
Iteration

for loops, while loops, lists

Last Time

¤Intro to Python

¤Due:
¤ Lab 2 (last night)
¤PS2 (this morning)

Reminders

¤OLI Decisions Module, over weekend

¤PA 2 due Monday night

¤PS 3 due Tuesday Morning

Yesterday

¤ Introduction to Python

¤Mechanics

¤ Some Specifics:
¤ Basic datatypes

¤ Operators
¤ Expressions

¤ Variables
¤ Functions

Data Types

¤ Integers

¤ Floating Point Numbers

¤ Strings

¤ Booleans

4 15110 -53 0

4.0 0.80333333333
7.34e+014

"hello” "A" " " ””
'there' '"' '15110’

True False

Arithmetic Expressions

¤ Mathematical Operators
+ Addition
- Subtraction // Integer division
* Multiplication ** Exponentiation
/ Division % Modulo (remainder)

¤ Python is like a calculator: type an expression and it
evaluates the expression (tells you the value).

6

>> 2 + 3 * 5
Þ17

Variables and Expressions

7

>> a
Þ5

>> b = 2 * a
>> b
Þ10

5a:

10b:

Variables

Variable b does not “remember” that its
value came from variable a.

8

�Woof�a:

10b:

>> a
Þ5
>> b
Þ10
>> a = �Woof�
>> a
Þ�Woof�
>> b
Þ10

Syntax vs. Semantics

Syntax

¤ Rules, structure

¤ Errors result when code is
not well formed.

Semantic

¤ Meaning

¤ Error results when
expression/statement can’t
be evaluated or executed
due to meaning.

Colorless green ideas sleep furiously

Functions

¤ Are reusable blocks of
code

¤ Are general

¤ Can be user defined and
can be imported

¤ Are defined with
parameters

¤ Are called with arguments

Function Syntax:

def functionname(parameterlist):
���� instructions

Built-in Functions

Import math
r = 5 + math.sqrt(2)

Return, None, Print
def calculate_area(side):

return side * side

myArea1 = calculate_area(5)

def show_area(side):
print(side * side)

myArea2 = show_area(6)

11

Return, None, Print

def showAndCalc_area(side):
area = side * side
print(area)
return area

myArea3 = showAndCalc_area(7)

12

End of Class problems

¤ Create a function that calculates 18% tip

¤ Input(”Enter your check’s total: ”) would return a user-
entered variable. Write a short python script that would
advise users of an appropriate tip based on their input.

¤ Create a function that takes two parameters (mass and
radius) and calculates escape velocity. Note:
¤ G = 6.67e-011

¤ Our fine planet has mass of 5.9742e+024,
and a radius of 6378.1

Questions?

Why do we need iteration

¤ Many algorithms are partially or fully a repeating set of
steps.

¤ Can we accomplish a set of steps manually?

¤ Revisit the calc_tip() function – but now let’s offer multiple
tipping possibilities – For any check amount, let’s show
tips from 15% to 25%

¤ Try it – quick write/outline an algorithm that shows these
10 tip amounts

Creating a tip table

def tip_table(check):
print(check * .15)
print(check * .16)
print(check * .17)
print(check * .18)
print(check * .19)
print(check * .20)
print(check * .21)
print(check * .22)
print(check * .23)
print(check * .24)
print(check * .25)

>>> tip_table(56.00)
8.4
8.96
9.520000000000001
10.08
10.64
11.200000000000001
11.76
12.32
12.88
13.44
14.0

Iteration

¤ Loops

¤ Provide power, generality

¤ Construct for iterative
cycles over a range of
numbers

¤ for x in range(y)

def tip_table(check):
for tip in range(15, 25):

print((tip * check)/100)

for Loop (simple version)

¤The loop variable is a new variable name
¤The loop body is one or more instructions that you

want to repeat.
¤If n > 0, the for loop repeats the loop body n

times.
¤If n <= 0, the entire loop is skipped.
¤Remember to indent loop body

18

for loop_variable in range(n):
loop body

for Loop Example

for i in range(5):
print("hello world")

hello world

hello world

hello world

hello world

hello world

19

Loop variable

What happens in a loop variable?

for i in range(5):
print(i)

0

1

2

3

4

20

Detour: some printing options

>>> for i in range(5):
... print(i, end=" ")
0 1 2 3 4 >>>
>>>
>>> for i in range(5):
>>> print(i, end="")
01234>>>

21

Blank space after value printed

No space after value printed

The default is end = �\n�.

What if we don’t want to start at zero
and increase by one each time?

>>> for i in range(1, 6):
... print(i, end=" ")
1 2 3 4 5 >>>
>>>
>>> for i in range(1, 6, 2):
>>> print(i, end=" ")
1 3 5 >>>

22

Increase by 2 each time

range(n) gives the range 0 ... n-1
range(start, end) gives the range start ... end-1
range(start, end, step) gives the range start, start+2, ...

Using loop variable in arithmetic expressions
for i in range(10):

print(i*2, end=" ")

0 2 4 6 8 10 12 14 16 18

23

Accumulating Outputs
building an answer a little at a time

24

Reminder: Assignment Statements

25

variable = expression

The expression is evaluated and the
result is stored in the variable
• overwrites the previous contents of variable.

5a:>> a = 5

Variables change over time
statement value of x value of y

x = 150 150 ?

y = x * 10 150 1500

x = x + 1 151 1500

y = x + y 151 1651

26

Accumulating an answer

def sum():

sums first 5 positive integers

sum = 0 # initialize accumulator
for i in range(1, 6):

sum = sum + i # update accumulator

return sum # return accumulated result

>>> sum()

15

27

Now let’s see
what’s

happening
under the hood

Accumulating an answer

28

def sum():
sums first 5 positive integers
sum = 0 # initialize accumulator
for i in range(1, 6):

sum = sum + i # update accumulator
return sum # return accumulated result

i sum

initialize sum ? 0

iteration 1 1 1

iteration 2 2 3

iteration 3 3 6

iteration 4 4 10

iteration 5 5 15

Danger! Don’t grab the loop variable!

for i in range(5):

print(i, end=" ")

i = 10

0 1 2 3 4

for i in range(5):

i = 10

print(i, end=" ")

10 10 10 10 10

29

Even if you modify the loop
variable in the loop, it will be
reset to its next expected value
in the next iteration.

NEVER modify the loop
variable inside a for loop.

Generalizing sum

def sum(n):

sums the first n positive integers
sum = 0 # initialize

for i in range(1, n + 1):

sum = sum + i # update

return sum # accumulated result

sum(6) returns 21

sum(100) returns 5050

sum(15110) returns 114163605

30

def compute_sick(d):
computes total sick after d days
newly sick = 1 # initially 1 sick person
total_sick = 1

for day in range(2, d + 1):
each iteration represents one day

newly_sick = newly_sick * 2
total_sick = total_sick + newly_sick

return total_sick

Accumulation by multiplying as well
as by adding

31

Each newly infected person
infects 2 people the next day.

An epidemic:

Output: how an epidemic grows

32

In just three weeks, over
2 million people are
infected!
(This is what Blown To Bits
means by exponential growth.
We will see important
computational problems that
get exponentially �harder� as
the problems gets bigger.)

compute_sick(1) => 1
compute_sick(2) => 3
compute_sick(3) => 7
compute_sick(4) => 15
compute_sick(5) => 31
compute_sick(6) => 63
compute_sick(7) => 127
compute_sick(8) => 255
compute_sick(9) => 511
compute_sick(10) => 1023
compute_sick(11) => 2047
compute_sick(12) => 4095
compute_sick(13) => 8191
compute_sick(14) => 16383
compute_sick(15) => 32767
compute_sick(16) => 65535
compute_sick(17) => 131071
compute_sick(18) => 262143
compute_sick(19 => 524287
compute_sick(20) => 1048575
compute_sick(21) => 2097151

Try: Create flow charts for

¤ Calculating interest on a savings account at 6% interest
for 3 years with a starting balance of $1000.

¤ Generalize the above – let the user indicate the interest
rate and length of time.

¤ Parable: grains of rice on a chessboard, (1 grain on
square one, 2 grains on square 2, 4 grains on square 3 ….
through square 64)

Back to our epidemic

def compute_sick(d):
computes total sick after d days
newly sick = 1 # initially 1 sick person
total_sick = 1

for day in range(2, d + 1):
each iteration represents one day

newly_sick = newly_sick * 2
total_sick = total_sick + newly_sick

return total_sick

34

Each newly infected person infects 2 people the next day.
The function returns the number of sick people after n days.

Variation on the Epidemic Example

Let us write a function that
¤ Inputs the size of the population

¤ Outputs the number of days left before all the population
dies out

How can we do that using iteration (loops)?

Keep track of the number of sick people.

But do we know how many times we should loop?

Recall the Epidemic Example

36

def days_left(population):
computes the number of days until extinction
days = 1
newly_sick = 1
total_sick = 1
while total_sick < population:

each iteration represents one day
newly_sick = newly_sick * 2
total_sick = total_sick + newly_sick
days = days + 1

print(days, ” days for the population to die off")
return days

while loop

Format:

while condition:

loop body

37

one or more instructions
to be repeated

condition

LOOP
BODY

false

true

If the loop condition becomes false
during the loop body, the loop body
still runs to completion before we exit
the loop and go on with the next step.

Recall the Epidemic Example

38

def days_left(population):
computes the number of days until extinction
days = 1
newly_sick = 1
total_sick = 1
while total_sick < population:

#each iteration represents one day
newly_sick = newly_sick * 2
total_sick = total_sick + newly_sick
days = days + 1

print(days, "days for the population to die off")
return days

Loop condition

While Loop Examples

Prints first 10 positive integers

i = 1
while i < 11:

print(i)
i = i + 1

How about the following?

i = 0
while i < 10:

i = i + 1
print(i)

39

What is the value of i when
we exit the loop?

While vs. For Loops

Prints first 10 positive integers

i = 1
while i < 11:

print(i)
i = i + 1

Prints first 10 positive integers

for i in range(1,11):
print(i)

40

When to use for or while loops

¤ If you know in advance how many times you want to run
a loop use a for loop.

¤ When you don’t know the number of repetition needed,
use a while loop.

Try: Create flow charts for

¤ Saving money to buy a new car – how long will it take to
save for a new Tesla Model X @ $80,000. (5000.00 in a
savings account)

¤ Saving for retirement – for different retirement targets,
and calculate how long it will take to reach that target.
Identify your variables and pre-assign values.

¤ Can you generalize the above to accommodate
different user input?

