recipes: number of servings, how to serve

e Knitting: final garment shape

e Tax Code: tax due or tax refund, where to pay

Output specification for computational algorithmes:
e What results are requirede

e How should these results be reported?

« What happens if no results can be computed due o an error in
the inpute What do we output to indicate this?

21

s this a “good”™ algorithm?

Input: slices of bread, jar of peanut butter, jar of jam

1. Pick up some bread.

2. Put peanut butter on the bread.

3. Pick up some more bread.

4. Open the jar of jam.

5. Spread the jam on the bread.

6. Put the bread together to make your sandwich.

QOutpute

22

What makes a “good”™ algorithm?

A good algorithm should produce the correct
outputs for any set of legal inputs.

A good algorithm should execute efficiently
with the fewest number of steps as possible
and should always stop.

A good algorithm should be designed in such
a way that others will be able to understand it
and modify it to specify solutions to additional
problems.

A Simple Algorithm

Input nuMerical between 0 and 100 and
Output “Pass” or “Fail”

Algorithm: Exactly one of step 1 or step 2
1. If >= 60 is executed, but step 3 and
a. Set to “Pass” step 4 are always executed.
b. Print “Pass”
2. Otherwise,
a. Set grade to “Fail”
b. Print “Fail”

3. Print “See you in class”
4, Return

Coding the Grader in Python

Algorithm: def grader(score):
1. If >= 60 if score >= 60:
a. Set to “Pass” grade = "Pass"
b. Print “ Pass” print ("Pass")
2. Otherwise, else:
a. Sef to “Fail” grade = "Fail"
b. Print “Fai” print("Fail")
3. Print “See you in class ” print("See you in class")

4, Return return grade

Control Flow

true false

set grade to “Pass” set grade to “Fail”
print “Pass” print “ Fail”

print(“See you in class”)
return grade

26

Flow chart; 1 £ statement

w false
true

Formart:

if condition :

Statement _list

statement _list

¢<

Flow chart:

if/else statement

Format:
if condition :
Statement _list1
else:

statement _list2

true w false

statement list1]

statement list2

.

28

Grader for Letter Grades

true false
score >= 90

set grade to “A”

print “you got an A”

set grade to “B”
print “you got a B”

L
false

true false

set grade to “C”

than C”

set grade to “D or lower”
print “you gota C” print “your grade is less

29

Nested If statements

def grader2(score):
if score >= 90:
grade = "A"
print("You got an A")
else: # score less than 90
if score >= 80:
grade = "B"
print("You got a B")
else: # score less than 80
if score >= 70:
grade = "C"
print("You got a C")
else: #score less than 70
grade = "D or lower"
print("Your grade is less than C")
return grade

Equivalently

def grader3(score):
if score >= 90:
grade = "A"
print("You got an A")
elif score >= 80:
grade = "B"
print("You got a B")
elif score >= 70:

grade = "C"

print("You got a C")
else:

grade = "D or lower"

print ("Your grade is less than C")
return grade

31

Flow chart;

if/elif/else statement

Formart:

if conditiont :
statement _list1

elif condition2 :
Statement list2

else:
statement [ist3

atement list]

true m false

statement _list2

\ 4

statement list3

|

.

32

Summary

Notion of an algorithm:
O Kinds of instructions needed to express algorithms
O What makes an algorithm a good one

Instructions for specifying control flow (for loop, while loop,
if/then/else)

O Flow charts to express control flow in a language-independent
way

O Coding these control flow structures in Python

33

Exercise

Write a function that returns how many of the three integers
nl, n2, and n3 are odd:

def num odd(nl, n2, n3):

34

Exercise

Write a function that prints whether diel and die2 are
doubles, cat’s eyes (two 1's) or neither of these.

def print doubles(diel, die2):

35

Try:

Saving money to buy a new car — how long will it tfake to
save for a new Tesla Model X @ $80,000. (5000.00 in a
savings account)

Saving for retirement — for different retirement targets,
and calculate how long it will take to reach that target.
ldentify your variables and pre-assign values.

Can you generalize the above to accommodate
different user inpute

