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Abstract

This paper addresses two central questions in markets with adverse selection: How does

information impact the welfare of market participants (sellers and buyers)? Also, relatedly,

what is the optimal information disclosure policy and how is it a�ected by the planner’s rela-

tive welfare weight on sellers’ surplus versus consumers’ surplus? We �nd that as a result of

improved information, prices become more strongly associated with the true quality of sellers

and thus more dispersed. This will result in higher total surplus. Furthermore, we �nd that

better information has opposing welfare e�ects on consumers and producers that could lead to

limited disclosure depending on the social objective and market characteristics.
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1 Introduction

Reputation mechanisms and ratings are widely used in markets with adverse selection. While rele-

vant for any market with asymmetric information (e.g., hygiene ratings for restaurants or doctors’

performance ratings), information design is a key consideration for the overall performance of the

ever more popular online trading platforms, where transactions are decentralized and rarely re-

peated. Despite the importance of these mechanisms, little is known about their optimal design

and how it might depend on the characteristics of the market, such as supply and demand. This

paper sheds light on this question by considering the design of an optimal information disclosure

mechanism and how it relates to market characteristics.

In particular, the paper addresses two central questions. First, how does information impact the

welfare of market participants (i.e., sellers and buyers)? Second, what is the optimal information

disclosure policy and how is it a�ected by the planner’s relative welfare weight on sellers’ versus

consumers’ surplus? Also, how do the answers to these questions depend on the properties of

supply and demand in the market?

Our model considers a competitive market with a large set of buyers and sellers. Firms are

endowed with di�erent levels of quality, which is the only source of product di�erentiation.
1

The

buyers do not observe the sellers’ level of quality, but only observe the signals sent by the market

designer, which is the source of asymmetric information. The model exhibits two features that

are common to adverse selection settings. First, low-quality sellers bene�t from being pooled with

high-quality ones, while adversely a�ecting them. Second, high-quality sales are crowded out by

low-quality ones.
2

Information disclosure, and in particular a rating system, helps reallocate sales

from lower- to higher-quality producers, thus mitigating the problem of adverse selection.

We �rst consider the impact of information on consumer and producer surplus. As a result of

improved information, prices become more strongly associated with the true quality of sellers and

thus more dispersed. Demand is reallocated from lower- to higher-quality �rms, and this reallo-

1
While moral hazard might be a critical consideration in some markets, in others adverse selection might play a

more critical role, as suggested by an empirical study on eBay (see Hui et al. (2018)). Optimal rating design with moral

hazard and adverse selection is considered in Saeedi and Shourideh (2022) in a simpli�ed market environment.

2
While these features motivate our use of the term adverse selection, we note that in our model sellers’ supply

decisions do not directly depend on their quality and only through the price they receive in the equilibrium.
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cation has a positive e�ect on the average quality of goods consumed and total surplus. However,

the e�ect of improved information on total market size and consumer surplus is ambiguous and

depends on the properties of the supply function. When supply is concave, the higher spread in

prices results in a decrease in total output and lowers consumer surplus. The opposite occurs when

the supply is convex. The impact of the changes in total output on consumer surplus also depends

on demand elasticity: when demand is more elastic, consumer surplus will be less sensitive to the

information structure.

We next consider the problem of optimal information provision by an informed social planner

that maximizes a weighted sum of producer and consumer surplus. The information structure

shared by all buyers follows the setting described in Ganuza and Penalva (2010) and Gentzkow and

Kamenica (2016). A common prior over �rm qualities and the information provided by the planner

determine the distribution of expected posterior �rm qualities. This provides a natural ordering of

the quality of information, where better information is associated to a mean-preserving spread of

the distribution of �rms’ expected values. At one extreme, there is no information, so all �rms have

an expected quality equal to the common prior mean; at the other extreme, there is full disclosure of

information, so the buyers’ posterior equals that of the planner. In the interior region, the planner

can choose any garbling of this posterior.

Changes in the information structure have two e�ects on the planner’s objective: a direct e�ect

on expected pro�ts and a general equilibrium e�ect, operating through the change in market size

and equilibrium price. The direct e�ect will be an increase in pro�ts of a magnitude that depends on

the curvature of the pro�t function. The general equilibrium e�ect will a�ect �rms and consumers

in opposite directions and equal magnitudes. Moreover, the magnitude of the general equilibrium

e�ect will vary directly with the curvature of the supply function. In particular, if the supply

function is convex at a point, a mean-preserving spread at this point results in an increase in total

output, and the general equilibrium e�ect will imply a transfer of utility from �rms to consumers.

A transfer in the opposite direction would occur if the supply function were concave at this point.

When the planner weighs equally producer and consumer surplus, this aforementioned surplus

transfer does not a�ect total welfare, so full disclosure is optimal. When weights are not equal,

limited disclosure may be optimal. For example, in regions where the supply function is concave,
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pooling can mitigate the reduction in output from improved information and its negative impact

on consumer surplus. Where the supply function is convex, pooling decreases total output and

increases prices, which might have a positive impact on producers. For those cases where full

information is not optimal, we �nd that the region of pooling increases with the strength of the

bias in the planner’s preference for one or the other group.

Related Literature Our paper is related to the literature considering the impact of information

disclosure on consumer and producer surplus.
3

Most papers belonging to the �rst strand of literature consider the case where there is a single

seller, or auctioneer, and multiple buyers, as opposed to multiple agents on both sides. Similar to

our results, Schlee (1996) shows that information can hurt consumers when the cost function is

su�ciently convex. Bergemann et al. (2015) consider the impact of information in third-degree

price discrimination. They show that any distribution of surplus that is between the ones achieved

by optimal pricing with no information and that with full information can be attained with some

information structure. Bergemann and Pesendorfer (2007) show that in a private value setting,

bidders can be worse o� with better information even though total surplus increases. Board (2009)

shows that this result depends on the number of bidders. Hoppe et al. (2011) consider a matching

problem where for some distribution of types, consumers can be worse o� with better information.

Romanyuk and Smolin (2019) also considers a matching framework where full information leads to

cream-skimming on the seller side and even market failure and shows that hiding some information

can restore market e�ciency. In our paper we show that better information always increases total

surplus, but it might decrease consumer or producer surplus depending on the properties of the

supply function. These considerations are absent in the matching framework, where supply is

inelastic.

There is a large literature on certi�cation and quality disclosure. Dranove and Jin (2010) provide

an excellent survey of the earlier papers. Most of the literature has focused either on the incentives

for �rms to reveal their information or the incentives of certi�ers to do so. The main question in

3
Our paper focuses on a setting where uncertainty is about seller quality and information is provided to consumers.

There is a growing literature that focuses on the reverse channel, where an intermediary transmits information about

buyers to sellers. For a survey, see Bergemann and Bonatti (2019).
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this literature is how much information will be revealed in equilibrium and how this might depend

on the nature of competition in the product or certi�cation markets. As an example, Lizzeri (1999)

�nds that while a monopoly certi�er chooses to provide coarse information with a single and

low threshold, competition among certi�ers can lead to full information. Ostrovsky and Schwarz

(2010) consider equilibrium information structures where colleges strategically choose how much

information to reveal about their students’ ability. DeMarzo, Kremer, and Skrzypacz (2019) consider

a Bayesian game where agents choose the informativeness of testing but can withhold bad results.

Our paper di�ers from this certi�cation literature in several dimensions. First, in our setting

information is freely provided by a single informed certi�er, and in particular it is exogenous to

the �rm, as occurs in the examples mentioned above. Secondly, information a�ects the payo�s of

�rms through two channels. The �rst is a standard one, where certi�cation provides a signal of

expected quality to consumers, directly a�ecting the price faced by the �rm. The second one is

that certi�cation a�ects total equilibrium output and thus the equilibrium prices received by all

�rms, thus impacting both producer and consumer surplus. This e�ect is absent in most papers on

certi�cation in markets that usually assume inelastic supply. Another implication of elastic supply

is that certi�cation reallocates sales across �rms, to a degree that is a�ected by supply elasticity.

This plays an important role in the value and design of an optimal certi�cation mechanism.

Information disclosure is the focus of the literature on Bayesian persuasion, where an informed

sender chooses an information structure to in�uence the behavior of a receiver. Kamenica (2018)

and Bergemann and Morris (2019) provide a great survey of this literature. Kolotilin (2018) and

Dworczak and Martini, (2018) provide conditions on payo�s so that interval partitions are the op-

timal information structure. Onuchic and Ray (2021) study the problem of monotonic categoriza-

tion when sender and receiver have di�erent priors. In contrast to most of this literature, where a

single receiver takes an action, in our setting the outcome is the result of the equilibrium choices of

multiple agents.
4

We develop an approach that integrates results from this literature, considering

4
While other papers have studied settings with multiple receivers, the analysis has often been suitable for games

where a low-dimensional source of aggregate information is observed by a sender. For example, Bergemann and

Morris (2013, 2016) characterize the outcome of all Bayesian persuasion games with multiple receivers. In principle,

our problem could be potentially mapped into this framework, with an omniscient sender that observes the quality

of a continuum of �rms, but it would be impractical to solve it this way. Even for a simple two-player game, Bhaskar

et al. (2016) show that computing the optimal public signal is NP-hard.
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the constraints imposed by market equilibrium.

The most relevant empirical papers related to our theory are Saeedi (2019), Elfenbein et al.

(2015), Fan et al. (2013), and Jin and Leslie (2003). Saeedi (2019) studies the value of reputation

mechanisms and establishes a positive signaling value for the certi�cation done by eBay. Elfenbein

et al. (2015) study the value of certi�cation badges across di�erent markets. They �nd that certi�-

cation provides more value when the number of certi�ed sellers is low and when markets are more

competitive. Fan et al. (2013) analyze the e�ect of badges on Taobao.com. They �nd sellers o�er

price discounts to move up to the next reputation level. Jin and Leslie (2003) use data on restaurant

hygiene ratings to examine the e�ect of an increase in product quality information to consumers

on �rms’ choices of product quality. Our paper also relates to the literature that analyzes the ef-

fects of changes in marketplace feedback mechanisms on price and quality (e.g., Hui et al. (2016),

Filippas et al. (2018), and Nosko and Tadelis (2015)).

Section 2 describes the model. Section 3 considers the optimal information disclosure problem.

Section 4 concludes the paper. Proofs are relegated to the appendix unless otherwise speci�ed.

2 The Model

There is a unit mass of �rms with qualities z distributed according to a continuous cumulative

distribution function (cdf)F (z) on a compact setZ. Production technology is the same for all �rms

and is given by a di�erentiable, strictly increasing, and strictly convex cost function of quantity,

c (q), and, correspondingly, a strictly increasing twice continuously di�erentiable supply function

S (p). On the demand side, there is massM of consumers who face a discrete choice problem, with

preferences

U (z, θ, p) = z + θ − p,

where z is the quality of the good purchased, θ is a taste parameter measuring the preference for

goods o�ered in this market vis-Ã -vis an outside option, and p is the price of the good. The taste

parameter θ ≥ 0 is distributed according to a continuous and strictly increasing cdf Ψ (θ), while
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the outside good’s utility (no purchase) is normalized to zero.
5

Goods are di�erentiated only by

their quality level, which is equally valued by all consumers. Given the linearity of the utility

function in z, we can replace a good of quality z with a good of expected quality z and the utility

of the consumer stays the same. Throughout the paper, we use z interchangeably as the quality or

expected quality of a good.

We assume the following timing: (a) information about �rm qualities is provided by the planner,

(b) based on this information, consumers form posteriors about each �rm’s expected quality; (c)

given these posteriors, perfectly competitive equilibrium prices are determined as a function of

expected quality, considering the supply response of each �rm to the corresponding price.
6

We

will say that a �rm has expected quality z if conditional on all signals received, that is the quality

expected by all consumers. Denote byG (z) the common posterior distribution over �rms’ expected

qualities shared by consumers.
7

Given expected quality z, equilibrium prices take the form p (z) = p (0) + z, where p (0) cor-

responds to the demand price of a hypothetical good of quality zero. This expression for prices

guarantees that consumers are indi�erent between goods with di�erent signal realizations with

any positive sales, which is a necessary condition for an equilibrium. Given a baseline price

p (0), the marginal consumer’s θ is found by setting U (0, θ, p (0)) = 0, or simply θ (p (0)) =

p (0). All consumers with θ ≥ p (0) will make their unit purchase, so aggregate demand is Q =

M (1−Ψ (p (0))). Inverting this function, we can de�ne an inverse baseline demand function

P (Q) = Ψ−1 (1−Q/M) = p(0). (1)

On the supply side, each �rm with expected quality z chooses its output, q = S (p (z)), so aggregate

supply Q =
∫
S (p (z)) dG (z).

8

5
Alternatively, one can consider−θ to be the value of the outside good to consumers. Also note that we do not need

to make any particular assumption on the distribution of θ ; additionally, linearity in z can be relaxed by modifying

the distribution of the taste shock.

6
Similar results can be obtained under Cournot competition in a model as the one considered by Salant and Sha�er

(1999).

7
This representation of the information structure is consistent with the approach followed in Ganuza and Penalva

(2010) and Gentzkow and Kamenica (2016). Given a common prior F (z0) over �rm qualities and a signal structure π,

we can let G (z) be the distribution of the expected posterior of �rm quality.

8
The reason that we mention expected quality of the �rm instead of its quality is that the price the �rm gets depends

7



Figure 1: Equilibrium

De�nition. An (interior) equilibrium, given the distribution of expected qualities G (z), is given

by prices p (z) = P (Q) + z, where total quantity Q =
∫
S (p (z)) dG (z).

Figure 1 shows graphically the derivation of an interior equilibrium for the case of a two-tier

partition, where L represents the group of �rms with quality below a threshold z∗, and H those

above.
9

Denote by zL (resp., zH) the average quality of sellers in the L group (resp., H group). The

two curves depict the demand curve for the goods in the L and H segment, respectively. Since all

consumers value quality identically, the price di�erence between the goods in the two segments is

the same as the di�erence between the two respective average qualities pH−pL = zH−zL. The �rst

upward sloping curve is the supply function of the �rms in theH group, SH = (1− F (z∗))S (pH) .

The second one is the supply function of the �rms in the L segment, SL = F (z∗)S (pL), displaced

to the right by the equilibrium quantity of the H group, QH .
10

The marginal consumer is the one

on the information and the possibility of being pooled with other �rms.

9
Alternatively, this can be interpreted as a case of having two types of sellers with two levels of qualities.

10
Note that given that we draw the supply and demand curves in the normal way, with price on the y-axis, the case

depicted in the graph corresponds to concave supply.
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that is indi�erent between consuming either of these goods or none at the equilibrium prices; Q is

also the total market supply of both goods.

To prove the existence of an interior equilibrium, we make the following assumptions.

Assumption 1. There exists θ̃ in the support of Ψ such that

M >

∫
S
(
θ̃ + z

)
dG (z)

for all distributionsG such thatF is amean-preserving spread ofG. In addition,
∫
S (p (0) + z) dG (z) >

0 for the same class of distributions.

The �rst assumption rules out the possibility that all consumers make purchases in this market;

in other words, we assume that the consumers are on the long side of the market.
11

The second

assumption rules out no output as an equilibrium. While a corner equilibrium, if it exists, is also

unique, we rule this out as a matter of convenience.

Lemma 1. Under Assumption 1, there exists a unique interior equilibrium for all expected quality

distributions G such that F is a mean-preserving spread of G.

Proof. Given that the cdf Ψ is strictly increasing and continuous, the function P (Q) is strictly

decreasing and continuous. De�ne function f (Q) =
∫
S (P (Q) + z) dG (z); by continuity and

monotonicity of the supply function, function f(Q) is strictly decreasing and continuous as well.

By Assumption 1, f (0) > 0 and f (M) < M since P (M) ≤ θ̃. Hence, there exists a unique �xed

point Q∗ for this mapping which results in a unique equilibrium.

3 Information Disclosure

Our previous analysis takes the distribution of observed mean qualities, G, as a primitive. Given

the linearity of payo�s, this is a su�cient representation of information, as two products with

the same posterior mean qualities are equivalent to consumers. As in Ganuza and Penalva (2010)

11
As explained below, the assumption spans the set of all possible information structures.
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and Gentzkow and Kamenica (2016), improvements in information can be represented by mean-

preserving spreads of the distribution of mean qualities.
12

This section considers two related ques-

tions: (1) the impact of improved information on producer and consumer surplus and (2) optimal

information disclosure by an informed principal.

3.1 Improved Information

This section examines the impact of improved information on producer and consumer surplus.

Given total quantity Q, equilibrium prices are given by P (Q) + z, with mean P (Q) + z̄. A mean-

preserving spread of G increases the spread of prices around the mean while possibly changing

the mean, too, as the equilibrium quantity Q changes.

The increased dispersion of prices has a direct positive e�ect on average pro�ts, as a result of

the convexity of the pro�t function. In turn, an increase (resp., decrease) in market size as measured

by the change in total quantityQ has a negative (resp., positive) e�ect on pro�ts. In contrast, as we

now show, consumer surplus is a�ected only by changes in total quantity Q, and in the opposite

direction of pro�ts.

Consider a consumer of type θ who buys a good of quality z, with utility θ + z − p (z) . Given

the equilibrium price p (z) = P (Q) + z, the consumer’s net utility is θ − P (Q) . It follows that

total consumer surplus is

M

∫
P (Q)

(θ − P (Q)) dΨ (θ) =

∫ Q

0

(P (x)− P (Q)) dx,

where the equality follows from the change of variables x = M (1−Ψ (θ)) and our de�nition

of P (Q): P (Q) = Ψ−1 (1−Q/M). This implies that consumer surplus will move in the same

12
For example, in Ganuza and Penalva (2010), who order the quality of information by the dispersion of beliefs, the

distribution of expected qualities G̃ is more informative than distributionG if it is a mean-preserving spread ofG.We

will refer to this ordering as better information. As the maximal signal structure corresponds to perfect information,

the class of all information structures can be represented by all garblings of F , i.e., all distributions G such that F
is a mean-preserving spread of G. This corresponds to the ordering of integral precision of signal structures de�ned

in Ganuza and Penalva (2010) and the ordering in Gentzkow and Kamenica (2016). Starting from a prior F0, signal

structure t̃ is more integral precise than signal t if the induced distribution of expected qualitiesG (z) generated by t̃ is a

mean-preserving spread of the one generated by t. In general, integral precision ordering is weaker than the likelihood

ratio and other related orderings considered in the literature (see Ganuza and Penalva (2010) for references). We use

this notion of garbling and more precise information in the proofs of this section.
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direction as market size, as given by total quantity Q. It is worth noting that this general equilib-

rium e�ect has opposite impacts on consumer and producer surplus: the consumers prefer larger

markets, whereas the producers prefer smaller markets. This observation will become relevant in

Section 3.2 when considering optimal information disclosure.

Improved information, a mean-preserving spread in G, leads to an increased dispersion in

prices. The impact of improved information on market size Q depends on the properties of the

supply function. If it is linear, the increase in price dispersion has no e�ect on total output, so

there is no change inQ. In contrast, when the supply function is convex (resp., concave), total out-

put increases (resp., decreases) with price dispersion. More generally, the direction and magnitude

of output change will depend on the shape of the supply function (i.e., convex or concave) and the

magnitude of the changes in spread.

The following proposition summarizes these results.

Proposition 1. An improvement in information quality, as given by a mean-preserving spread ofG,

has the following e�ects:

i. It increases (resp., decreases) total output if the supply function is convex (resp., concave).

ii. Consumer surplus changes in the same direction as total output.

iii. Producer surplus increases if total output does not increase.

iv. Total surplus increases.

In particular, in the case of concave supply functions, consumers are better o� with no infor-

mation. There are some related results in the literature, though in di�erent settings. For example,

Schlee (1996) considers a single product monopoly seller in a vertically di�erentiated market. The

quality of the good o�ered is exogenous and privately observed by the monopolist, who must

choose the informativeness of a signal to be provided to consumers before observing the quality

realization. It is shown that if the cost function is su�ciently convex, consumers are worse o� ex

ante with a more informative signal. Hoppe et al. (2011) consider a matching problem and show

that under some conditions on the distribution of types, one of the sides (e.g., consumers) can be

worse o� by having a more precise information structure regarding the type of the other side.
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Regarding producer surplus, there is an additional direct contribution of price dispersion to

pro�ts. So, total pro�ts can still increase when output increases. While examples can be constructed

where producer surplus decreases, for this to occur, the degree of convexity of supply needs to be

very strong relative to the convexity of the pro�t function.

While improved information has ambiguous e�ects on consumer and producer surplus, it al-

ways increases total surplus. The intuition is as follows. In our model, for any distribution of

qualitiesG, the unique competitive equilibrium also maximizes the sum of producer and consumer

surplus, subject to that information structure. Now consider an alternative information structure

G̃ that is more informative than G. Equipped with this information, a social planner could always

replicate the original allocation, by ignoring the added information, so the original level of total

surplus can still be achieved. But since the equilibrium corresponding to G̃ is di�erent than the one

for G, it must be that this improves total surplus. This result also implies that better information

must bene�t either producers or consumers, or both. In particular, average pro�ts must rise when

consumer surplus does not increase, as in the case of concave supply.

3.2 Optimal Information Disclosure

This section considers optimal information disclosure by a market designer, which we refer to as

the planner. To motivate the analysis, we start with an example that captures in a stylized way

some realistic features and helps motivate the necessity of information-pooling regions, which is

a central feature of our �nding for the optimal information mechanism. Moreover, the example

highlights the di�erences between the optimal disclosure mechanism for sellers and consumers.

Example

Qualities z ∈ [z, z̄] are distributed according to cdf F (z) . All �rms inelastically supply q̄ units

provided price is above marginal cost c > 0. Note that because output is inelastically supplied, the

only role of information is to exclude some low-quality producers from the market. This scenario

might represent a market where retailers can acquire the good at a wholesale price c, at a limited

capacity. For any minimum participation threshold z, letQ (z) = (1− F (z)) q̄ denote total output,
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andM (z) the average quality above a threshold z. Assume P (Q (z))+M (z) < c < P (0)+M (z̄)

to guarantee interior solutions.

Let zc, zo, zp denote the optimal thresholds for consumers, an equal weights planner, and pro-

ducers, respectively. As explained earlier, consumer surplus increases with output, so consumers

are interested in maximizing output, subject to the participation constraint for producers being

above the threshold

P (Q(zc)) +M (zc) ≥ c.

Since this expression is strictly increasing in zc, and given our previous assumption, it will bind

for an interior choice.

An equal weights planner will exclude all producers that contribute negative value, and will

thus choose

P (Q (zo)) + zo = c.

Finally, producers choose the threshold to maximize total pro�ts. Di�erentiating with respect to

zp, the corresponding necessary condition is

P (Q (zp)) + P ′ (Q (zp))Q (zp) + zp = c.

The optimal threshold for producers thus equates the marginal revenue of the marginal �rm to

marginal cost. Since P (Q (z)) + z is strictly increasing in z, it follows that zc < zo < zp.

In order to implement the threshold zc, pooling above zc is needed. Intuitively, pooling the

marginal �rm with better �rms allows increasing total participation, by lowering the threshold for

the marginal �rm. In contrast, to implement producers’ preferred threshold zp, all �rms that are

close to and below the marginal �rm must be pooled with lower quality ones, to prevent them

from participating. This can be achieved by pooling all �rms below the threshold. This example

shows the opposing incentives between consumers and producers in choosing thresholds and in

their respective optimal disclosure policies.
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General Theory

Information Structures

The planner’s information is summarized by a distributionF (z) of expected qualities across sellers

with mean z̄. This represents the maximal information that the planner could provide to buyers.

Buyers have symmetric priors about seller quality. We �rst consider the extreme case where buyers

have no information about �rms, sharing a degenerate prior with mass 1 at mean quality z̄. Results

are then extended to non-degenerate priors in Section 3.3. Any partial revelation of information

can be represented by a distribution GεG, where G is the set of garblings or mean-preserving

contractions of F .

Lemma 2. The set G is convex and compact.13

Proof. We use the de�nition that F is a mean-preserving spread of G if

∫
fdG ≥

∫
fdF for all

concave functions f. Convexity follows immediately. Finally, compactness follows since G is a

closed subset of the set of probability measures. By the Banach–Alaoglu theorem – see Dunford

and Schwartz (1988), Theorem 3.15 – the set of signed measures of bounded norm over a compact

set is compact in the weak-* topology. It then follows that G is compact.

Optimal Program

For any G ∈ G, let Q̄ (G) denote total output in the unique equilibrium.
14

Letting 0 ≤ γ ≤ 1

denote the weight given to consumers, the planner’s problem is

max
G∈G

(1− γ)

∫
π
(
P
(
Q̄ (G)

)
+ x
)
dG (x) + γ

∫ Q̄(G)

0

(
P (q)− P

(
Q̄ (G)

))
dq, (2)

where P
(
Q̄ (G)

)
is equal to the price of a hypothetic good of quality zero, where

Q̄ (G) =

∫
S
(
P
(
Q̄ (G)

)
+ z
)
dG (z) , (3)

13
We consider the weak* topology of measures. Under this topology, the set of probability measures is compact.

14
Given Lemma 1, the equilibrium is unique for any given G.
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and π(.) = qp− C(q) is the pro�t function of sellers which is maximized at q = S(p).

The �rst term in (2) corresponds to producer surplus, and the second term to consumer surplus,

as explained before. Equation (3) implicitly de�nes the unique equilibrium output as a function of

G. We say that output Q is attainable if there exists some G ∈ G such that Q is the equilibrium

output corresponding to information structure G. LetQ denote the set of attainable output levels.

Lemma 3. The function Q̄ (G) de�ned implicitly by (3) is continuous and the set Q is given by an

interval [QL, QH ] .

From the previous lemma it follows easily that the objective function de�ned by (2) is contin-

uous on the compact set G, so it has a maximum. We now derive the properties of the optimal

solution.

Changes in the information structure, as represented by G, have two e�ects on the planner’s

objective: a direct e�ect on expected pro�ts and a general equilibrium e�ect, operating through

the change in Q and p. To provide some intuition, consider a small mean-preserving spread of G

around quality x. The direct e�ect will be an increase in pro�ts of a magnitude that depends on

the curvature of the pro�t function around p + x, (1− γ) π′′ (p+ x). The equilibrium e�ect will

be given by a marginal change in prices dp with welfare e�ect

[
(1− γ)

∫
∂π (p+ x)

∂p
dG (x)− γQ̄ (G)

]
dp = (1− 2γ) Q̄ (G) dp,

which follows from the envelope condition
∂π(p+x)

∂p
= S (p+ x). Thus the general equilibrium

e�ect will a�ect �rms and consumers in opposite directions and equal magnitudes. Moreover,

since dp = P ′ (Q) dQ, its magnitude will vary directly with the intensity (and sign) of the output

change dQ. This in turn depends on the curvature of the supply function S ′′ (p+ x) around the

point of the mean-preserving spread x. In particular, if the supply function is convex around this

point, total output will increase and the general equilibrium e�ect will imply a transfer of utility

from �rms to consumers. A transfer in the opposite direction would occur if the supply function

were concave at this point.

In standard Bayesian persuasion models, the objective function has the form

∫
u (x) dG (x),

where G (x) is the posterior distribution induced by the signal structure and is thus linear in G.
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This is also the case in our problem when considering the direct e�ect only, holding �xed total

outputQ and the implied price p = P (Q) . But because of the general equilibrium e�ect discussed

above, total output will most likely change with G, introducing a nonlinearity in the optimization

problem. As a result, we cannot use directly the methods developed in this literature. In order

to leverage those results, we introduce a method for solving our problem in two stages. First, we

solve for an optimal information structure in the subset G (Q) that delivers a given equilibrium

outputQ. As we show below, this problem has both an objective function and a constraint that are

linear in G. We then optimize this result with respect to Q, in the setQ. Consider the constrained

optimization problem:

U (Q) = max
G∈G

(1− γ)

∫
π (P (Q) + z) dG (z) + γ

∫ Q

0

(P (q)− P (Q)) dq (4)

subject to Q =

∫
S (P (Q) + z) dG (z),

where both the objective function and the constraint are linear in G. Note that if we set Q =

Q (G) , where G is the solution to the original problem 2, and we solve the above problem, we

should �nd the same optimal level for G. However, the linearity of the above problem can help

us in �nding properties that our optimal solution should satisfy. The corresponding Lagrangian

function is given by

L (Q, λ) = max
G∈G

(1− γ)

∫
π (P (Q) + z) dG (z) + γ

∫ Q

0

(P (q)− P (Q)) dq (5)

−λ
(
Q−

∫
S (P (Q) + z) dG (z)

)
.

We prove the following result:

Proposition 2. Let Q̄ (G) denote the unique total equilibrium output corresponding to information

structure G.

i. For any QL ≤ Q ≤ QH , there exists a solution G for the optimal constrained program (4) and

the function U (Q) is continuous.

ii. (Lagrange) For any QL < Q < QH and any optimal solution Ḡ (Q), there exists λ (Q) such that
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Ḡ (Q) solves the Lagrangian 5 for λ = λ (Q) andQ is the unique equilibrium for that information

structure.

iii. For Q ∈ {QH , QL}, exactly one of the following two statements are correct:

(a) There exists λ (Q) ∈ R such that any optimal information structure Ḡ (Q) solves the La-

grangian 5 for λ = λ (Q) and Q is the unique equilibrium for that information structure.

(b) U (Q) < maxQ′∈[QL,QH ] U (Q′) , i.e., Q cannot be an optimal quantity.

Once this constrained problem is solved, we can �nd the optimal level of output Q∗ by maxi-

mizing the continuous function U (Q) in the compact set [QL, QH ] .

We now characterize the optimal information structure when the value Q∗ ∈ (QL, QH) by

using conditions 2 and 3a of Proposition 2. The value λ (Q∗) can be obtained by di�erentiating

L (Q, λ (Q)) with respect to Q at Q = Q∗ and equating to zero. This gives

λ (Q∗) =
(1− 2γ)Q∗P ′ (Q∗)

1− P ′ (Q∗)
∫
S ′ (P (Q∗) + z) dG (z)

, (6)

which, dividing both numerator and denominator by Q∗P ′ (Q) and multiplying by P (Q), can be

rewritten as

λ (Q∗) =
− (1− 2γ)P (Q)

εD + εS
, (7)

where εD and εS are demand elasticity, in absolute value, and supply elasticity, respectively. It

follows that λ is positive if and only if γ > 1/2. This captures the intuitive idea, discussed above,

that increases in total output represent, at the margin, a transfer from �rms to consumers, or vice

versa. In addition, the strength of this transfer e�ect is dampened by demand and supply elasticities.

This in turn implies that larger supply and demand elasticities reduce the importance of the general

equilibrium e�ect, which intuitively should lead to more information provision. In the extreme, if

demand is perfectly elastic, consumer surplus is zero regardless of the level of output so G = F ,

so all information is revealed.

Letting

V (z) = (1− γ) π (P (Q∗) + z) + λS (P (Q∗) + z) , (8)
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which includes only components of 5 which change by changing information given a �xed level

of Q, the optimal information structure solves

max
G∈G

∫
V (z) dG (z) ,

which is a linear optimization problem. As in Kolotilin (2018), it follows from Jensen’s inequality

that full revelation is optimal when V (z) is convex, and no revelation is optimal when it is concave.

Noting that

V ′ (z) = (1− γ)S (P (Q) + z) + λS ′ (P (Q) + z) ,

we can easily derive the following su�cient conditions for full revelation.

Proposition 3. Full revelation is always optimal in the following cases:

i. γ = 1/2;

ii. γ < 1/2 and S is concave;

iii. γ > 1/2 and S is convex; and

iv. demand is in�nitely elastic.

In addition, when γ = 1, full revelation is optimal only if S is convex.

In all of these cases the implied function V (z) is convex, after factoring in the corresponding

sign of the multiplier λ. The �rst case con�rms our previous result that full revelation is optimal

when the planner maximizes total surplus. The second result follows intuitively from the fact that

when S is concave, improved information decreases output, implying a transfer from consumers

to �rms, which is desirable as γ < 1/2. Similarly, the last result follows from the fact that when

S is convex, improved information increases output, implying a transfer from �rms to consumers,

which is desirable as γ > 1/2. 15

When demand is in�nitely elastic, all consumer surplus is appropriated by �rms regardless of

the amount of information provided. Given the convexity of the pro�t function, total pro�ts are

15
This proposition holds also when Q∗ ∈ {QL, QH}. Indeed, in part (2) of the proposition, full information implies

that Q∗ = QL, and in part (3) it implies that Q∗ = QH .
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maximized under full information. Note also that demand sensitivity seems to play an important

role more generally. An examination of the Lagrange multiplier (6) suggests that it will be larger in

absolute value when demand is steeper. Intuitively, the transfer between producers and consumers

will be larger the steeper the demand curve is, as P ′ (Q)Q measures the change in consumer

surplus (and corresponding decrease in producer surplus) when total output increases.

Su�cient conditions for no revelation of information are harder to obtain. Because the �rst term

in (8) is convex, the conditions needed for V (z) to be concave seem to be stronger. In the extreme

case when γ = 1, the su�cient conditions will hold when the supply function S is concave, which,

as we found before, is the case where consumers are better o� with no information. More generally,

when γ > 1/2, the supply function has to be su�ciently concave relative to the pro�t function for

no information to be optimal, while if γ < 1/2, the supply function has to be su�ciently convex.

When considering the question of information provision using certi�cation criteria, an issue

that often arises is how hard should the test be? As an example, eBay’s increase in the requirements

to qualify as eBay Top Rated Seller was an attempt to make the test harder to pass. An easy test

allows creating di�erentiation at the lower end, while a harder one, at the upper end. So, where

is information revelation more valuable? Our previous analysis suggests that more di�erentiation

of �rm qualities is of greater value in regions where the degree of convexity of V (z) is stronger.

In particular, when V ′′ (z) is increasing (resp., decreasing), we should expect full disclosure (resp.,

pooling) starting from a point z∗ and pooling (resp., full disclosure) in the region below this point.

These correspond to situations when V (z) is concave-convex (resp., convex-concave). The next

proposition provides conditions under which these properties hold.

Proposition 4. Full disclosure up to some threshold z∗ and complete pooling above is optimal in the

following cases:

i. γ > 1/2 and S ′′/S ′ is decreasing,

ii. γ < 1/2 and S ′′/S ′ is increasing.

Complete pooling up to some threshold z∗ and full disclosure above is optimal in the following cases:

i. γ > 1/2 and S ′′/S ′ is increasing,
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ii. γ < 1/2 and S ′′/S ′ is decreasing.

The intuition for these results is as follows. A small increase in spread around z has a direct

positive impact on expected pro�ts that is proportional to π′′ (P (Q) + z), the curvature of the

pro�t function around this point. Likewise, it has an impact on total output and a transfer from

producers to consumers that is proportional to S ′′ (P (Q) + z). This transfer is positive if S is

convex at this point, and negative otherwise. The ratio S ′′ (z) /π′′ (z) measures the transfer relative

to the pro�t increase resulting from this small increase in spread. The higher S ′′ (z) is relative to

π′′ (z) (lower in absolute value), the smaller the transfer (loss) is relative to the direct pro�t gain.

In this case, it is optimal to provide information disclosure for higher values of this ratio. Our

intuitive argument suggests that when S ′′ (z) /π′′ (z) is increasing (resp., decreasing), disclosure

should occur in an upper interval (resp., lower interval). Note that this is precisely the case where

V (z) is concave-convex (resp., convex-concave).

As an example, consider the homogenous supply function S (p) = pα, where S ′′ (p) /S ′ (p) =

(α− 1) p. This is increasing for α > 1 and decreasing otherwise. So for α > 1, where the supply

function is convex, there will be full disclosure (resp., pooling) followed by pooling (resp., full

disclosure) when γ < 1/2 (resp., γ > 1/2). The reverse pattern occurs when α < 1, where

the supply function is concave. These two cases correspond, respectively, to elastic and inelastic

supply.

In the realistic case where the supply function has a minimum strike price and an upper bound

on output, there must be a convex region for lower values and one that is concave for higher ones.

The example at the beginning of this section �ts in this class of supply functions. This, in turn,

implies that when γ = 1, V (z) will be convex-concave, while in case γ = 0, it will be necessarily

convex in the upper region, where S is concave. Under these conditions, consumers would prefer

separation for lower quality levels (screening out bad quality products) and pooling at the top, the

latter to maximize output. In contrast, producers would always want separation at the high end

and possibly pooling of lower qualities.

We end this section considering the e�ect of asymmetries in the weights of consumers and

producers. For those cases where full information is not optimal, we �nd that the region of pooling

20



increases with the strength of the bias in the planner’s preference for one group or the other.

Proposition 5. Suppose the optimal disclosure policy is given by a threshold with pooling on one side

of the threshold (above or below) and complete separation on the other side. Consider an increase in γ.

If γ > 1/2, then the pooling region increases with γ, while if γ < 1/2, the pooling region decreases

with γ.

The intuition for this result is as follows. When γ > 1/2, it must be the case that S is concave

in the pooling region; otherwise, there would be full disclosure, as stated in Proposition 3. Thus

pooling takes place to mitigate the reduction in output from improved information and its negative

impact on consumer surplus. The larger the weight of consumers, the larger this pooling region

will be. When γ < 1/2, it must be that the supply function is convex in the pooling region, and

pooling occurs precisely to mitigate the increase in output and its negative impact on producers.

The lower the weight of producers (higher γ), the smaller this pooling region will be.

3.3 Buyer’s Prior Information

In this section we extend our results to the case where buyers have non-degenerate priors, given as

follows. There is a �nite partition of sellers into N groups with respective shares αj, j = 1, ..., N.

For all sellers in a group, buyers share symmetric information given by a Dirac prior on mean qual-

ity z0
j . This could represent, for example, identical realizations for a �nite set of ratings. For each of

these groups, the planner’s information can be represented by a distribution Fj of expected quali-

ties across these sellers, with mean z0
j . Any partial revelation of information can be represented by

a distribution GjεGj, where Gj is the set of garblings or mean-preserving contractions of Fj . This

information structure implies a distribution G =
∑

j αjGj over expected qualities of sellers which

re�nes the information of consumers up to the information held by the planner. Let G denote the

set of distributions that can be obtained this way. The optimal problem is identical to (2), optimized

over this set of distributions.

The constrained optimization problem we speci�ed in (5) can be adapted to this case. We solve

for the optimal disclosure policy Gj within each element of the information partition of buyers,

holding �xed the vector of total output Qj for each. Since the only connection between all of
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these planning problems is through aggregate output, holding it �xed makes the problem separa-

ble. Moreover, as total output is the sum of the output Qj of all partitions, the multipliers λj are

identical. In consequence, all properties derived above translate to each element of the partition.

In particular, Propositions 3 and 4 as well as Proposition 5 hold.

4 Final Remarks

This paper considered the optimal design of quality ratings in markets with adverse selection. We

�rst studied the problem of optimal rating design for a planner with a �exible objective function.

We found that better information has opposing welfare e�ects on consumers and producers that

could lead to limited disclosure. For example, in regions where the supply function is concave,

pooling can mitigate the reduction in output from improved information and its negative impact

on consumer surplus. Where the supply function is convex, pooling decreases total output and

increases prices, which might have a positive impact on producers. For those cases where full

information is not optimal, we found that the region of pooling increases with the asymmetry in

the weights of the two groups in the objective function of the planner.

In a follow-up paper, we consider the more practical question of optimal ratings when the

number of signals that the planner can provide is limited, Hopenhayn and Saeedi (2022). In that

paper we characterize the constrained optimal ratings which have the form of interval partitions

or rankings of quality. The paper also shows that an optimal unrestricted information structure

can be well approximated with a small number of rankings.

Our analysis has been limited to case of homogenous consumer preference for quality. A natu-

ral extension is considering the case where these preferences are heterogenous as in the standard

vertical di�erentiation model. In this setting, information not only helps reallocate market share

to higher quality sellers but also improves the matching between goods’ quality and consumers’

preferences. This additional force will result in larger increases in total surplus as a result of im-

proved information. But the impact on the distribution of the gains will depend on the response

of equilibrium prices, as in our simpli�ed setting. Other extensions worth considering are a more

detailed modeling of entry, following results obtained in the empirical literature by Hui et al. (forth-
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coming). Finally, we have abstracted from moral hazard considerations, which can be important in

some settings; exploring their impact on the design of optimal ratings is left to future research.
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5 Appendix. Proofs

Proof of Proposition 1

Proof. Assuming that G1 and G2 are distribution of expected qualities of sellers, if G1 has im-

proved information over G2, then By de�nition of integral precision, it follows that G1 second

order stochastically dominates G2 and it is mean preserving spread over G2. Assume the corre-

sponding levels of total market quantity areQ1 andQ2. Suppose the supply functionS (p) is convex

and, by way of contradiction, Q1 < Q2. Let p1 (z) = P (Q1) + z denote the equilibrium price for a

good of expected quality z, and de�ne similarly p2 (z) . It follows immediately that p1 (z) > p2 (z),

since P is strictly decreasing. Therefore

Q1 =

∫
S (p1 (z)) dG1 (z) ≥

∫
S (p2 (z)) dG1 (z)

≥
∫
S (p2 (z)) dG2 (z) = Q2,

where the �rst inequality follows from the monotonicity of the supply function and the second

inequality follows from convexity of S (p) . The above contradicts the original hypothesis, proving

that Q1 ≥ Q2. The proof is similar for concave S (p).

To show that total surplus increases with better information, we show that there exists a cor-

respondence between competitive equilibria and allocations that maximize total surplus. Given a

distribution of mean qualities G (z), the problem of maximizing total surplus solves

S = max
q(z)

∫ Q

0

P (x) dx+

∫
[zq (z)− C (q (z))] dG (z)

subject to

Q =

∫
q (z) dG (z) .

The �rst order conditions for the choice of q (z) are
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z − C ′ (q (z)) + λ = 0 (9)

and this holds for all points in the support of G, where the Lagrange multiplier of the constraint

λ = P (Q) . Substituting in (9) and letting p (z) = P (Q) + z implies p (z) = C ′ (q (z)), which is

the condition de�ning the pro�t maximizing output q (z) in the competitive equilibrium. Hence

the allocation q (z) and the prices p (z) are the ones that correspond to the unique competitive

equilibrium.

Consider now a distribution of expected qualities G̃ corresponding to a better information sys-

tem than G so it is a mean-preserving spread of G. Following the characterization in Rothschild

and Stiglitz (1970), there exists a garbling of signals that generates G from G̃. This means that a

social planner could ignore the additional information contained in G̃ and reproduce the quantity-

weighted distribution of average qualities corresponding to the optimal allocation under G and

thus the same value. While this allocation is feasible under G̃, it is not optimal. This follows from

the easily veri�ed property that the unique competitive equilibrium (which as argued is also the

optimal allocation) di�ers across these two information structures.

Proof of Lemma 3

Proof. The set of attainable output levels is bounded, as z is bounded above and output for any

G is bounded by the equilibrium value corresponding to a distribution with point mass at the

highest z. We next show that the mapping Q̄ (G) de�ned implicitly by (3) is continuous. Let

Gn ∈ G converge to G and let Qn be the corresponding sequence of total output. Assume that

this sequence converges to Q ≥ 0 (otherwise consider a subsequence). It su�ces to show that∫
S (P (Qn) + z) dGn →

∫
S (P (Q) + z) dG. By the triangle inequality,∣∣∣∣∫ S (P (Qn) + z) dGn −

∫
S (P (Q) + z) dG

∣∣∣∣ ≤∫
|S (P (Qn) + z)− S (P (Q) + z)| dGn

+

∣∣∣∣∫ S (P (Q) + z) dGn −
∫
S (P (Q) + z) dG

∣∣∣∣
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The �rst term converges to zero, since Qn is bounded and thus S (P (Qn) + z)− S (P (Q) + z) is

uniformly continuous. The second term converges to zero, since the function de�ned byS (P (Q) + z)

is continuous in z. Having proved that the function Q̄ (G) is continuous, it follows from Lemma

2 that Q is compact, so there are minimal and maximal attainable output levels QL and QH , re-

spectively. Let GL and GH be the corresponding quality distributions and de�ne G (α) = αGH +

(1− α)GL ∈ G by Lemma 2, and let φ (α) = Q̄ (G (α)) . This is a continuous function on [0, 1],

and φ (0) = QL and φ (1) = QH . By the intermediate value theorem, φ ([0, 1]) = [QL, QH ].

Proof of Proposition 2

To prove this proposition we �rst state and prove the following two Lemmas. We will be using the

following notation throughout of the proof. De�ne the following two correspondences:

G+ (Q) =

{
G ∈ G|Q ≥

∫
S (P (Q) + z) dG

}
G− (Q) =

{
G ∈ G|Q ≤

∫
S (P (Q) + z) dG

}

Lemma 4. Assume the supply function S is uniformly continuous. The correspondences G+ (Q) and

G− (Q) are continuous at QL and QH, respectively.

Proof. We proof continuity of G+ (Q) . The proof for the other correspondence is analogous. Con-

sider �rst upper hemi-continuity. Take a sequence Qn → QL and Gn ∈ G+ (Qn), where Gn → G.∣∣∣∣∫ S (P (Qn) + z) dGn (z)−
∫
S (P (QL) + z) dG (z)

∣∣∣∣
≤
∣∣∣∣∫ S (P (Qn) + z) dGn (z)−

∫
S (P (QL) + z) dGn (z)

∣∣∣∣
+

∣∣∣∣∫ S (P (QL) + z) dGn (z)−
∫
S (P (QL) + z) dG (z)

∣∣∣∣
The second term converges by the de�nition of convergence of measures since S is continuous.

Regarding the �rst term, uniform continuity implies that for any ε there exists N such that for all
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n ≥ N : ∣∣∣∣∫ S (P (Qn) + z) dGn (z)−
∫
S (P (QL) + z) dGn (z)

∣∣∣∣
< ε

∫
dGn (z) = ε

so the �rst term also converges to zero.

Lower hemi-continuity at G ∈ G+ (QL) follows immediately since

Q ≥ QL ≥
∫
S (P (QL) + z) dG ≥

∫
S (P (Q) + z) dG

so G ∈ G+ (Q) .

Lemma 5. Assume the pro�t function π (p) and the supply function S (p) are uniformly continuous.

Then the function

ζ (Q, λ,G) = (1− γ)

∫
π (P (Q) + z) dG+ γ

∫ Q

0

(P (q)− P (Q)) dq

−λ
(
Q−

∫
S (P (Q) + z) dG

)

is jointly continuous.

Proof. For the �rst and last term, the proof follows the same lines as the proof of upper hemi-

continuity in the previous Lemma. The second term is obviously continuous in Q as the inverse

demand function P (Q) is so.

Now using the above two lemmas we continue the Proof of Proposition 2.

1. For any Q ∈ [QL, QH ] , the set of measures G satisfying the constraint in (4) is nonempty

and closed, as de�ned by a linear functional on G, and thus compact. The optimized functional is

linear and thus continuous, so there exists a maximum. Finally, since the objective is continuous

and the constraint correspondence is a compact set of probability measures and continuous in Q,

Berge’s Maximum Theorem implies that the maximized value U (Q) is continuous in Q.
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2. We will show that the solution of the constrained problem (4) coincides with the solution of

a relaxed problem when we use either G+ (Q) or G−(Q). To simplify notation, suppress the depen-

dence of G+
and G− on Q in what follows. It is immediate to verify that these relaxed problems

satisfy the requirements of Theorem 1 in section 8.3 of Luenberger (1997). As a result Lagrange

multipliers must exist associated with the inequality constraint.

To show this, we �rst show that since Q ∈ (QL, QH) the inequalities de�ning G+
and G−

hold strictly for some distributions in the corresponding sets. To see this, let GL be the probability

measure that satis�es

QL =

∫
S (P (QL) + z) dGL

and let GH be de�ned accordingly for QH . Since Q > QL and P (·) is decreasing, we must have

Q > QL =

∫
S (P (QL) + z) dGL ≥

∫
S (P (Q) + z) dGL.

Hence GL ∈ G and continuity of the function Γ (G) =
∫
S (P (Q) + z) dG with respect to G

implies that GL ∈ int (G+). Similarly, since Q < QH , we have

Q < QH =

∫
S (P (QH) + z) dGH ≤

∫
S (P (Q) + z) dGH .

As a result, GH ∈ int (G−).

Next, letting Π (G,Q) = (1− γ)
∫
π (P (Q) + z) dG+ γ

∫ Q
0

[P (q)− P (Q)] dq, we show that

µ0 = max
G∈G+∩G−

Π (G,Q)

= min

{
max
G∈G+

Π (G,Q) , max
G∈G−

Π (G,Q)

}

Given the de�nition ofµ0, obviously it must be thatµ0 ≤ maxG∈G+ Π (G,Q) , µ0 ≤ maxG∈G− Π (G,Q).

Now, suppose to the contrary that µ0 < maxG∈G+ Π (G,Q) ,maxG∈G− Π (G,Q). If Π (G+) =

maxG∈G+ Π (G,Q) and Π (G−) = maxG∈G− Π (G,Q), there must exist λ ∈ [0, 1] such that λG+ +
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(1− λ)G− ∈ G+ ∩ G−. This implies that

µ0 ≥ Π
(
λG+ + (1− λ)G−

)
= λΠ

(
G+
)

+ (1− λ) Π
(
G−
)

≥ min

{
max
G∈G+

Π (G,Q) , max
G∈G−

Π (G,Q)

}

which is a contradiction.

Now, suppose that µ0 = maxG∈G+ Π (G,Q). Applying Luenberger’s theorem to the latter

optimization, we have that λ ≤ 0 exists such that

µ0 = max
G∈G

Π (G,Q)− λ
{
Q−

∫
S (P (Q) + z) dG

}

The case with µ0 = maxG∈G− Π (G,Q) is similar.

3. We prove the claim for Q = QL. The proof for the case Q = QH follows almost identically.

Note that at Q = QL, the inequality de�ning G− holds strictly for some G. This is because at

GH , we have

QL < QH =

∫
S (P (QH) + z) dGH <

∫
S (P (QL) + z) dGH .

Therefore, if µ0 ≡ U (QL) = maxG∈G− Π (G,QL), then we can apply Luenberger’s theorem and

show that λ (QL) exists. Otherwise, we must have that

µ0 = max
G∈G+

Π (G,QL) < max
G∈G−

Π (G,QL)

The above also implies that for values of Q close enough to QL, the same property holds. Hence,

for such values of Q > QL, λ (Q) ≤ 0.

Next, suppose that along some subsequence Qi → QL the corresponding Lagrange multipliers

λi → λL, where 0 > λL > −∞. For any G̃ ∈ G,

Π
(
G̃, Qi

)
− λ (Qi)

(
Qi −

∫
S (P (Qi) + z) dG̃ (z)

)
≤ L (Qi, λ (Qi)) (10)
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By Lemma 5 and applying Berge’s theorem of the maximum, Taking limits on both sides as Qi →

QL and λ (Qi) → λL, applying Berge’s theorem of the maximum, L (Qi, λ (Qi)) → L (QL, λL) .

Taking limits on the left hand side of (10), it follows that Π
(
G̃, QL

)
−λL

(
QL −

∫
S (P (QL) + z) dG̃

)
≤

L (QL, λL) . Without loss of generality we can choose the sequence {Qi} so that QL < Qi < QH ,

by part (1) of this Proposition it follows that U (Qi) = L (Qi, λi). Finally, using Lemma 4 and

Lemma 5, and applying again Berge’s maximum theorem, U (Qi)→ U (QL) , so

Π
(
G̃, QL

)
− λL

(
QL −

∫
S (P (QL) + z) dG̃

)
≤ U (QL)

with equality when G̃ ∈ G (QL) .

Suppose to the contrary that the sequence λ (Qi) converge to −∞ as λ (Qi) ≤ 0. Using Enve-

lope theorem we have the following for all Q > QL:

U ′(Q) = (1− γ)

∫
π′ (P (Q) + z)P ′ (Q) dG−γQP (Q)−λ

{
1−

∫
S ′ (P (Q) + z)P ′ (Q) dG

}

The �rst two terms of the above statements are bounded. For the third term, the expression in

the bracket is always positive and −λ → ∞. This results in U ′(Q) > 0 as Q → QL and thus QL

cannot be optimal. The same argument holds for Q = QH .

Proof of Proposition 4

Proof. Following the �rst condition given in Proposition 3 part (i) in Kolotilin (2018), full disclosure

up to some threshold z∗ and complete pooling above is optimal when V ′′ (z) changes sign from

positive to negative. Note that V ′′ (z) has the same sign as

V ′′ (z)

π′′ (z)
= (1− γ) + λ

S ′′ (z)

π′′ (z)
.

So when either of the two �rst conditions given in the proposition holds, then V ′′ (z) can be always

positive, always negative, or switch sign from positive to negative. If it is always positive, full
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disclosure is optimal, and if it is always negative, no disclosure is optimal. In these two cases z∗ is

at an extreme. When V ′′ (z) changes sign, z∗ is an interior point. In this case, there is an interval

with full disclosure followed by no disclosure.

The proof of the second part is analogous to the �rst one, using instead the second condition

in Proposition 3 part (i) in Kolotilin (2018).

Proof of Proposition 5

To prove this proposition, we �rst need to state the following two lemmas.

Lemma 6. 1) LetQ (z) be the equilibrium output for an upper interval disclosure policy with threshold

z. Let mL (z) denote the conditional mean below z (the pooling interval), pL = P (Q (z) +mL) and

p = P (Q (z) + z) . Then Q′ (z) has the same sign as

S ′ (pL) (p− pL)− (S (p)− S (pL)) .

2) Let Q (z) be the equilibrium output for a lower interval disclosure policy with threshold z.

Let mH (z) denote the conditional mean above z (the pooling interval), pH = P (Q (z) +mH) and

p = P (Q (z) + z) . Then Q′ (z) has the same sign as

S ′ (pH) (pH − p)− (S (pH)− S (p)) .

Proof. Consider the upper interval disclosure with threshold z. Equilibrium output Q (z) is the

solution to

Q (z) = F (z)S (P (Q (z)) +mL (z)) +

∫
z

S (P (Q (z)) + s) dF (s) ,

where mL (z) is the conditional mean below the threshold z (the pooling interval). Di�erentiating

with respect to z,

Q′ (z) = f (z)
S ′ (P (Q (z)) +mL (z)) (z −mL (z))− (S (P (Q (z)) + z)− S (P (Q (z)) +mL (z)))

1− P ′ (Q (z))
(
F (z)S ′ (P (Q (z)) +mL (z)) +

∫
z
S ′ (P (Q (z)) + s) dF (s)

) .
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The denominator is positive, so the sign of Q′ (z) is equal to the sign of the numerator:

S ′ (P (Q (z)) +mL (z)) (z −mL (z))− (S (P (Q (z)) + z)− S (P (Q (z)) +mL (z))) .

The proof of the second part follows similar calculations.

The following lemma gives the conditions that determine the sign of the above expressions.

Lemma 7. Consider an optimal disclosure policy that is given by a threshold with pooling on one side

of the threshold (above or below) and complete separation on the other side. Then a marginal increase

in the pooling region will increase total output (resp. decrease total output) when γ > 1/2 (resp. when

γ < 1/2).

Proof. Consider �rst the case where z corresponds to the threshold of a lower disclosure inter-

val. Let mH (z) denote the mean above z (the pooling interval), pH = P (Q (z) +mH) and p =

P (Q (z) + z) . Following Kolotilin (2018), V (mH (z)) − V (z) − (mH (z)− z)V ′ (mH (z)) = 0.

Since V (s) = π (P (Q (z)) + s)+λS (P (Q (z)) + s) and the �rst term is convex, for this equality

to hold it is necessary that

λ [S (P (Q (z)) +mH (z))− S (P (Q (z)) + z)] > λ [(mH (z)− z)S ′ (P (Q (z)) +mH (z))] .

For γ > 1/2, λ > 0, so this implies that S (pH) − S (p) > (pH − p)S ′ (pH) , and by Lemma 6, it

follows that Q′ (z) < 0. An increase in the pooling region corresponds to a decrease in z, so total

output increases. The reverse is obviously true when γ < 1/2.

Consider now the case where z corresponds to the threshold of an upper disclosure inter-

val. Let mL (z) denote the mean above z (the pooling interval), pL = P (Q (z) +mL) and p =

P (Q (z) + z) . Following Kolotilin (2018), V (z) − V (mL (z)) − (z −mL (z))V ′ (mL (z)) = 0.

Since V (s) = π (P (Q (z)) + s) +λS (P (Q (z)) + s) and the �rst term is convex, for the equality

to hold it is necessary that

λ [S (P (Q (z)) +mH (z))− S (P (Q (z)) + z)] < λ [(mH (z)− z)S ′ (P (Q (z)) +mH (z))] .
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For γ > 1/2, λ > 0, so this implies that S (pH) − S (p) < (pH − p)S ′ (pH), and by Lemma 6, it

follows that Q′ (z) > 0. An increase in the pooling region corresponds to an increase in z, so total

output increases. The reverse is obviously true when γ < 1/2.

Now using the above two lemmas, we continue the proof of Proposition 5.

Proof. Consider �rst the setting where the optimal policy is a left disclosure interval, as in Propo-

sition 4.

W (z, γ) = (1− γ)

[∫ z

0

π (P (Q (z)) + s) dF (s) + (1− F (z))π (P (Q (z)) +mH)

]
+γ

∫ Q(z)

0

(p− P (Q (z))) dz,

where Q (z) is the equilibrium output under this policy.

∂W

∂z
= (1− γ) f (z) (π (z)− π (mH)) + (1− γ) f (z) (mH − z) π′ (mH) + (1− 2γ)Q (z)P ′ (Q (z))Q′ (z)

Taking derivative with respect to γ,

∂2W

∂z∂γ
= −f (z) [(π (z)− π (mH)) + (mH − z) π′ (mH)]− 2Q (z)P ′ (Q (z))Q′ (z)

= −(1− γ)

1− γ
f (z) [(π (z)− π (mH)) + (mH − z) π′ (mH)]− 2 (1− γ)

1− γ
Q (z)P ′ (Q (z))Q′ (z)

= 0− 1

1− γ
Q (z)P ′ (Q (z))Q′ (z) .

When γ > 1/2, Lemma 7 implies that Q′ (z) < 0, so the cross partial is negative and the pooling

region increases with γ. When γ < 1/2, Q′ (z) > 0, so the cross partial is positive and the pooling

region decreases with γ.

Consider next the case where the optimal policy is a right disclosure interval, as in Proposition
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4:

W (z, γ) = (1− γ)

[
F (z) π (P (Q (z)) +mL) +

∫
z

π (P (Q (z)) + s) dF (s)

]
+γ

∫ Q(z)

0

(p− P (Q (z))) dz,

where Q (z) is the equilibrium output under this policy.

∂W

∂z
= (1− γ) f (z) (π (mL)− π (z)) + (1− γ) f (z) (z −mL) π′ (mL) + (1− 2γ)Q (z)P ′ (Q (z))Q′ (z)

Taking derivative with respect to γ,

∂2W

∂z∂γ
= −f (z) [(π (mL)− π (z))− (z −mL)π′ (mL)] +−2Q (z)P ′ (Q (z))Q′ (z)

= − 1

1− γ
Q (z)P ′ (Q (z))Q′ (z) .

When γ > 1/2, 7 implies that Q′ (z) > 0, so the cross partial is positive and the pooling region

increases with γ.When γ < 1/2, Q′ (z) < 0, so the cross partial is negative and the pooling region

decreases with γ.
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