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Abstract

We introduce a tractable methodology for analyzing dynamic decision problems

and games involving irreversible decisions under uncertainty. By leveraging regularity

properties, our approach offers an intuitive method for solving these problems using

equivalent certain values, and derives properties and comparative statics of the solution.

We show that irreversibility is analogous to information loss, leading agents to act as

if they had worse information than with reversible actions. We use our methodology

to analyze design features of previously intractable long auctions, establish revenue

equivalence, and show that increasing bidding opportunities or allowing bid retraction

can harm bidders and benefit the auctioneer.
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1 Introduction

Irreversible decisions in the face of uncertainty have been central to much economic research.

This class of problems is often difficult to analyze and solve either analytically or numerically.

In this paper, we propose a novel and tractable methodology by leveraging a set of regular-

ity properties commonly present in a wide range of dynamic problems and games involving

irreversibilities. The proposed approach offers a simple and intuitive method for analyzing

and solving this class of problems and provides a range of valuable insights. The decision

problems we analyze have the following structure. First, agents make irreversible decisions

over a period of time, such as sunk investments in R&D, allocating capacity, or biddings in

long auctions. Second, throughout the decision period, agents observe new signals. For ex-

ample, innovators may learn about the value of obtaining a patent, firms might learn about

outside opportunities, and bidders might learn about alternative auctions. Third, the oppor-

tunities to take actions are random. These random times represent random opportunities

for undertaking actions such as R&D investments, or executing trades.

Our paper has two main contributions. First, we introduce a novel approach to solving

and analyzing this class of problems that makes them very intuitive and tractable. Second,

our methodology allows us to characterize several properties and comparative statics in this

setting, including both dynamic decision problems and a class of games. In particular, we

show that irreversibility in these problems is analogous to information loss in the sense of

Blackwell, a la Blackwell [1951, 1953]. An agent faced with irreversible decisions acts as if

it had worse information than with reversible actions. The implications of irreversibility for

expected payoffs can thus be related to the impact of information loss, i.e., a mean-preserving

contraction in the distribution of states over which actions are chosen. For example, we show

that in the case of dynamic auctions, these irreversibilities result in a distribution of final bids

that is a mean-preserving contraction of the distribution of the bids without irreversibility.

Our methodology involves decomposing the general dynamic decision problem into two com-

ponents: 1) a dynamic option valuation problem (the pricing of an option); and 2) a static

decision problem that assigns actions to each possible value of that option. To illustrate this

approach, consider the simplest problem in our class given by an irreversible entry decision.

A firm can enter a market with a random payoff v (T ) accruing in period T . The entry can

take place at random decision nodes {τn} in the decision period [0, T ], at a given cost ce,

and payoff relevant information is received in this interval. The option valuation problem

for each decision node is the answer to the following question: What is the highest entry

cost (or purchase price) at which this option would be exercised? The assignment of an

optimal entry decision is now trivial: enter the first time where this value exceeds the entry
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cost ce. This value is generally lower than the expected value v (T ) at this node, as entry

gives up the option of waiting. We call this option value the equivalent certain value (ECV).

ECV corresponds to the certainty value at which the decision maker would make the same

decision in the absence of future opportunities.1 What is more surprising is that the ECVs

are the same regardless of the decision problem in our class. The specific choice problem

only matters for the second step, the static decision problem of assigning actions to each

ECV. This procedure is explained in more detail below. This separation result is particularly

useful when considering the design of games, especially when the design involves repeatedly

evaluating changes in the payoff functions.

ECVs are constructed by a self-generated expectation method that is independent of the

specific payoff function. They are a function of the process of new information and decision-

making times. To explain this method, we need to explain our modeling framework a bit

further. The agent faces a random sequence of decision times which follow a joint Markov

process.2 At each decision time, given current information, the agent can make an irreversible

decision, e.g., the outstanding bid or current action, which can only be adjusted upward.

The final payoff is a function of the final action after the end of the decision period, and

the final value, e.g., the expected payoff to a bidder is a function of their outstanding bid

and realization of their valuation. The first step of our methodology is to assign an ECV

to any decision node, with the property that the optimal action at the decision node is the

same as the one at the end node with the valuation ECV, i.e., in a static setting without

any further possible actions. This can be illustrated with the aid of Figure 1. In this figure,

the x-axis represents the time, and the y-axis represents the expected value at a given point

in time. Consider the decision node at (v0, t0), its ECV is going to be a value at the end

time, T , where the agent’s optimal action is the same at (v0, t0) and (ECV, T ), let us call

this optimal action a0. This figure also illustrates the indifference curve that passes through

these two points, which represents all points in the value-time space where the agent would

choose the same optimal action a0.

These indifference curves have a self-generating property. Starting at the point (v0, t0), where

the agent will choose the action a0, many paths can occur in the value-time space with var-

ious random opportunities for the agent to update the action upward. Among these paths,

there is a subset in which the agent does not adjust their actions any further. This subset

can be further divided into two subsets. First, there is the set of paths with no additional

1This correspondence satisfies a self-generating property which is explained later on. It has a parallel in
the recursive methods in Abreu et al. [1990].

2This is a standard assumption in the class of revision games, developed in Kamada and Kandori [2020b],
in models of sticky prices following Calvo [1983], and models of optimal election campaign as in Kamada
and Sugaya [2020], among many others.
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Figure 1: Indifference curves for actions

Note: All points on this curve result in the same optimal action value, a0.

opportunities for adjustment. Second, there is the subset with the paths which have subse-

quent opportunities, but these opportunities will lie below this indifference curve, thus the

agent would want to lower their action but given the irreversibility assumption, they cannot.

The expected final value conditional on paths belonging in these two subsets is precisely

the ECV. The same property holds for any point on this indifference curve. This property,

which we call self-generated expectation, depends only on the stochastic process for values

and decision times and is thus independent of the specific payoff function.3 Additionally,

note that the second subset includes adverse future paths, therefore ECVs tend to be lower

than unconditional expected value of agents, hence we get value shading.

The indifference curves tend to be downward sloping. This is because these adverse outcomes

incorporated into the subset of paths happen more often when agents are far from the end of

the decision time and less often when they are closer to the end time. The downward-sloping

indifference curve results in larger shading when the agent is further from the end time and

less shading when the agent is closer to the end time, therefore it can result in a gradual

increase of actions as we get closer to the end time.4

We provide a simple recursive method for the computation of ECVs. This can be intuitively

illustrated by relating ECVs to a particular option value of a random asset. The asset has

a final uncertain payoff v (T ). Consider the following security. A buyer can purchase this

3We borrow this term from Abreu et al. [1990]. Although related, it is a different concept. Our indifference
curves are self-generating as they define the boundaries on future realizations for the calculation of conditional
expected values, which in turn are constant along these curves.

4An analogue result is found in Harris and Holmstrom [1982], where initially workers’ wages are shaded
below marginal products, as the wage is effective in the future only if it is less than or equal to the realized
marginal product of the worker.
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asset at some price p (t) and is entitled to the final payoff. However, the seller retains the

option to buy back the asset at the same price, but only at random times τ ′ ≥ t. If the

seller does not exercise this option or if no repurchase opportunity arises, the buyer retains

the final payoffs. At any of these random times, the seller updates the expected value of

the asset based on the information received. Letting v (t) be the expected final payoff v (T )

given (symmetric) information at that time, the (fair) price of this security p (t) is precisely

its ECV. Consequently, the repurchase option will be exercised at the first random trading

time τ ′ whenever the corresponding price of this security (its ECV) exceeds p (t) .

Two crucial factors determining the degree of shading are the likelihood of future decision

opportunities and the extent of new information received, measured by the conditional vari-

ance of expected final values. We show that irreversibility constrains the agent’s actions,

limiting its ability to condition its choice on the available information. Likewise, we illustrate

that with an increase in frequency of arrivals, there is more value shading at the beginning

and at the same time more frequent arrivals, which results in more arrivals toward the end

time. Consequently, the final ECV is going to be closer to the final value, and hence final

decisions are more aligned with the true values. Similar to the removal of irreversibility,

more arrival can be bad for agents, for example, in auctions, it can result in increased prices

and decreased welfares for the bidders.

Our results apply to dynamic games with incomplete information and privately observed

actions or those with a dominant strategy, where our main theorem shows that we can

find equilibrium strategies by solving a Bayesian Nash equilibrium of an associated static

Bayesian game.5 The equilibrium strategies in the dynamic game are easily derived from

those in the associated static Bayesian game. This result also extends to dynamic games

with observable actions when the associated Bayesian game has an equilibrium in weakly

dominating strategies.6

As a demonstration of the practical value of the model developed, we use our method to

analyze optimal dynamic auction design when bidders receive new information about their

private value over time. Dynamic auctions that run over longer horizons are becoming

increasingly prominent, making it critical to incorporate evolving information. Our setting

5Even though these assumptions may appear restrictive, Gershkov et al. [2013] and Kushnir and Liu [2019]
demonstrate that, under certain conditions, any allocation supportable through a Bayesian equilibrium can
equivalently be supported by an alternative mechanism featuring dominant strategies. Consequently, if a
market designer seeks to identify optimal allocations, their attention can be directed solely toward dominant
strategies, utilizing our method to address the dynamic aspects of these strategies.

6Without this assumption, this result can also apply to finding open loop equilibria, which for large games
might approximate closed loop equilibria (see Fudenberg and Levine [1988]). It can also be applied to solving
for equilibria in mean-field games.

5



generalizes those in Kamada and Kandori [2020a], Kamada and Kandori [2020b], and Kapor

and Moroni [2016], by allowing the valuation of participants to change throughout the course

of the auction.

We first show that a generalization of revenue equivalence holds in our model even with

recurring bid opportunities. This result relies on the reduction to a static auction using the

distribution of ECVs.7 It can also be used to provide insight into optimal reserve prices,

similar to those in Riley and Samuelson [1981] for static auctions. Their analysis suggests

that if the distribution of values is very diffuse, the seller could benefit from setting higher

reserve prices to extract revenue from the highest value bidders without seriously jeopardizing

the probability of sale. Our results suggest that the opposite holds in the absence of bid

retraction or when bidding opportunities are infrequent.

Additionally, we study the impact of irreversibility and the increase in bidding opportunities

in long auctions. As mentioned above, irreversibility in dynamic problems is an analog of

loss of information in a static problem. Therefore, allowing bid retraction in long auctions

results in a mean-preserving spread of ECVs and the corresponding bids. This increases

efficiency as bids become more correlated with true values. Paradoxically, bidders may be

worse off as the increase in the spread of bids will typically raise prices and might lead to a

reduction in surplus for the winner of the auction.8 Similar results are obtained when the

frequency of bids is increased (keeping irreversibility in place), higher frequency leads to a

mean-preserving spread of bids and therefore to a potential decrease of surplus for bidders.

These results point to two design considerations, the irreversibility of bids, and the frequency

by which bidders might be reminded about making choices.

Literature Review We propose a new methodology to solve dynamic decision problems

involving irreversibility in a tractable way. As discussed, these problems arise in many

economic and business contexts (see Dixit et al. [1994], Lippman and McCall [1976]). Some

applications that have been studied before include R&D investments, capacity expansion,

dynamic pricing under limited capacity, hiring and firing decisions, and dynamic auctions.

The challenge posed in these problems is that the future arrival of information creates an

option value to delaying decisions, yet actions are irreversible. This tension makes identifying

optimal policies complex, Arrow and Fisher [1974], Henry [1974]. These papers point out

that the optimal solution requires accounting for option value which results in shading, but

do not provide a computational solution.

7The conditions for symmetry are somewhat stronger, as they require that all agents face identical but
independent processes for information and bid opportunities.

8This is true for large number of bidders (more than three).
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A closely related literature is that of revenue management that looks at optimal dynamic

pricing under limited capacity, as explored by Zhao and Zheng [2000] and as surveyed by

Elmaghraby and Keskinocak [2003] and Den Boer [2015]. This is an extensive literature that

studies the problem of monopolies or oligopolists who want to maximize their revenue over

a period of time when they are facing uncertainties and irreversibility. In a similar research,

Ito and Reguant [2016] examines capacity contracting for power plants. Betancourt et al.

[2022] study the problem of two airlines selling seats over time when there is a deadline.

Our methodology has a couple of parallels in the literature. There is a connection between

the ECV and the Gittins index Gittins et al. [2011] in the statistical decision literature. Both

concepts aim to reduce a dynamic decision problem to an index policy over simpler static

problems. The Gittins index identifies the arm with the highest index as the one to play

next. ECVs map states into indices to define optimal actions. The self-generating property

that identifies the ECVs has a parallel in recursive methods in Abreu et al. [1990].

The rest of the paper is organized as follows. Section 2 provides a simple example that

conveys the main intuition and results in the paper. Section 3 describes the general model

and provides a set of applications that can fit the general model. Section 4 discusses the

intuitive and formal analysis of the model and describes how to embed the results into games.

Section 4.4 describes our main results. Section 5 discusses an application of the model to

dynamic second-price auctions and explores a few related design problems. In the online

appendix, we discuss a few extensions of the baseline model to random termination time and

give properties for the case where values are independent of Poisson arrival opportunities

and also an application to the identification of anonymous sequential games. All proofs are

deferred to the Appendix unless specified.

2 A Simple Example

We start our analysis by considering a two-period contest that illustrates some of the main

features of our methodology. There are N players and two periods, t = {0, 1}. In the first

period, after observing a private signal vi0 drawn from some distribution Hi (vi0), agents

choose the level of a private action ai0 ≥ 0, e.g., studying for a test or allocating resources to

a project. In the second period, each agent privately observes its value of winning the contest

vi1 drawn from the conditional distribution Fi (.|vi0). With probability pi, the agent has the

option of increasing the action to any value ai1 ≥ ai0, e.g., studying more or allocating

additional resources to the project. With probability (1− pi), the agent is unable to revise

its choice; therefore, ai0 remains its final action. The agent with the highest final action,
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<latexit sha1_base64="4GNJEk4W5G4zZWDXImOz9pHGo+0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8SNj1ot4CXvQWwTWBZFl6J5NkyOzsMjMbCEvAX/DiQcWrX+IPePMz/AMnj4MmFjQUVd10d0Wp4Nq47peztLyyurZe2Chubm3v7Jb29u91kinKfJqIRDUi1ExwyXzDjWCNVDGMI8HqUf9q7NcHTGmeyDszTFkQY1fyDqdorFQfhO4phm5YKrsVdwKySLwZKVfL3x8PAFALS5+tdkKzmElDBWrd9NzUBDkqw6lgo2Ir0yxF2scua1oqMWY6yCfnjsixVdqkkyhb0pCJ+nsix1jrYRzZzhhNT897Y/E/r5mZzkWQc5lmhkk6XdTJBDEJGf9O2lwxasTQEqSK21sJ7aFCamxCRRuCN//yIvHPKpcV79aGcQNTFOAQjuAEPDiHKlxDDXyg0IdHeIYXJ3WenFfnbdq65MxmDuAPnPcfO+GRUQ==</latexit><latexit sha1_base64="VjkqqwUDYDs/gXpQ4QSkNAD7Vcc=">AAAB7XicbVC7SgNBFL3rM8ZX1NJmMAgWEmYtfHQBG+0iuCaQLMvsZDYZMju7zMwGwpLGP7CxULG19Sf8ATs/wz9w8ig08cCFwzn3cu89YSq4Nhh/OQuLS8srq4W14vrG5tZ2aWf3TieZosyjiUhUIySaCS6ZZ7gRrJEqRuJQsHrYuxz59T5Tmify1gxS5sekI3nEKTFWqvcDfEwCHJTKuILHQPPEnZJytfz9ce+9n9aC0merndAsZtJQQbRuujg1fk6U4VSwYbGVaZYS2iMd1rRUkphpPx+fO0SHVmmjKFG2pEFj9fdETmKtB3FoO2NiunrWG4n/ec3MROd+zmWaGSbpZFGUCWQSNPodtbli1IiBJYQqbm9FtEsUocYmVLQhuLMvzxPvpHJRcW9sGNcwQQH24QCOwIUzqMIV1MADCj14gCd4dlLn0XlxXietC850Zg/+wHn7AeJUko4=</latexit><latexit sha1_base64="VjkqqwUDYDs/gXpQ4QSkNAD7Vcc=">AAAB7XicbVC7SgNBFL3rM8ZX1NJmMAgWEmYtfHQBG+0iuCaQLMvsZDYZMju7zMwGwpLGP7CxULG19Sf8ATs/wz9w8ig08cCFwzn3cu89YSq4Nhh/OQuLS8srq4W14vrG5tZ2aWf3TieZosyjiUhUIySaCS6ZZ7gRrJEqRuJQsHrYuxz59T5Tmify1gxS5sekI3nEKTFWqvcDfEwCHJTKuILHQPPEnZJytfz9ce+9n9aC0merndAsZtJQQbRuujg1fk6U4VSwYbGVaZYS2iMd1rRUkphpPx+fO0SHVmmjKFG2pEFj9fdETmKtB3FoO2NiunrWG4n/ec3MROd+zmWaGSbpZFGUCWQSNPodtbli1IiBJYQqbm9FtEsUocYmVLQhuLMvzxPvpHJRcW9sGNcwQQH24QCOwIUzqMIV1MADCj14gCd4dlLn0XlxXietC850Zg/+wHn7AeJUko4=</latexit><latexit sha1_base64="5LkTtJbA4yTGI3rlfvjPTz5jh8E=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBg5SNF/VW8KK3CsYW2hA22027dLMJu5tCCf0RXjyoePX/ePPfuGlz0NYHA4/3ZpiZF6aCa4Pxt1NZW9/Y3Kpu13Z29/YP6odHTzrJFGUeTUSiuiHRTHDJPMONYN1UMRKHgnXC8W3hdyZMaZ7IRzNNmR+ToeQRp8RYqTMJ8AUJcFBv4CaeA60StyQNKNEO6l/9QUKzmElDBdG65+LU+DlRhlPBZrV+pllK6JgMWc9SSWKm/Xx+7gydWWWAokTZkgbN1d8TOYm1nsah7YyJGellrxD/83qZia79nMs0M0zSxaIoE8gkqPgdDbhi1IipJYQqbm9FdEQUocYmVLMhuMsvrxLvsnnTdB9wo3VfplGFEziFc3DhClpwB23wgMIYnuEV3pzUeXHenY9Fa8UpZ47hD5zPH7yWjrg=</latexit>

a0

a0

p

1 � p

v1 > ṽ
<latexit sha1_base64="4fI0LiSOiLl8v6NozEsawxMzzqM=">AAAB9HicbVC7SgNBFL3rM8ZXVLCxGQyCVdix0UqCNpYJmAckS5ydnU2GzM6uM7MLYcl32FgoYuvH2Nn4LU4ehSYeuHA4517uvcdPBNfGdb+cldW19Y3NwlZxe2d3b790cNjUcaooa9BYxKrtE80El6xhuBGsnShGIl+wlj+8nfitjCnNY3lvRgnzItKXPOSUGCt5WQ9fdw0XAcuzca9UdivuFGiZ4DkpV4/r3w8AUOuVPrtBTNOISUMF0bqD3cR4OVGGU8HGxW6qWULokPRZx1JJIqa9fHr0GJ1ZJUBhrGxJg6bq74mcRFqPIt92RsQM9KI3Ef/zOqkJr7ycyyQ1TNLZojAVyMRokgAKuGLUiJElhCpub0V0QBShxuZUtCHgxZeXSfOigt0KruNy9QZmKMAJnMI5YLiEKtxBDRpA4RGe4AVencx5dt6c91nrijOfOYI/cD5+AFrJk/4=</latexit><latexit sha1_base64="FW1Yqvo6dxnSZXoWxN+ptEEKM64=">AAAB9HicbVC7SgNBFJ31GeMrKtjYDAbBKuzYaCUhNpYJmAckS5idnSRDZmfXmbsLYcl32FgoYqlf4RfY2fgtTh6FJh64cDjnXu69x4+lMOC6X87K6tr6xmZuK7+9s7u3Xzg4bJgo0YzXWSQj3fKp4VIoXgcBkrdizWnoS970hzcTv5lybUSk7mAUcy+kfSV6glGwkpd2yXUHhAx4lo67haJbcqfAy4TMSbF8XPsWb5WParfw2QkiloRcAZPUmDZxY/AyqkEwycf5TmJ4TNmQ9nnbUkVDbrxsevQYn1klwL1I21KAp+rviYyGxoxC33aGFAZm0ZuI/3ntBHpXXiZUnABXbLaol0gMEZ4kgAOhOQM5soQyLeytmA2opgxsTnkbAll8eZk0LkrELZEaKZYraIYcOkGn6BwRdInK6BZVUR0xdI8e0BN6dlLn0XlxXmetK8585gj9gfP+A6wKlbo=</latexit><latexit sha1_base64="FW1Yqvo6dxnSZXoWxN+ptEEKM64=">AAAB9HicbVC7SgNBFJ31GeMrKtjYDAbBKuzYaCUhNpYJmAckS5idnSRDZmfXmbsLYcl32FgoYqlf4RfY2fgtTh6FJh64cDjnXu69x4+lMOC6X87K6tr6xmZuK7+9s7u3Xzg4bJgo0YzXWSQj3fKp4VIoXgcBkrdizWnoS970hzcTv5lybUSk7mAUcy+kfSV6glGwkpd2yXUHhAx4lo67haJbcqfAy4TMSbF8XPsWb5WParfw2QkiloRcAZPUmDZxY/AyqkEwycf5TmJ4TNmQ9nnbUkVDbrxsevQYn1klwL1I21KAp+rviYyGxoxC33aGFAZm0ZuI/3ntBHpXXiZUnABXbLaol0gMEZ4kgAOhOQM5soQyLeytmA2opgxsTnkbAll8eZk0LkrELZEaKZYraIYcOkGn6BwRdInK6BZVUR0xdI8e0BN6dlLn0XlxXmetK8585gj9gfP+A6wKlbo=</latexit><latexit sha1_base64="T5LKtk7lrtMlvJveuMWyy/1nG5o=">AAAB9HicbVBNS8NAEN34WetX1aOXYBE8lawXPUnRi8cK9gPaUDababt0s4m7k0AJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWZekEhh0PO+nbX1jc2t7dJOeXdv/+CwcnTcMnGqOTR5LGPdCZgBKRQ0UaCETqKBRYGEdjC+m/ntDLQRsXrESQJ+xIZKDARnaCU/69ObHgoZQp5N+5WqV/PmcFcJLUiVFGj0K1+9MOZpBAq5ZMZ0qZegnzONgkuYlnupgYTxMRtC11LFIjB+Pj966p5bJXQHsbal0J2rvydyFhkziQLbGTEcmWVvJv7ndVMcXPu5UEmKoPhi0SCVLsbuLAE3FBo4yokljGthb3X5iGnG0eZUtiHQ5ZdXSeuyRr0afaDV+m0RR4mckjNyQSi5InVyTxqkSTh5Is/klbw5mfPivDsfi9Y1p5g5IX/gfP4AzCKSGQ==</latexit>

v1  ṽ
<latexit sha1_base64="T+E4/eJEpjvYpsdGS/Pum0B72n4=">AAAB+3icbVDJSgNBEK2JW4zbGMGLl8YgeAozXvQY9OIxAbNAMow9nUrSpGexuycYhvyKFw+KePVHvHnxW+wsB018UPB4r4qqekEiuNKO82Xl1tY3Nrfy24Wd3b39A/uw2FBxKhnWWSxi2QqoQsEjrGuuBbYSiTQMBDaD4c3Ub45QKh5Hd3qcoBfSfsR7nFFtJN8ujnyXdAQ+kI7moovZaOLbJafszEBWibsgpcpx7fseAKq+/dnpxiwNMdJMUKXarpNoL6NScyZwUuikChPKhrSPbUMjGqLystntE3JmlC7pxdJUpMlM/T2R0VCpcRiYzpDqgVr2puJ/XjvVvSsv41GSaozYfFEvFUTHZBoE6XKJTIuxIZRJbm4lbEAlZdrEVTAhuMsvr5LGRdl1ym7NLVWuYY48nMApnIMLl1CBW6hCHRg8whO8wKs1sZ6tN+t93pqzFjNH8AfWxw8a5JYB</latexit><latexit sha1_base64="I+n+x5GvACa2CFRiyaFkQCxV+wY=">AAAB+3icbVDLSsNAFJ3UV62vWMGNm8EiuCqJG12WunHZgn1AE8pkctMOnTycmRRLyK+4caGILv0Dv8CdG7/F6WOhrQcuHM65l3vv8RLOpLKsL6Owtr6xuVXcLu3s7u0fmIfltoxTQaFFYx6LrkckcBZBSzHFoZsIIKHHoeONrqd+ZwxCsji6VZME3JAMIhYwSpSW+mZ53Lexw+EOO4pxH7Jx3jcrVtWaAa8Se0EqtePmN3urfzT65qfjxzQNIVKUEyl7tpUoNyNCMcohLzmphITQERlAT9OIhCDdbHZ7js+04uMgFroihWfq74mMhFJOQk93hkQN5bI3Ff/zeqkKrtyMRUmqIKLzRUHKsYrxNAjsMwFU8YkmhAqmb8V0SAShSsdV0iHYyy+vkvZF1baqdtOu1OpojiI6QafoHNnoEtXQDWqgFqLoHj2gJ/Rs5Maj8WK8zlsLxmLmCP2B8f4DbCWXvQ==</latexit><latexit sha1_base64="I+n+x5GvACa2CFRiyaFkQCxV+wY=">AAAB+3icbVDLSsNAFJ3UV62vWMGNm8EiuCqJG12WunHZgn1AE8pkctMOnTycmRRLyK+4caGILv0Dv8CdG7/F6WOhrQcuHM65l3vv8RLOpLKsL6Owtr6xuVXcLu3s7u0fmIfltoxTQaFFYx6LrkckcBZBSzHFoZsIIKHHoeONrqd+ZwxCsji6VZME3JAMIhYwSpSW+mZ53Lexw+EOO4pxH7Jx3jcrVtWaAa8Se0EqtePmN3urfzT65qfjxzQNIVKUEyl7tpUoNyNCMcohLzmphITQERlAT9OIhCDdbHZ7js+04uMgFroihWfq74mMhFJOQk93hkQN5bI3Ff/zeqkKrtyMRUmqIKLzRUHKsYrxNAjsMwFU8YkmhAqmb8V0SAShSsdV0iHYyy+vkvZF1baqdtOu1OpojiI6QafoHNnoEtXQDWqgFqLoHj2gJ/Rs5Maj8WK8zlsLxmLmCP2B8f4DbCWXvQ==</latexit><latexit sha1_base64="Bp+bImRS2UUH1IqlvjT40QakJRs=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5J40WPRi8cK9gPaEDabSbt0s4m7m2IJ+StePCji1T/izX/jts1BWx8MPN6bYWZekHKmtON8W5WNza3tnepubW//4PDIPq53VZJJCh2a8ET2A6KAMwEdzTSHfiqBxAGHXjC5nfu9KUjFEvGgZyl4MRkJFjFKtJF8uz71XTzk8IiHmvEQ8mnh2w2n6SyA14lbkgYq0fbtr2GY0CwGoSknSg1cJ9VeTqRmlENRG2YKUkInZAQDQwWJQXn54vYCnxslxFEiTQmNF+rviZzESs3iwHTGRI/VqjcX//MGmY6uvZyJNNMg6HJRlHGsEzwPAodMAtV8ZgihkplbMR0TSag2cdVMCO7qy+uke9l0naZ77zZaN2UcVXSKztAFctEVaqE71EYdRNETekav6M0qrBfr3fpYtlascuYE/YH1+QOMPZQc</latexit>

S(v1)
<latexit sha1_base64="HE4HOGFfPkfwex3dmtOBaoHy1+A=">AAAB7XicbZDLSgMxFIbP1Futt6pLN6FFqAhl4kaXRTcuK9oLtEPJpGkbm0mGJFMoQ9/BjQtFxJ3v4863Mb0stPWHwMf/n0POOWEsuLG+/+1l1tY3Nrey27md3b39g/zhUd2oRFNWo0oo3QyJYYJLVrPcCtaMNSNRKFgjHN5M88aIacOVfLDjmAUR6Uve45RYZ9XvS6MOPuvki37ZnwmtAl5AsVJon38AQLWT/2p3FU0iJi0VxJgW9mMbpERbTgWb5NqJYTGhQ9JnLYeSRMwE6WzaCTp1Thf1lHZPWjRzf3ekJDJmHIWuMiJ2YJazqflf1kps7ypIuYwTyySdf9RLBLIKTVdHXa4ZtWLsgFDN3ayIDogm1LoD5dwR8PLKq1C/KGO/jO9wsXINc2XhBApQAgyXUIFbqEINKDzCE7zAq6e8Z+/Ne5+XZrxFzzH8kff5A4TVj+Y=</latexit><latexit sha1_base64="CxYn4HQsrUTzLWMoUi8FOtDliA8=">AAAB7XicbZDLSgMxFIbPeK31VnXpJrQIFaFM3Ohy0I3LivYC7VAyadrGZiZDkikMQ9/BhS4Ucev7uOvbmF4W2vpD4OP/zyHnnCAWXBvXnThr6xubW9u5nfzu3v7BYeHouK5loiirUSmkagZEM8EjVjPcCNaMFSNhIFgjGN5O88aIKc1l9GjSmPkh6Ue8xykx1qo/lEcdfN4plNyKOxNaBbyAkldsX7xMvLTaKXy3u5ImIYsMFUTrFnZj42dEGU4FG+fbiWYxoUPSZy2LEQmZ9rPZtGN0Zp0u6kllX2TQzP3dkZFQ6zQMbGVIzEAvZ1Pzv6yVmN61n/EoTgyL6PyjXiKQkWi6OupyxagRqQVCFbezIjogilBjD5S3R8DLK69C/bKC3Qq+xyXvBubKwSkUoQwYrsCDO6hCDSg8wTO8wbsjnVfnw/mcl645i54T+CPn6weOP5Fs</latexit><latexit sha1_base64="CxYn4HQsrUTzLWMoUi8FOtDliA8=">AAAB7XicbZDLSgMxFIbPeK31VnXpJrQIFaFM3Ohy0I3LivYC7VAyadrGZiZDkikMQ9/BhS4Ucev7uOvbmF4W2vpD4OP/zyHnnCAWXBvXnThr6xubW9u5nfzu3v7BYeHouK5loiirUSmkagZEM8EjVjPcCNaMFSNhIFgjGN5O88aIKc1l9GjSmPkh6Ue8xykx1qo/lEcdfN4plNyKOxNaBbyAkldsX7xMvLTaKXy3u5ImIYsMFUTrFnZj42dEGU4FG+fbiWYxoUPSZy2LEQmZ9rPZtGN0Zp0u6kllX2TQzP3dkZFQ6zQMbGVIzEAvZ1Pzv6yVmN61n/EoTgyL6PyjXiKQkWi6OupyxagRqQVCFbezIjogilBjD5S3R8DLK69C/bKC3Qq+xyXvBubKwSkUoQwYrsCDO6hCDSg8wTO8wbsjnVfnw/mcl645i54T+CPn6weOP5Fs</latexit><latexit sha1_base64="VaCjuGTmzVZ1OeOSDSBqrOaDh/s=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmKCF7L1okeiF48YBUlgQ7qlC5Vuu2m7JGTDf/DiQWO8+n+8+W8ssAcFXzLJy3szmZkXJoIb6/vfXmFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNLtkBgmuGRNy61g7UQzEoeCPYajm5n/OGbacCUf7CRhQUwGkkecEuuk1n113MPnvXLFr/lzoFWCc1KBHI1e+avbVzSNmbRUEGM62E9skBFtORVsWuqmhiWEjsiAdRyVJGYmyObXTtGZU/ooUtqVtGiu/p7ISGzMJA5dZ0zs0Cx7M/E/r5Pa6CrIuExSyyRdLIpSgaxCs9dRn2tGrZg4Qqjm7lZEh0QTal1AJRcCXn55lbQuativ4TtcqV/ncRThBE6hChguoQ630IAmUHiCZ3iFN095L96797FoLXj5zDH8gff5A3JWjl0=</latexit>

Figure 2: Decision tree

ai, wins the competition and receives payoff vi1 − ai. For any other player j, the payoff is

equal to −aj. Both the signals and final values are drawn independently across agents. For

notational convenience, we suppress the index i unless needed to avoid confusion.

A player’s strategy specifies choices a0(v0) and a1 (v0, v1) for the first and second periods,

respectively, with the restriction that a1 ≥ a0. The latter choice is only relevant if the

agent has an opportunity to increase its action in the second period. Letting G denote the

distribution for the highest final action of the other players, an agent’s expected utility given

final value v and action a is

U (v, a) = G (a) v − a. (1)

Assume there is a unique action a that maximizes (1) and it is strictly increasing in v.

Denote this solution by S (v). This is the optimal action in a static setting.9 Given the

action a0 in the first period, there is a unique threshold ṽ such that S (ṽ) = a0. We can use

this information to illustrate the tree of the game in Figure 2.

Figure 2 depicts the choices made by the agent in the two-period game. The top branch

represents the case where there is no opportunity for revising the first-period choice, so a0 is

the final action. In the second branch, the player would like to choose final action a < a0, but

due to the irreversibility condition, the final choice is kept at a0. Note that the highest value

of v1 belonging to this branch is equal to ṽ, which, as defined, has the property S (ṽ) = a0.

The bottom and third branches represent values above ṽ where the player will increase the

action in the second period to S(v1).

Taking into account the best response in the second period, the choice of a0 maximizes

9We make these assumptions and others below in the analysis of the example for convenience. The set of
assumptions that are necessary for our main results is given in Sections 3 and 4.
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EUi = (1− p)U (E(v1|v0), a0)

+ p

ˆ ṽ

U (v1, a0) dF (v1|v0) + p

ˆ ∞

ṽ

U (v1, S (v1)) dF (v1|v0) .

Assuming that G is differentiable, using the envelope theorem, the associated first-order

condition simplifies to

(1− p) [G′ (a0)E (v1|v0)− 1] + p

ˆ ṽ(a0)

[G′ (a0) v1 − 1] dF (v1|v0) = 0. (2)

Since S (ṽ) = a0, the second-period first-order condition G′ (a0) ṽ − 1 = 0 holds too. Substi-

tuting for G′ (a0) in (2) gives

(1− p)

[
E (v1|v0)

ṽ
− 1

]
+ p

ˆ ṽ [v1
ṽ

− 1
]
dF (v1|v0) = 0. (3)

This equation defines implicitly ṽ as a function of v0 only, independently of the other players’

strategies. It can be more conveniently rewritten as

ṽ =
(1− p)E(v1|v0) + p

´ ṽ
v1dF (v1|v0)

(1− p) + pF (ṽ|v0)
. (4)

We call this value ṽ, the ECV of v0. The agent makes the same choice in the first period

when the agent’s value is v0 as if it were in the final period confronted with value ṽ.

To interpret this relationship, note that the threshold ṽ defines a lottery over final values v

under which a0 will also be the final action of the agent, comprising the following events:

1. The agent does not have an opportunity to revise its first-period choice. This event

has probability (1− p) and expected value E (v1|v0) .

2. The agent is able to revise its first-period choice but its final value is less than the

threshold ṽ, so the agent would maintain its initial choice. This event has probability

pF (ṽ) and expected value
´ ṽ v1dF (v1|v0)

F (ṽ)
.

The lottery over these final values has an expected value as given in Equation 4, which is

equal to ṽ. This is the key property defining the ECV and it holds under a wide class of payoff

functions. Let u (v, ai, a−i) denote the final payoff to agent i when its final value is v and

vector of final actions (ai, a−i). Assume that the expected utility is linear in v and (strictly)
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supermodular in v, ai. The former guarantees that Evu (v, ai, a−i) = u (Evv, ai, a−i), and the

latter guarantees that the optimal choice ai is a strictly increasing function of v. These two

properties are preserved when integrating out the actions of other players with respect to

any distribution G (a−i). As before, let

S (v) = argmax Ea−i
U(v, ai, a−i)

denote the optimal strategy for agent i in the final period when faced with a distribution G−i

for the strategies of the other players, and let (v0, a0) denote the value and optimal strategy

of a player in the first period. Given a0, the optimal threshold ṽ to increase this action in

the second period will be such that

S (ṽ) = a0. (5)

The threshold also defines a lottery over final values v under which a0 will be the final action

of the agent, comprised of the two sets of events defined above, with expected value

(1− p)E (v1|v0) + pF (ṽ)
´ ṽ v1dF (v1|v0)

F (ṽ)

1− p+ pF (ṽ)
.

Because of the linearity of payoffs in v,

a0 = S

(
(1− p)E (v1|v0) + p

´ ṽ
v1dF (v1|v0)

1− p+ pF (ṽ)

)
. (6)

Using (5) and (6) and given that B is strictly increasing, we get to the same relationship

as the one in equation 3. Therefore, mapping between ECV ṽ and the initial value v0 is

independent of the specific strategy function S and thus the underlying payoff function U

and the distribution of other players’ actions.

As suggested in the example, the partition of the value space into pairs of expected-values

and their corresponding ECV, (v0, ṽ), can be used to reduce the dynamic game to an equiv-

alent static one. Starting with an initial distribution F0 (v0) and a conditional distribution

F (v1|v0), we can construct a new distribution of final values as follows. For any initial v0,

assign a value ṽ (v0) to the histories where either the corresponding agent does not have a

revision opportunity in the second period, or gets a value below the ECV, v1 ≤ ṽ. In the com-

plement (i.e., histories where the agent can review its choice and v1 > ṽ), set the final value

equal to v1. Assigning the corresponding probabilities for these histories as determined from

F0, F , and the review probability p defines a distribution for final values F̃ for each player

and thus a static Bayesian game. Letting S̃ denote an equilibrium strategy for the agent in
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that game, we can now assign a0 (v0) = S̃ (ṽ (v0)) and a (v0, v1) = max
{
a0 (v0) , S̃ (v1)

}
as

equilibrium strategies in the dynamic game.

We now consider a key property of equilibria in this class of games. The opportunity to

modify the action in the future introduces an option. From equation (4) it immediately

follows that ṽ < E (v1|v0), so the agent in the first period acts as if the final value were

lower than the agent’s conditional expectation; this is what we call value shading. The fact

that actions are monotonic in values also results in shading of actions. This becomes more

severe as the probability p increases, and in the limit when p → 1, F (ṽ|v0) → 0, i.e., the

agent acts in the first period as if the value were the lowest in the support. At the other

extreme, when p → 0, ṽ = E (v1|v0), so there is no shading. The intuition for these results

goes back to our description of the two sets of events where the action chosen in the first

period is the final one. The first event, when the agent has no future opportunity to increase

its initial action, has expected value E (v1|v0). It is the second event, where the agent has

this opportunity but chooses not to increase its initial action, that is responsible for shading.

Thus, the irreversibility of actions and the opportunity for delay create a negative option

value in the first period. This value can also be interpreted as adverse selection against the

agent’s future self, which is responsible for value shading.

3 The Decision Problem

We first consider the general structure of a dynamic decision problem. Then we show that

it can be embedded in a wide class of dynamic games as well. Time is continuous in the

interval [0, T ]. Decision times τ0, τ1, ... are random according to a process that is detailed

below. At these decision times, the agent can choose an action aτ (e.g., capital) from a

totally ordered set A, with the restriction that for τ ′ > τ, aτ ′ ≥ aτ . This restriction captures

the irreversible nature of actions. Letting aT denote the final action, payoffs are given by

a function U (vT , aT ), where vT is a bounded real-valued random variable in a probability

space of sample value path (Ω,F ,Π).

Assumption 1. The payoff function U (v, a) is linear in v, supermodular in v and a, and

admits a maximum with respect to a for all v.

We can relax this assumption by allowing U to be linear in a strictly monotone function of

v through a change of variables. For example, we can extend it to cases where the payoff

function includes terms such as v2. By incorporating this new variable, all results presented

in the paper can be extended accordingly.
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Information arrival and decision times are modeled as joint stochastic processes on [0, T ] as

follows. Decision times are given by sequences of stopping times {τn (ω)}, where τn+1 (ω) >

τn (ω). Information arrival is modeled by a stochastic process ṽ (t, ω) of signals with the

property that E (vT |ṽ (t, ω) = v) = v. More formally, let {Ft}0≤t≤T be a filtration repre-

senting information available at time t, i.e., increasing σ−algebras on Ω with the prop-

erty Ft ⊂ Ft+s ⊂ F . As in the case of a Poisson process, stopping times {τn (ω)} are

modeled as jumps of a right-continuous counting process {η (t, ω)}. Without loss of gen-

erality, we assume that {Ft} is the filtration generated by the pair of stochastic processes

{η (t, ω) , ṽ (t, ω)} so that the realization of these processes is all the information available at

time t and E (vT |Ft) = ṽ (t, ω).

Since information arrivals are relevant only at decision nodes, we restrict attention to the

joint process {vn, τn} where vn (ω) = v (τn (ω) , ω), i.e., the process v (t, ω) subordinated to

the arrival process η (t, ω). We make the following assumption about this process.

Assumption 2. Assume that {vn, τn} follows a joint Markov process, i.e.,

P (vn+1 = v′, τn+1 = τ ′|Fτn) = P (vn+1 = v′, τn+1 = τ ′|vn, τn) .

By assuming that values and decision times are Markov, we can identify decision nodes with

pairs (vn, τn) corresponding to the realized signal and time in the last arrival. A decision

strategy s specifies at each possible decision node a desired action s (vn, τn), which is the

choice the agent would make if unconstrained by previous actions. Given that actions can

only be increased, a (s, t) = max {s (vn, τn) |τn ≤ t} is the choice that prevails at time t and,

in particular, a (s, T ) is the final choice. Let S denote the set of strategies satisfying these

conditions. These two assumptions will be maintained for the rest of the paper.

While decision times are exogenous, our specification is flexible; in particular, it allows

decision times and expected values to be correlated. This specification could capture, for

example, a situation where an agent might be more eager to revise its strategy when there is a

large information update, or, likewise, the agent might be more attentive when the expected

value is high. Moreover, the inclusion of time as a state variable allows for a nonstationary

Markov process in values.

Given a strategy s ∈ S, for each realized path ω we can associate a value U (v (T, ω) , a (s, T, ω)),

where a (s, T, ω) = sup {s (vn (ω) , τn (ω)) |τn ≤ T}. An optimal decision strategy solves

sup
s∈S

E0U (v (T ) , a (s, T )) . (7)
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In Section 4 we provide conditions such that there exists an optimal solution to (7) and

develop our method that maps this dynamic problem into an equivalent static one. This

method is what makes our structure tractable, facilitating estimation and the analysis of

dynamic games. Before getting to the formal analysis, we provide a series of examples that

suggest the range of applications of this setup.

3.1 Examples

This general setting embeds various interesting applications of dynamic decision problems.

As explained in Section 4.3, under certain conditions, this general setting can also be ex-

tended to dynamic games. Some examples are given below.

Irreversible Investment At random times τ an agent faces an investment opportunity

and chooses it ≥ 0 after observing a signal vt of the final value vT . The final expected payoff

is vTR (kT )− C (kT ) , where kT is final cumulative investment, R is total revenue, and C is

total investment cost. This is a direct application of the framework described above. It can

also be extended to a game where final payoffs depend on total investment kT of this player

and also on the total investment of others.

General Contest and Teamwork The example in Section 2 can be easily generalized.

The contest takes place in the interval of time [0, T ]. Agents can exert effort e ≥ 0 at random

times τ when receiving signals vτ of the final value viT . Letting a1, ..., aN denote the final

cumulative effort of all players, final payoffs have the form Ui (viT , ai, a−i) satisfying Assump-

tion 1. For example, prizes could depend on the ranking of final efforts as in Moldovanu and

Sela [2001]. In the case of a team, the functions Ui could be the result of a compensation

scheme that depends on a set of signals observed by a principal that are correlated with the

vector of final effort choices.

Sequential Trading Commitments At random times, the decision maker is faced with

the opportunity to sell at a given price pτ a quantity of choice qτ to be delivered at the end

of the period. Both arrival time and price are random, following a joint Markov process.

Final payoffs are
∑

τ pτqτ − C (Q), where Q =
∑

τ qτ and C is a strictly increasing and

convex function. As an example, a utility company might face opportunities to sell future

electricity delivery contracts as in Ito and Reguant [2016]. The expected cost of committing

to a larger volume might be convex as more costly energy sources need to be used to fulfill the
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contracts. Or, a financial trader could sell future contracts that will be fulfilled by resorting

to its network of intermediaries, forcing the trader to use more expensive sources in case

larger quantities are needed.

While cash flows in the above setting accrue throughout the decision period, the problem

can be mapped into the general setting where a payoff ptq received at time t is equivalent to

a random final payoff pT q when pt follows a martingale, therefore, Et (pT |pt) = pt. Letting

v = p, a = Q, and U (v, a) = va−C (a) gives the corresponding final payoff function, which

is linear in v and supermodular, as required. Alternatively, a monopolist retailer might face

random opportunities to buy inventory qt that will be sold at a final time period to achieve

revenue u (
∑

τ qτ ). Letting qt represent negative quantities (interpreted as purchases) and

C (Q) = −u (Q) gives the same payoff function as before.10

Procrastination in Effort Choice At random times τ an agent chooses effort aτ at

cost cτaτ . Final payoffs are given by u (
∑

aτ )−
∑

cτaτ , where u is increasing and concave.

Procrastination occurs because an agent might put a lower level of effort in anticipation of

the possibility of a lower future cost. As the final time T approaches, the incentives for

procrastination will decrease. In this example payoffs accrue over time, but they can be

mapped to final payoffs as in the previous one. This setting can also be embedded in a game

where final payoffs depend on the vector of cumulative actions of all players.

Entry Decisions At random times τ , the decision maker gets an opportunity to enter a

market and a signal vτ about the expected value of entry. The entry must take place before

time T or the decision maker receives zero payoff. Final payoffs are vT − c in the case of

entry. In this application, the action space is A = {0, 1}, representing the choice of no entry

and entry, respectively. This application can be easily inscribed in an entry game.

Bidding in Long Auctions In Hopenhayn and Saeedi [2020], we consider a model where

a bidder’s value can change over time, capturing the idea that preferences for the object or

outside opportunities might change. The bidder can only increase bids over time, and there

is no retraction of past bids. Examples of these auctions are eBay and GovDeals.11 In these

auctions, bidders frequently place multiple bids over time and increase them as the auction

progresses. To model these auctions in the above class of decision problems, suppose that at

10These results extend to the case where pt is not a martingale. This is done by backloading payoffs as
above and redefining payoffs in those histories where there are no further arrivals to pick up the difference
E (vT |v)− v. Details of this procedure are available upon request.

11GovDeals is an auction platform used by government agencies to sell used equipment.
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random times τ and with an expected final value v, the agent can place (or increase) a bid

bτ . The final expected payoff in the auction will depend on the final value vT , the final bid

bT of this bidder, and those of others. Integrating over the bids of others, the expected final

value has the form [vT − E (b2|b2 ≤ bT )]Prob (bT is the highest bid). This expected payoff is

linear in vT and supermodular, as required in our general decision problem. This application

and the related design questions are examined in more detail in Section 5.

Time Separable Payoffs with Discounting A decision maker has payoffs u (v, a) that

are received over time and has a constant discount factor β. Time is discrete. At each point

in time payoffs are functions of a random value vt and an action at given by the function

u (vt, at). A decision maker chooses a sequence of non-decreasing and contingent actions at

to maximize

max
{atincreasing}

T∑
t=0

βtEu (vt, at) ,

where we assume u (v, a) is linear in v and supermodular. The restriction to increasing

actions could capture, for instance, returns from irreversible past investments or cumulative

R&D. While this problem does not fit directly in our setting, we exploit the time separability

of payoffs to provide an equivalent formulation that does so. This is done by treating

all payoffs as final with appropriately defined weights. We consider here the case where

T = ∞, but this case is easily extended to finite or even random T. Let B = 1
1−β

and define

U (v, a) = Bu (v, a) . Let P (t+ 1|t) = β and P (t′|t) = 0 for all t′ > t+1. As of time zero this

implies that the probability of no arrivals is (1− β), and that of only n arrivals, (1− β) βn

. Expected final value at time zero is

(1− β) v0 + β (1− β)Ev1 + (1− β) β2Ev2 + ....

The corresponding final actions are a0, a1, .... and

E (U (v, a)) = (1− β)EU (v0, a0) + (1− β) βEU (v1, a1) + ...+ (1− β) βtEU (vt, at)

=
T∑
t=0

βtEu (vt, at) .

Therefore, this transformation respects the original payoff structure. While we consider here

time-zero payoffs, the same procedure applies to any future period. This formulation easily

extends to random arrivals and a structure where arrivals and payoffs follow a general joint

Markov process. Linear investment costs of the form it = at − at−1, as would occur in the
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case of irreversible investment, can be easily accommodated in the above payoff function

through the rearrangement and collection of the different at terms. An application of time

separability to an anonymous sequential game is provided in Section C.3.

Building on the general framework and examples laid out above, we now turn to formally

analyzing the model to derive our main results on how using ECVs helps reduce the dynamic

optimization problem to a more tractable static one.

4 Main Results

In this section, we first provide an intuitive analysis of our main findings. Next, we go

through a formal analysis, stating the main theorems. We also show how our analysis for

the optimal decision problem can be extended to a large class of dynamic games. The key

insight is that we identify a distribution of valuations for each player that is independent of

the game and opponents’ valuations and strategies. Then we show that the equilibria of the

dynamic game correspond one-to-one to the equilibria of a static game with respect to this

distribution of values. Finally, we consider the dynamic properties of value shading.

4.1 Intuitive Analysis

The example in Section 2 identified initial values v0 with a threshold ṽ with the property

that for any game or decision problem with payoffs that satisfy the given assumptions, the

initial action chosen at v0 equals the optimal final choice at this threshold. This defined

a partition of initial and final values into equivalent classes. In the general model where

t ∈ [0, T ], a similar representation can be obtained. We can partition the set of value and

time pairs (v, t) into indifference classes that can be identified by a final value ṽ that we

denote by e (v, t) . These have the property that optimal actions are identical for all pairs in

an indifference class, as depicted in Figure 1. Moreover, our assumption of supermodularity

of payoffs ensures that optimal actions are increasing in the final equivalent value, i.e., in

the northeast direction in Figure 1.

These indifference curves can be used to define an agent’s optimal strategy over time, and in

particular the final action chosen. This is illustrated in Figure 3. In the paths shown, the first

decision node is (v0, t0) where the agent chooses an action a0. This is also the final action in

the first two panels, where either the agent has no opportunity for future actions, or is faced

with this opportunity at a decision node (v1, t1) in a lower indifference curve. The last two

panels of Figure 3 represent cases where the agent has the opportunity to update its action at
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a0
<latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit>

v

v0

tt0 Tt1

ṽ
<latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit>

a0
<latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit><latexit sha1_base64="jVti8oBlm2mt5dCKBwN+9d99jF4=">AAAB6HicdVDLSgMxFM34rPVVdekmWARXQ9LWGdwV3HRnxb6gLSWTpm1sMjMkmUIZ+gmCK4tbv8itf2P6EFT0wIXDOfdy7z1BLLg2CH04G5tb2zu7mb3s/sHh0XHu5LSho0RRVqeRiFQrIJoJHrK64UawVqwYkYFgzWB8u/CbE6Y0j8KamcasK8kw5ANOibHSA+mhXi6PXHTj+YUSRG7R83DJtwR5Pi5eQ+yiJfJgjWov997pRzSRLDRUEK3bGMWmmxJlOBVslu0kmsWEjsmQtS0NiWS6my5PncFLq/ThIFK2QgOX6veJlEitpzKwnZKYkf7tLcS/vPZdDXdTlgimJnK1ZpAIaCK4+Br2uWLUiKklhCpuL4V0RBShxmaTtRF8/Qn/J42Ci5GL70v5cmUdRgacgwtwBTDwQRlUQBXUAQVD8ARewNx5dJ6dufO6at1w1jNn4Aect0+8lIy2</latexit>

a1
<latexit sha1_base64="/CQXi5iaPG66A3VdYDI5WIRucX0=">AAAB6XicdVBdSwJBFJ21L7Mvq8dehiToaZlR26U3oRffMtAUdJHZcdTBmd1lZlYQ8S8EPSW99od67d80qwYVdeDC4Zx7ufeeMBFcG4Q+nNzW9s7uXn6/cHB4dHxSPD171HGqKGvRWMSqExLNBI9Yy3AjWCdRjMhQsHY4ucv89pQpzeOoaWYJCyQZRXzIKTGZRPq40C+WkItuPb9chciteB6u+pYgz8eVG4hdtEIJbNDoF997g5imkkWGCqJ1F6PEBHOiDKeCLQq9VLOE0AkZsa6lEZFMB/PVrQt4ZZUBHMbKVmTgSv0+MSdS65kMbackZqx/e5n4l9e9b+JgzlLB1FSu1wxTAU0Ms7fhgCtGjZhZQqji9lJIx0QRamw4WQRff8L/yWPZxcjFD9VSrb4JIw8uwCW4Bhj4oAbqoAFagIIxeAIvYOlMnGdn6byuW3POZuYc/IDz9gnzAYzL</latexit><latexit sha1_base64="/CQXi5iaPG66A3VdYDI5WIRucX0=">AAAB6XicdVBdSwJBFJ21L7Mvq8dehiToaZlR26U3oRffMtAUdJHZcdTBmd1lZlYQ8S8EPSW99od67d80qwYVdeDC4Zx7ufeeMBFcG4Q+nNzW9s7uXn6/cHB4dHxSPD171HGqKGvRWMSqExLNBI9Yy3AjWCdRjMhQsHY4ucv89pQpzeOoaWYJCyQZRXzIKTGZRPq40C+WkItuPb9chciteB6u+pYgz8eVG4hdtEIJbNDoF997g5imkkWGCqJ1F6PEBHOiDKeCLQq9VLOE0AkZsa6lEZFMB/PVrQt4ZZUBHMbKVmTgSv0+MSdS65kMbackZqx/e5n4l9e9b+JgzlLB1FSu1wxTAU0Ms7fhgCtGjZhZQqji9lJIx0QRamw4WQRff8L/yWPZxcjFD9VSrb4JIw8uwCW4Bhj4oAbqoAFagIIxeAIvYOlMnGdn6byuW3POZuYc/IDz9gnzAYzL</latexit><latexit sha1_base64="/CQXi5iaPG66A3VdYDI5WIRucX0=">AAAB6XicdVBdSwJBFJ21L7Mvq8dehiToaZlR26U3oRffMtAUdJHZcdTBmd1lZlYQ8S8EPSW99od67d80qwYVdeDC4Zx7ufeeMBFcG4Q+nNzW9s7uXn6/cHB4dHxSPD171HGqKGvRWMSqExLNBI9Yy3AjWCdRjMhQsHY4ucv89pQpzeOoaWYJCyQZRXzIKTGZRPq40C+WkItuPb9chciteB6u+pYgz8eVG4hdtEIJbNDoF997g5imkkWGCqJ1F6PEBHOiDKeCLQq9VLOE0AkZsa6lEZFMB/PVrQt4ZZUBHMbKVmTgSv0+MSdS65kMbackZqx/e5n4l9e9b+JgzlLB1FSu1wxTAU0Ms7fhgCtGjZhZQqji9lJIx0QRamw4WQRff8L/yWPZxcjFD9VSrb4JIw8uwCW4Bhj4oAbqoAFagIIxeAIvYOlMnGdn6byuW3POZuYc/IDz9gnzAYzL</latexit><latexit sha1_base64="/CQXi5iaPG66A3VdYDI5WIRucX0=">AAAB6XicdVBdSwJBFJ21L7Mvq8dehiToaZlR26U3oRffMtAUdJHZcdTBmd1lZlYQ8S8EPSW99od67d80qwYVdeDC4Zx7ufeeMBFcG4Q+nNzW9s7uXn6/cHB4dHxSPD171HGqKGvRWMSqExLNBI9Yy3AjWCdRjMhQsHY4ucv89pQpzeOoaWYJCyQZRXzIKTGZRPq40C+WkItuPb9chciteB6u+pYgz8eVG4hdtEIJbNDoF997g5imkkWGCqJ1F6PEBHOiDKeCLQq9VLOE0AkZsa6lEZFMB/PVrQt4ZZUBHMbKVmTgSv0+MSdS65kMbackZqx/e5n4l9e9b+JgzlLB1FSu1wxTAU0Ms7fhgCtGjZhZQqji9lJIx0QRamw4WQRff8L/yWPZxcjFD9VSrb4JIw8uwCW4Bhj4oAbqoAFagIIxeAIvYOlMnGdn6byuW3POZuYc/IDz9gnzAYzL</latexit>

v

v0

tt0 Tt1 t2

ṽ
<latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit><latexit sha1_base64="kW/KX+D0uBBg6yPzgxy5BqsR97w=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiB4CjNR8BrwkpsRskkyhJ6eStKke2bo7gmEIV8heDJ49XO8+jd2FsH1QcHjvSqq6gWJ4Nq47ruT29jc2t7J7xb29g8Oj4rHJy0dp4phk8UiVp2AahQ8wqbhRmAnUUhlILAdjG8XfnuCSvM4aphpgr6kw4gPOKPGSg89w0WI2WTWL5bccuXKtSC/iVd2lyjBGvV+8a0XxiyVGBkmqNZdz02Mn1FlOBM4K/RSjQllYzrErqURlaj9bHnwjFxYJSSDWNmKDFmqXycyKrWeysB2SmpG+qe3EP/yuncNz88wFagmcrVmkApiYrL4nYRcITNiagllittLCRtRRZmxCRVsBJ9/kv9Jq1L23LJ3f12q1tZh5OEMzuESPLiBKtSgDk1gIOERnmHuJM6TM3deVq05Zz1zCt/gvH4AtpKPoA==</latexit>

a0
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Figure 3: Indifference curves and increasing actions

Note: The dotted line represents changes in the agent’s valuation and the solid red line represents the
indifference curves. In the top left graph, the agent does not get a chance of changing its action. In the top
right graph, the agent gets a second opportunity to update its action but chooses not to increase it. In the
bottom two graphs, the agent increases its action after getting a chance to do so at a decision node above
the agent’s original indifference curve.
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a time period in which the agent’s value is above the original indifference curve. In these two

cases, the agent chooses a higher action, so the choice made at decision node (v0, t0) no longer

binds. More generally, for any path with decision nodes {(v0, t0) , (v1, t1) , ..., (vn, tn)} the final
action is the one that is optimal for a value equal to max {e (v0, t0) , e (v1, t1) , ..., e (vn, tn)},
i.e., the value associated to the highest indifference curve reached during decision times

t0, ..., tn.

This procedure can be formalized as follows. In our simple example, the threshold ṽ was

defined by the following property:

E (v1|no decision opportunity with v1 > ṽ) = ṽ,

i.e., the expected value for all realizations where the action chosen in the first period remains

the final one. Similarly, e (v0, t0) is the expected final value vT on the set of all paths following

(v0, t0) such that all subsequent decision nodes lie below the indifference curve corresponding

to (v0, t0) or there is no subsequent decision node. This is the case in the top two panels in

Figure 3 but not in the last two panels.

An optimal decision strategy is derived as follows. Let

S̃ (v) = argmax U (v, a) (8)

denote the solution to the static optimization problem for any value v. Then the optimal

decision strategy at decision node (v, t) is given by S̃ (e (v, t)).12

4.2 Formal Analysis

Here we state our main results that formalize the intuitive arguments given above and provide

a sketch of the proof of our main theorem, while the complete proofs are relegated to the

appendix. Our analysis in the previous section suggests a general approach to finding the

solution to our decision problem. The steps in this proof are as follows.

1. Define a function e (v, t) that partitions the set of states into indifference equivalent

certain value (ECV) classes as above. We show that the function is uniquely defined

and can be obtained via solving a dynamic programming problem. This is independent

of the specific payoff function U .

12If the maximum is not unique, S̃ is an increasing selection.
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2. Define a candidate-optimal decision strategy at decision node (v, t) as choosing the

action S̃ (e (v, t)), where S̃ (· ) is the function defined by equation 8, and prove that

this is an optimal decision strategy for the dynamic problem.

Let D (ω) denote the decision nodes (v, t) for path ω ∈ Ω and N (v, t) denote the set of paths

ω ∈ Ω such that there are no arrivals after (v, t), i.e.,

N (v, t) = {ω ∈ Ω| (v, t) ∈ D (ω) and ∄ (v′, t′) ∈ D (ω) ∀ t′ > t} . (9)

Let Π (ω|v, t) denote the conditional probability of ω given (v, t) ∈ D (ω). The following

assumptions are used throughout the paper.

Assumption 3. The following properties hold:

1. There exists δ > 0 such that Π (N (v, t) |v, t) > δ for all (v, t),

2. The integral
´
N(v,t)

(vT (ω)) dΠ(ω|v, t) is continuous in v, t, and

3. The Markov process, P (v′, t′|v, t), is continuous in the topology of weak convergence.

The first assumption states there is a positive probability bounded away from zero that the

current decision node is the last one. The last two assumptions are standard continuity

requirements on the stochastic process for signals. In particular, in the case where arrival

times and values are independent, we have
´
N(v,t)

(vT (ω)) dΠ(ω|v, t) = vΠ(N (v, t) |v, t),
therefore, the second condition states that the probability of a next arrival before T is a

continuous function of t. This is satisfied, for example, in the Poisson arrival case where

Π (N (v, t)) = exp (−λ (T − t)), with arrival rate λ.

4.2.1 Self-Generated Expectation

In this section, we define and characterize the ECV function e (v, t) that partitions the

decision space into indifference classes. This function is defined implicitly by a recursive

problem that satisfies a property that we call self-generated expectation.

Consider a real-valued (Borel) measurable function e (v, t). For ω ∈ Ω, an element of the

underlying probability space, and 0 ≤ t ≤ T, if there is any arrival after t, define

ē
(
t+, ω

)
= max {e (v′, t′) | (v′, t′) ∈ D (ω) and t′ > t} ,
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where, as defined earlier, D (ω) is the set of all decision nodes for a given ω. If the above set

is empty, set ē (t+, ω) to an arbitrarily low number.13 This will be the maximum equivalent

value achieved after time t. For every state (v, t) such that 0 ≤ t ≤ T , let

H (ε, v, t) =
{
ω| (v, t) ∈ D (ω) and ē

(
t+, ω

)
≤ ε

}
,

These are all the histories following (v, t) such that for any subsequent arrival e (v′, t′) ≤ ε.

Relating to our previous intuitive analysis, these are all histories where values remain below

an indifference class represented by the threshold ε.

Definition. The function e (v, t) is a self-generated expectation (SGE) for the process defined

by transition function P if it satisfies the following property for all (v, t):

e (v, t) = EH(e(v,t),v,t)vT . (10)

The above definition is equivalent to the following:

ˆ
H(e(v,t),v,t)

(vT (ω)− e (v, t)) dΠ(ω|v, t) = 0. (11)

Given a self-generated expectation function e (v, t), we can define iso-expectation level curves

I (u) = {(v, t) |e (v, t) = u} . Intuitively, the level u indicates the conditional expectation of

the final value of all paths, starting from a given state in I (u), that never cross above this

iso-expectation curve at a future decision node. These are the indifference curves described

in the previous section.

The derivation of a self-generated expectation follows a recursive structure. First, note that

e (v, T ) = v, since this is a terminal node. Intuitively, working backward from that point

using (10) should give a unique self-generated expectation e (v, t). While (10) seems like

a complicated functional equation, we can find the solution by considering the following

auxiliary functional equation:

W (ε, v, t) =

ˆ T

t
min

(
W
(
ε, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, t

)
(12)

+

ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t)

and W (ε, v, T ) = v−ε. This functional equation is a contraction mapping. Using additional

assumptions on the arrival time process, one can transform this functional equation to a

13For example, set it equal to inf e (v, t) .
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simple PED that is easy to compute.14

Proposition 1. Given Assumption 3, the unique function satisfying equation (12) is given

by:

W (ε, v, t) =

ˆ
H(ε,v,t)

(vT (ω)− ε) dΠ(ω|v, t) .

The function e (v, t) defined implicitly by W (e (v, t) , v, t) = 0 exists and is the unique self-

generated expectation for the process defined by transition function P .

Notice that this is a standard dynamic programming problem that can be easily solved by

backward induction, starting at the terminal node T where W (ε, v, T ) = v − ε.15 Here we

give an overview of the steps involved in the proof. The first step consists of showing that

using any self-generated expectation function we can construct a function W that satisfies

the functional equation (12) and the condition that W (e (v, t) , v, t) = 0. Then we show

that by Assumption 3 the functional equation (12) is a contraction mapping, so it has a

unique solution. It also follows easily that this function is strictly decreasing in ε and

continuous. Moreover, it is greater than or equal to zero when ε = 0 and negative for large

ε. It follows by the intermediate value theorem that there is a unique value e (v, t) such that

W (e (v, t) , v, t) = 0. It immediately follows that this solution satisfies (10).

4.2.2 The Optimal Solution

Consider the problem

max
a

U (v, a) . (13)

Let S̃ (v) be a (weakly) increasing selection of the set of maximizers, which is guaranteed to

exist by Assumption 1. This strategy gives an optimal action for the agent if it were deciding

at the final node T with a value vT = v.

Theorem 1. For any payoff function U (v, a) satisfying Assumption 1 and Markov process

P (v, t) satisfying Assumption 3, the strategy defined by S (v, t) = S̃ (e (v, t)) is an optimal

strategy for the dynamic decision problem 7, where the function e (v, t) is the self-generated

expectation corresponding to process P.

14In a companion empirical paper, we apply this method to the case of online auctions, in that paper
we assume that arrival times follow a poisson distribution and values change using a brownian motion,
Hopenhayn and Saeedi [2020]. Given these assumptions, equation 12 becomes a simple PDE, similar to the
heat transfer PDF that is easy to compute in any programming language.

15As we show in Section C, this problem is further simplified when the Markov process has independent
increments, a condition that is satisfied in many applications, where the value function does not depend on
v.
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This theorem allows us to break down the problem of finding the optimal strategy S (v, t) in

two steps: (i) solve for the equivalent certain values e (v, t) as indicated in Section 4.2.1 and

(ii) Solve the static problem (13) and use its solution to assign strategies S (v, t) = S̃ (e (v, t)).

Furthermore, the solution e (v, t) for the first step is independent of the specific function

U (v, a) . This is particularly useful when estimating this function or in games, where the

function might depend on strategies of other players, as the first step must be performed

only once.

In this section, we formally showed how ECVs are calculated and how they can be used to

find optimal actions in a dynamic problem. The following two examples can help further

with intuition. Example 1 describes an easy way to interpret the ECVs as the option value

for an asset with random repurchase. Example 2 shows how ECVs can be used to solve a

dynamic entry problem.

Example 1: ECVs can be related to an intuitive asset pricing problem. Take an asset with

random payoff v (T ) that will accrue in period T . Consider the following contract: at a price

p, a trader can buy this asset, but the original owner maintains the option to repurchase

the asset at the same price, but only at random arrival times. In turn, the trader has the

right to the final payoff only in the event that the repurchase does not take place. The joint

distribution of arrival times and information is identical to that in the above setting. The

(break-even) price of this asset is precisely its ECV, as demonstrated in Proposition 2. The

key step in the proof is to show that if the price of the asset p = e (v, t), the original owner will

exercise the repurchase option in any future trading window if and only if e (v′, t′) ≥ e (v, t).

Proposition 2. The equilibrium price of the asset with a random repurchase option is equal

to the ECV.

Example 2: This example is related to the optimal entry or purchase option. Our proce-

dure separates the dynamic option value problem, which partitions states (v, t) into equiv-

alent classes of ECVs, from the assignment of strategies. A firm can enter a market (or a

trader buys an asset) with a random payoff v (T ) that accrues in period T . Information and

opportunities to exercise this option are given by the process {(v, t)}t≤T as described in our

setting. ECVs are the answer to the following question: What is the highest entry cost (or

purchase price) at which this option would be exercised? The assignment of strategy for the

optimal decision rule is now trivial: enter in the first opportunity where e (v, t) ≥ ce.

Having shown how ECVs allow simplifying the dynamic decision problem, we now expand
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the approach to apply to strategic environments and a class of games with incomplete infor-

mation.

4.3 Embedding in Games

As our leading example suggests, our results for decision problems can be extended to a class

of games of incomplete information. Fixing the strategies of the other players, the choice

of a best response is a decision problem that falls within the class discussed above. This

best response can be found by maximizing expected payoffs at ECVs, as defined above. In

contrast to above decision problem, the vector of strategies has the additional restriction

that the strategies must conform an equilibrium, i.e., be mutually best responses. We define

a static Bayesian game where the distribution for each player’s type is the distribution of the

ECVs for that player, and strategies map these values into their corresponding action sets.

Finally, we establish that any equilibrium of this static Bayesian game defines equilibrium

strategies for all players in the original game.

Define a game Γ=
(
I, {Ai}i∈I , {Zi}i∈I , {Pi}i∈I , {uiT}i∈I

)
as follows. There is a fixed set of

players I = {1, ..., N}. Each player faces a process for values v ∈ Zi and decision times in

[0, T ] with Markov transition Pi (v, t) that are independent across players. Final payoffs are

given by utility functions uiT (viT , aiT , a−iT ), where viT is the vector of final values for player

i and (aiT , a−iT ) is the vector of final actions coming from totally ordered sets A1, ..., AN .

We assume that information sets for each player contain only their own histories, and as a

result strategies Si : Zi× [0, T ] → Ai for each player specify choices of actions as a function of

these histories, and without loss of generality we can restrict ourselves to Markov strategies

Si (v, t). Let Si denote the set of strategies. Let ui (Si, S−i) = E0uiT (viT , aiT , a−iT |Si, S−i).

Definition 1. An equilibrium for game Γ=
(
I, {Ai}i∈I , {Zi}i∈I , {Pi}i∈I , {ui}i∈I

)
is a vector

of functions Si : Zi × [0, T ] → Ai such that for all i ui (Si, S−i) ≥ ui (S
′
i, S−i) for all S

′
i ∈ Si.

Finding the Nash equilibria of this game seems a formidable task, given the high dimension-

ality of the strategy space. In what follows, we show how this problem can be reduced to

solving for the one-dimensional strategies that specify the actions for each player in a static

Bayesian game.

Consider player i. For every history ω, we can identify a unique value corresponding to the

highest final equivalent value reached, vi (ω) = max {ei (vn (ω) , τn (ω))}, for the correspond-

ing path. This procedure uniquely determines a distribution Ψi of ECVs for this player that

depends only on the corresponding Markov process Pi for decision nodes (v, t). Define the
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(static) Bayesian game as follows: set of players I = {1, ..., N} , distribution of values for

each player Ψ1, ...,ΨN , strategy sets A1, ..., AN , and payoff function uiT (vi, ai, a−i).

Definition 2. ΓB =
(
I, {Ψi}i∈I , {Ai}i∈I , {uiT}i∈I

)
is the static Bayesian game associated

with the dynamic Bayesian game Γ =
(
I, {Ai}i∈I , {Zi}i∈I , {Pi}i∈I , {ui}i∈I

)
.

Assumption 4. Assume that the functions uiT (vi, ai, a−i) are linear in an increasing func-

tion of vi and supermodular in (vi, ai).

Theorem 2. Consider a game Γ that satisfies Assumption 4 and its associated Bayesian

game ΓB. Additionally Markov processes Pi (v, t) satisfy Assumption 3, for all i. For any

vector of equilibrium strategies
{
S̃i

}
i∈N

of ΓB the strategies defined by Si (v, t) = S̃i (ei (v, t))

are an equilibrium for Γ, where the function ei (v, t) is the self-generating expectation for

player i.

Our result decomposes the problem of finding an equilibrium to the dynamic game Γ into

two steps: (1) a dynamic decision problem—that of finding the ECVs—and (2) a static

equilibrium determination—the Bayesian game. This decomposition is possible because the

dynamic decision problem depends only on the stochastic process for values and decision

times, not opponent strategies. The actual choices made in the dynamic decision problem

depend on the strategies of others, but not the determination of ECVs. Loosely speaking, the

dynamic problem determines the indifference maps (the function e (v, t)), while the solution

to the Bayesian game labels them with the actions.

This decomposition can be very useful in applications. As an example, consider the dynamic

contest described earlier. An optimal payoff structure can be designed simply by considering

the static Bayesian game defined by the corresponding distributions of final equivalent values.

The decomposition described above is possible in part from our assumption that no informa-

tion from other players’ actions or values is revealed throughout the game. For some special

cases, this assumption can be relaxed. In particular, if for all vi there is a weakly dominant

action choice ai that maximizes u (vi, ai, a−i) for all a−i, the equilibrium derived above re-

mains an equilibrium of the dynamic game with any added information about opponents’

values and strategies. This assumption holds, for example, in the case of a dynamic second-

price auction as described in Section 5. This method can also be useful when considering

the question of implementation in dominant strategies. Another potential setting for our

method is similar to that of Bonatti et al. [2017], where in a dynamic Cournot setting sellers

have incomplete information about their rivals: sellers observe the revenue process but not

individual rivals’ actions.
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4.4 ECVs and Shading

Our leading example suggests that agents will shade values, and consequently actions, as a

result of the adverse selection problem introduced by the option of future decision opportuni-

ties and the irreversibility of decisions. Value shading is defined by the property that early in

the decision process agents make choices as if the final values were lower than the conditional

expectation.16 Value shading arises because of the irreversibility of actions, the opportunity

of making future choices, and the arrival of new information concerning the final value. Two

of the key forces determining the extent of shading are the likelihood of future decision nodes

and the extent of new information received measured by the conditional variance of expected

final values. The results in this section deal with conditions relating to the former, while the

role of the variability of values is discussed in Section C.2. Our first result in this section

concerns the general existence of value shading. We next discuss the conditions under which

value shading decreases over time as the end period approaches. Finally, we show that as

the frequency of future bidding increases, so does the shading.

Assumption 5. We assume the following assumptions hold.

1. For all t < T,
´
N(v,t)

vT (ω) dΠ(ω|v, t) is strictly increasing in v.

2. For all t < T and v,
´
v′>v,t<t′<T

dP (v′, t′|v, t) > 0.

The first part of the assumption would immediately hold given the martingale property if

expected values are independent of arrival times. The second part of the assumption holds

when the process is independent of the arrival time t′, for example, if the probability of a

future arrival is strictly positive and the conditional distribution for value is nondegenerate,

i.e., P (v′ = v|v, t) < 1.

Proposition 3. The equivalent value is less than or equal to the expected value: e (v, t) ≤
E [vT |v, t]. If Assumptions 5 hold, then the inequality will be strict.

In terms of decisions, shading of values implies shading of actions given the assumptions on

utility function, so that S (v, t) = S̃ (e (v, t)) ≤ S̃ (E [vT |v, t]).

This proposition implies that at any time before the endpoint, values and the corresponding

choices are shaded. One might wrongly conclude that distribution of ECVs, and the corre-

sponding choices are downward biased. In fact, ECVs are unbiased, as established in the

16Value shading can occur for strategic reasons; for example, in Hortaçsu et al. [2018], it is a result of dealer
market power in uniform-price Treasury bill auctions. Our source of shading is distinct and fundamentally
nonstrategic.
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following proposition. There is an intuitive reason: the value e (v, t) and the corresponding

action S̃ (e (v, t)) will remain final only when no higher equivalent value is reached. While

values are shaded according to Proposition 3, they remain unbiased for the set of paths

where these values are the terminal ECVs. This follows directly from the definition of self-

generated expectation given by Equation 10. The following proposition formally proves this

intuition.

Proposition 4. The terminal ECV is unbiased, namely: E [max {ē(t+, ω), e(v, t)} |ω] =

E [vT |v, t].

In words, this proposition says that, starting at any decision node (v, t), the distribution of

terminal ECVs is unbiased, so its mean equals the expected final value at that point.

Interestingly, this proposition implies that the stochastic process defined by e (v, t) can be

used to recover the values at all relevant decision nodes (v, t) and the corresponding shading

E (vT |v, t)−e (v, t). Equivalently, given the strategies S̃ (.) corresponding to optimal choices,

shading can be identified from the stochastic process for observed choices S (t) without any

knowledge of the corresponding values by inverting S̃ (e (v, t)) = S (t).

Corollary 1. (Identification) For a given strategy S̃ (·), shading at all relevant decision

nodes can be identified from the observed stochastic process for choices S (t) .

Shading Over Time Shading arises from the value associated with the option of a future

choice. This is affected by the likelihood of having this opportunity and the arrival of new

information. For example, if after a decision node (v, t) there is a certainty of another

arrival before T, then e (v, t) should be equal to the minimum value in support of vT . It

then seems natural that as the time limit T is approached, the degree of shading should

decrease. In our general formulation, this might not be true for a couple of reasons. First,

opportunities for making decisions might not be independent of each other.17 Second, the

process for information arrival does not need to be stationary and could depend on decision

nodes.18To examine the evolution of shading over time, we consider two different cases where

the degree of shading, given by v − e (v, t), decreases. The first case is when decision times

17As an example, suppose there are two possible states of nature, one where arrivals never occur and one
where there is a Poisson arrival rate λ of this happening at any time. In addition, assume that in both
states of nature there is an arrival for sure at time zero. If a second arrival occurs at some time t > 0, then
F (τ ′|t) = 1− exp (λ (τ ′ − t)) can be greater than F (τ ′|0) if the initial prior is sufficiently pessimistic.

18As an example, suppose there are three periods. If the variance of the distribution of arrivals in the
third period increases when there is an arrival in the second period, this could lead to an increase in shading
between decision node 1 and decision node 2. In contrast, if the event occurs, e (v, t0)
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are independent of values, and the second is when the next arrival time is independent of

calendar time.

Proposition 5. ECVs, e (v, t), are increasing in t if either of the following assumptions

holds.

1. Values and arrival times are independent of each other and F (τ ′|t) is (weakly) decreas-
ing in t.Poisson process with arrival rate λ (t) . F (τ |t) = 1− e−

´ τ
t λ(s)ds

2. P (v′, τ ′|v, t) = Pv (v
′|v, τ ′ − t)F (τ ′ − t).

It follows immediately that holding fixed values, v, optimal actions will be increasing over

time. For the first set of conditions to hold, it is sufficient that hazard rates for arrival h (t) are

independent of previous arrivals, for example in the case of the Poisson process with arrival

rates h (t) ,regardless of the properties of this function. This can accommodate the case where

agents are more attentive as end time approaches, so h (t) would increase. While the first

assumption covers many relevant cases, some other useful ones are excluded. In particular,

assuming that the new arrival τ ′ and the new value v′ are independent excludes learning

environments where information is accumulated over time prior to the next decision node,

as considered in Section 5. The second assumption is applicable to a learning environment.

It requires that the time to the next decision node be independent of the current calendar

time t, and that the next value v′ depend only on v and the time elapsed up to this decision

node. The former would hold, for instance, if arrivals follow a standard Poisson process with

constant hazard rate.

Implications of Irreversibility Proposition 4 shows that the final equivalent value gives

an unbiased estimate of the final value. In the absence of irreversibility, i.e., when the action

a is not restricted to be positive, we can follow a similar method to solve for the optimal (or

equilibrium) policy. For any path ω, define ē (ω) as the maximum equivalent value achieved

on that path and define final value for the path ω by

v̄ (ω) = E (v (T ) |v (t, ω) , t is the last arrival for path ω) .

If arrival times and valuation follow independent values, then v̄ (ω) will simply be v(T ). This

is the only relevant value for the final action that will be taken on this path, which then

solves a (w) = maxaU (a, v̄ (ω)). To assess the implications of irreversibility, the following

proposition compares the distribution of ē (ω) with that of v̄ (ω) .
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Proposition 6. The distribution of final values {v̄ (ω)} is a mean preserving spread of the

distribution of final equivalent values {ē (ω)} .

The intuition behind this result, is that irreversibility constrains the actions of the agent,

limiting its ability to condition choice on information. The specific implications for the choice

of actions depend on more specific details of the utility function U (a, v). For example, if the

optimal policy a (v) = maxa U (a, v) is concave (convex), the expected action will be higher

(lower) in the presence of irreversibility. The comparison is more complicated in the case of

games, as the utility function itself is a function of the equilibrium strategies of the other

players. In Section 5 we consider a specific application to a dynamic second-price auction

such as the one corresponding to eBay’s setting with proxy bidding.

The increase in spread has an additional intuitive interpretation related to how informed the

agent’s decisions are. At one extreme, with full information, the agent observes the true value

vT (ω) when choosing the final action. In our setting, the distribution of ē(ω) represents the

implicit information in the agent’s decisions. Being a mean-preserving contraction of vT (ω),

it indicates limited information. Furthermore, compared to the case with reversible actions,

the distribution of terminal values ē(ω) under irreversibility is itself a mean-preserving con-

traction of the one with reversible actions, and this implies that it has a lower covariance with

the true values vT (ω). This means that the agent faced with irreversible decisions acts as if

they had worse information than with reversible actions. The mean-preserving contraction

in the distribution of ē(ω) captures the loss of information due to irreversibility constraints.

Frequency of Arrival Times What is the effect of increasing the frequency of arrival

times? This can be a design feature; agents are often reminded of making a choice or the

time left before the end of an auction. This can be a design feature available to the market

designer to either make it easier to change actions or make it harder. Intuition suggests that

this should increase the option value, therefore ECVs should decrease as well. To obtain

analytical result, we assume that arrival times are independent of the process for the values.

Assumption 6. P (v′, t′|v, t) = Pv (v
′|v, t)F (t′|t)

We assume also that v follows a martingale, so E(v′|v) = v.We will say that the distribu-

tion F̃ (t) has more frequent arrivals than F (t) is F (t′|t) ≤ F̃ (t′|t) , so F (t′|t) first order

stochastically dominates F̃ (t′|t) .

Proposition 7. Suppose F (t′|t) ≤ F̃ (t′|t) and F (t′, t) is non-increasing in t, for all t, t′.

Then the corresponding ECVs e (v, t) ≥ ẽ (v, t) . Furthermore, this implies that the distribu-
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tion of terminal ECVs v̄ (ω) under F̃ is a mean preserving spread of the one corresponding

to F.

This proposition shows that more frequent opportunities for taking actions will result in a

mean preserving spread of the distribution of over v̄ (ω). As in the case of reversible actions,

this represents improved information and a higher covariance between ē (ω) and vT (ω) .

5 Application to Dynamic Second-Price Auction De-

sign

We now demonstrate an important practical application of the model to optimal dynamic

auction design. As discussed in Section 3.1, many auctions take place over extended periods

of time. The tools we have developed help provide insights into bidding behavior and auction

performance based on various aspects important in auction design.

By using our methodology, analyzing problems that fit our set up becomes more tractable.

This tractability can help with optimal design questions related to dynamics, as well as

numerical estimation of dynamic problems. In this section, we show how our methodology

can be applied to dynamic second-price auctions and explore a few related design problems.

In the appendix, we show how this method can help with estimations.

Many auctions take place over a considerable length of time; such is the case of trading

platforms (e.g., eBay, GovDeals) and other settings (e.g., procurement, spectrum). As a

result, dynamic considerations can be important for understanding bidding behavior and

improving auction design. In particular, during these long auctions, bidders’ valuations and

strategies are likely to be affected by information that arrives during the auction; however,

most of the literature has abstracted from this feature.19 Here, changes in value could come

from several sources: the existence of alternatives that change the outside value, preference

shocks (e.g., change of plans when buying event tickets), cost or capacity shocks (as in

electricity markets, see Ito and Reguant [2016]), information regarding complementary goods

19There is also a literature strand on modeling and estimating dynamics across auctions. The classic paper
is Jofre-Bonet and Pesendorfer [2003], which estimates dynamic auctions in procurement by controlling for
the utilized capacity of participants. More recent papers that consider the option value faced by bidders
in sequential auctions include Zeithammer [2006], Said [2011], Board and Skrzypacz [2016], Hendricks and
Sorensen [2018], Backus and Lewis [2012], Bodoh-Creed et al. [2021], and Coey et al. [2020]. As a result
of this option value, changes in the alternative items can alter the reservation price for bidders over time.
While these papers focus on dynamic bidding across auctions, they assume that bidding within each auction
happens instantaneously. Nevertheless, these papers motivate our reduced form approach toward the change
in valuation to be a result of changes in these outside options.
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(as in the case of spectrum auctions, see Börgers and Dustmann [2005] and Bulow et al.

[2009]), and alternative demands for use of resources in the face of capacity constraints (as

in procurement auctions, see Jofre-Bonet and Pesendorfer [2003]).

For simplicity, we consider the case of sealed-bid second-price auctions.Using our approach,

the optimal bid at time (v, t) in a dynamic auction, equals the optimal bid in a static auction

for the corresponding ECV; since this is a second price auction, b (v, t) =e(v, t) Furthermore,

the optimal bid of a static sealed-bid second-price auction is simply bidding one’s value or

the ECV in this case. Consequently, at any point in time, the standing bid of a bidder is

the maximum of ECVs of the bidder during their decision nodes.

We also assume that Assumption 5 holds and that the changes in values and arrival times

are independent of each other. Therefore, Proposition 3 and Proposition 5 hold. The propo-

sitions tell us that the bid is strictly less than the expected value at the time and increases

over time. The exact shading function will be determined by solving the functional equation

12, given the process for the valuation and bidding time opportunities.20

Using the results so far, we can act as a market designer and explore the impact of changing

the environment on auctioneer revenue and also expected revenue of bidders, and in particular

the winner of the auction. We will first show that revenue equivalence holds, then argue how

optimal reserve price can be found in this environment, third, we study the impact of allowing

for bid retraction on bidders, and finally we explore the impact of increasing arrival rates.

5.1 Revenue Equivalence

How does the type of auction chosen by the auctioneer affect expected revenues in the

dynamic setting? Like in the case of static auctions, the answer depends on details. Only

in the case of independent private values with symmetric distributions and risk neutrality,

revenue equivalence holds. This result translates to our setting also in the special case

where these conditions hold for the corresponding distributions ēi (ω) for all bidders. The

assumption of risk aversion holds in our setting. The assumption of independence requires

that the processes for arrival times and information be independent across bidders. The

assumption of symmetry requires these processes to be identical. Under these two conditions,

the expected revenue for the seller and the bidders’ values are independent of the auction

format. Next, we will discuss different design choices.

20In Hopenhayn and Saeedi [2020], this model is estimated with the data from eBay and GovDeal. The
estimates show considerable shading and explain a considerable amount of skewness in bidding times. The
model is then used to perform a series of counterfactuals and to assess the implications of alternative designs
on bidders’ welfare and sellers’ revenue.
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5.2 Optimal Reserve Price

In our environment, bidders are indifferent between winning the object at the bid they submit

and losing the auction at this bid. Therefore, having a dynamic reserve bid cannot increase

bidders’ bid they will submit throughout the auction.21 On the one hand, if the reserve price

is higher than the second highest bid but lower than the highest bid, it can increase the

revenue that the auctioneer receives. On the other hand, if the reserve price is higher than

the highest bid, it will result in no transaction. These forces are exactly the same as those

present when studying the optimal reserve price for static auctions. Our methodology shows

that we can apply the same techniques as in the static case and find the reserve price to be

equal to the value with zero virtual value. The difference is that the distribution to consider

is the distribution of ē(ω) rather than the distribution of final value of the bidders. This is

affected by the dynamics and will change by change of rebidding opportunities or how much

uncertainty exists about the value of the object.

5.3 Allowing Bid Retraction

Another design feature worth exploring is allowing bidders to retract their bids or simply

adjust their bids downward if they wish at any future opportunity. This will remove the

incentive to shade one’s bid in earlier opportunities. Because in the future, bidders are not

bound by their earlier bids. Therefore, when allowing bidders to retract their bids, they

would submit their expected value of the object at any given point in time. This expected

value might fluctuate due to new information that arises, but it does not result in the shading

we discussed earlier.

We can use the result of Proposition 6 for this case. The distribution of bids under bid re-

traction will equate {v̄ (ω)}, while the distribution of bids under our baseline model equates

{ē (ω)}. This proposition indicates that the bids under retraction are mean-preserving spread

of the baseline’s bid distribution. This implies that the expected auction price, which corre-

sponds to the second-order stochastic of bids, is likely to change. If the number of bidders is

small, permitting bid retraction could lead to a reduction in expected prices. Furthermore,

this has the potential to enhance allocation efficiency, as bidders would have the option to

decrease their bid upon receiving unfavorable news. In such scenarios, allowing bid retraction

results in an increase in bidders’ expected revenue, while decreasing the expected revenue

for the auctioneer.
21Liu et al. [2019] study the problem of dynamic reserve price, in their study dynamics arrises across

sequential auctions.They find that without commitment, the auctioneer benefits from changing the reserve
price over time.
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However, when the number of bidders is large, an increase in the spread will lead to a

higher expected price in the equilibrium, which is favorable for the auctioneer. The effect

on the bidders in this scenario is somewhat more nuanced: there will be an enhancement in

allocation efficiencies and, simultaneously, an increase in prices paid when a bidder secures

the highest bid. In our numerical simulations, the bidders were on expectation generally

worse off.

We find that the ability to retract one’s bid can harm the bidders, which is counter-intuitive

at first glance. One should consider the price and value of the winner to interpret this result.

This is similar to the prisoner’s dilemma – each bidder would benefit from having the ability

to retract their bid if they wish. However, they are negatively affected by their peers’ ability,

as it leads to higher expected prices. Another way to interpret these results is similar to

the interpretation of common-value auctions and the winner’s curse. In presence of common

values, bidders will shade their bids, therefore, in equilibrium, instances of regret are not

so frequent. This is also the case for the dynamic auctions. When retracting bids are not

possible, bidders are more cautious and shade their earlier bids, and therefore, the instances

of regret are not very frequent, especially as number of bidders increase. Consequently, the

harm of higher prices outweighs the benefits of improved allocation efficiencies.

5.4 Increasing Arrival Rates

Assuming that the process for arrival rate and the process for change in values are indepen-

dent, we can use Proposition 7 to show that more frequent arrivals results in higher shading.

As a result, an increase in arrival time will result in lower bids at the beginning but more

frequent bids as well; given that the average of all bids received are equal to expected value

of the object, this result in a mean preserving spread of bids. This mean-preserving spread

is formally shown in Proposition 7.

The implications of bids being mean-preserving spread is similar to those in bid retraction

section, if number of bidders is low that will result in lower expected price (second-order

stochastic), and if the number of bidders are large then the expected price rises.

As a designer who wants to choose the arrival rate, if the number of bidders is deterministic,

setting them to zero or infinity will be the best option depending on the number of bidders,

but if there is any uncertainty on the number of active bidders in an auction with a good

chance of having a low number of bidders, then the optimal policy will be interior and

determined based on the parameters of the market.
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6 Final Remarks

In this paper, we propose a novel methodology to analyze dynamic decision-making problems

with irreversibility and its extensions to a class of dynamic games. The theory relies on

simple yet rich regularity conditions with potentially broad applicability. Our methodology

decomposes the problem of finding the optimal solution into two steps; the first consists

of solving a dynamic option valuation problem which is independent of the specific payoff

function. The second step assigns strategies to decision nodes by solving a static decision

problem, where the specifics of the payoff function are used.

Our approach has several advantages over existing methods. First, it provides a more

tractable and intuitive solution method. This is particularly useful in the class of dynamic

games considered, where solving for best responses reduces to a static Bayesian game. Simi-

larly, when estimating parameters of the payoff functions, the dynamic option value problem

needs to be solved only once, as opposed to the standard approach, where this must be done

every time parameters are changed.

This separation result is also particularly useful when considering the design of the game, as

it involves evaluating changes in the payoff functions. As an application, we consider design

features of previously intractable long auctions, establish revenue equivalence, and show that

increasing bidding opportunities or allowing bid retraction can harm bidders and benefit the

auctioneer.

Second, our approach simplifies the analysis of this class of problems, characterizing prop-

erties of the solution, and evaluating the comparative statics. In particular, we provide an

intuitive interpretation of the effect of irreversibility in dynamic problems. The irreversibil-

ities are akin to information loss in static problems; the agent will act as if they have less

accurate information about their payoff relevant state.

The theory could be extended in several directions. Risk aversion can be introduced relatively

easily by defining self-generated expectations in terms of certainty equivalent values. Our

methods might also extend to the case of some information revelation during the game, with

the obvious complication that self-generated expectations would require to be solved jointly

across all players.

The analysis of dynamic games has proven to be a difficult problem. There are obvious trade-

offs in research and corners to cut. Our paper is no exception, and we have our share of

strong assumptions. In particular, we have chosen to represent the impact of information on

values and the existence of decision time frictions in a reduced form, given by the stochastic

process for values and decision time opportunities. There are obvious shortcomings, but the
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payoff is a parsimonious representation of equilibria and a very tractable general structure

that could be easily used in answering many design questions or other applications.
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A Dictionary of Notation

The following list can be helpful when referring to the proofs.

vT (ω) random final value

D (ω) : Set of decision nodes (v, t) for path ω.

Π(ω|v, t): conditional probability over ω given that (v, t) ∈ D (ω)

ē (t+, ω) = sup {e (v′, t′) | (v′, t′) ∈ D (ω) and t′ > t} and if this set is empty it is equal to an

arbitrary low number.

ē(ω): maximum equivalent value achieved on path ω.

H (ε, v, t) = {ω| (v, t) ∈ D (ω) and ē (t+, ω) ≤ ε}, paths subsequent to (v, t) where the high-

est ECV is less than or equal to ε. This represents the set of all ω where there is no arrival

with e(v′, t′) > ϵ exist for ∀t′ > t.

A (ε, v, t) = {ω| (v, t) ∈ D (ω) and ē (t+, ω) ≤ ε, ∃(v′, t′) ∈ D(ω),t’ ¿ t}It contains all ω ∈
H (ε, v′, t′) with at least one arrival.

N (v, t): set of paths following (v, t) with no subsequent decision nodes

e (v, t) = E (vT |ω ∈ H (e (v, t) , v, t)). This is the self-generating expectation property of

ECVs.

I (u) = {(v, t) |e (v, t) = u} are the iso-expectation sets.

Functional equation defining W (ε, v, t):

W (ε, v, t) =

ˆ T

t
min

(
W
(
ε, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, t

)
+

ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t)

and W (ε, v, T ) = v − ε.

S̃ (v) is the correspondence defined by the set of maximizers of U (v, a)

S (v, t) = S̃ (e (v, t)) is the candidate optimal strategy for the dynamic decision problem.

S̄(ω) = S̃ (ē(ω))

Ψi : Distribution of ECVs for player i

Γ: Dynamic Bayesian game

ΓB: Static Bayesian game associated to Γ
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B Proofs

The following results are used in the proofs.

Theorem. Let Y be an extended random variable on (Ω,F , P ) , and X : (Ω,F) → (Ω′,F ′)

a random object. If E (Y ) exists, there is a function g : (Ω′,F ′) →
(
R̄,B

)
such that for each

AϵF ′,

ˆ
{XϵA}

Y dP =

ˆ
A

g (x) dPx (x) , (14)

where Px (A) = P (ω|X (ω) ϵA) . The function g (x) is interpreted as E (Y |X = x) .

Proof. See Ash [1972] (Theorem 5.3.3. pg. 210).

Lemma 1.
´
ē(t+,ω)ϵB

(vT (ω)− (ē (t+, ω))) dΠ(ω|v, t) = 0 for any (Borel set) B.

Proof. Consider the following random variables: ē (t+, ω) as defined above, τ (t, ω) : time

at which it was reached, and vT (ω) : as defined above. Let X (ω) = (τ (t, ω) , ē (t+, ω)) .

The random variable that we consider in applying Theorem B is Y (ω) = vT (ω)− ē (t+, ω).

For any measurable subset A ⊂ {t < τ ≤ T} and Borel subset B of R, let Px (A×B) =

Π (τ (ω) ∈ A, ē (t+, ω) ∈ B|v, t). For all (τ, e),

E
(
Y |τ (t, ω) = τ, ē

(
τ+, ω

)
= e, (v, t)

)
= E

(
Y |τ (t, ω) = τ, ē

(
τ+, ω

)
= e
)

= E
(
vT (ω)− e| (v′, τ) ∈ D (ω) , e (v′, τ) = e, ē

(
τ+, ω

)
≤ e
)

= 0,

by the definition of self-generated expectation. Substituting x = (τ, ε) and using (14),

ˆ
{τ(ω)>τ0,(t+,ω)ϵB}

(
vT (ω)− (t+, ω)

)
dP (ω) =

ˆ
{τ>τ0,εϵB}

E (Y |τ, ε) dPx (τ, ε) = 0.

Lemma 2.
´
H(ε,v,t)

(vT (ω)− ε) dΠ(ω|v, t) is strictly decreasing in ε and equal to zero when

e (v, t) = ε.

Proof. The last part follows from the definition of self-generated expectation. To show that
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it is strictly decreasing in ε, consider δ > 0. Then

ˆ
H(ε+δ,v,t)

(vT (ω)− (ε+ δ)) dΠ(ω|v, t) =

ˆ
H(ε,v,t)

(vT (ω)− (ε+ δ)) dΠ(ω|v, t)

+

ˆ
ε<(t+,ω)≤ε+δ

(vT (ω)− (ε+ δ)) dΠ(ω|v, t)

≤
ˆ
H(ε,v,t)

(vT (ω)− (ε+ δ)) dΠ(ω|v, t)

+

ˆ
ε<(t+,ω)≤ε+δ

(
vT (ω)−

(
t+, ω

))
dΠ(ω|v, t) .

The last term is zero by Lemma 1, thus completing the proof.

Proof of Proposition 1 Recall e (v, t) was defined as a threshold function with the prop-

erty that

E
[
vT (ω) | (v, t)∈ D (ω) and ē

(
t+, ω

)
≤ e (v, t)

]
= e (v, t) , (15)

where ē (t+, ω) = sup {e (v′, t′) | (v′, t′) ϵD (ω) and t′ > t} or set to an arbitrarily low number

if this set is empty. It is convenient to expand the set H (ε, v, t) dynamically as follows:

1. It contains all ω such that there is no arrival following (v, t), i.e., (v, t) ∈ D (ω) and

(v′, t′) /∈ D (ω) for all v′ and t′ > t. Call this set N (v, t).

2. It contains all ω such that for the next arrival (v′, t′) ∈ D (ω) has e (v′, t′) ≤ ε and

ω ∈ H (ε, v′, t′). Call this set A (ε, v, t).

Note that N (v, t) and A (ε, v, t) are a partition of the set H (ε, v, t).

We will prove that there is a unique threshold function satisfying property (15) and that it

solves W (e (v, t) , v, t) = 0, where W (ε, v, t) is the unique solution to the following Bellman

equation:

W (ε, v, t) =

ˆ T

t
min

(
W
(
ε, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, t

)
+

ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t) (16)

with terminal value W (ε, v, T ) = v−ε, where Π (ω|v, t) is the distribution over ω conditional

on (v, t) ∈ D (ω). The first step is to establish necessity, that is, any function e (v, t)

with property (15) corresponds to a function W (ε, v, t) satisfying this functional equation

and W (e (v, t) , v, t) = 0. The second step is to show sufficiency and this is established by
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showing that the Bellman equation is a contraction mapping and that the unique solution

W (ε, v, t) is strictly decreasing in ε. Consequently, there is a unique function e (v, t) for

which W (e (v, t) , v, t) = 0. Finally, we show that this e (v, t) satisfies property 15.

Step 1. Necessity Take the candidate value function:

W (ε, v, t) =

ˆ
H(ε,v,t)

(vT (ω)− ε) dΠ(ω|v, t) . (17)

We show that W (ε, v, t) is a solution to (16). Substituting into (16) results in

W (ε, v, t) =

ˆ
min

{ˆ
H(ε,v′,t′)

(vT (ω)− ε) dΠ(ω|v′, t′) , 0
}
dP (v′, t′|v, t)

+

ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t) .

By Lemma 2, the term in brackets will be zero iff e (v′, t′) ≥ ε since H (e (v′, t′) , v′, t′)

is the integration set in definition (15) for t = t′. So, the first integral is over paths

{ω : e (v′, t′) ≤ ε} ∩ H (ε, v′, t′), where (v′, t′) is the next arrival following (v, t). This is

precisely the set A (ε, v, t). Moreover, since
´
Π(ω|v′, t′) dP (v′, t′|v, t) = Π (ω|v, t) we have

W (ε, v, t) =

ˆ
A(v,t)

(vT (ω)− ε) dΠ(ω|v, t) +
ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t)

=

ˆ
H(ε,v,t)

(vT (ω)− ε) dΠ(ω|v, t) .

For ε = e (v, t) , W (e (v, t) , v, t) =
´
H(e(v,t),v,t)

(vT (ω)− e (v, t)) dΠ(ω|v, t) and by property

(11) this is equal to zero, which completes this step of the proof.

Step 2. Sufficiency and Uniqueness We first show that there is a unique function

W (ε, v, t) satisfying (16) by establishing it is a contraction mapping in the space of contin-

uous and bounded functions endowed with the sup norm. Given that vT is bounded then

the Bellman equation (16) preserves boundedness, provided ε belongs to a bounded set.

By Assumption 3, it also preserves continuity and thus maps the space of continuous and

bounded into itself. To prove that it is a contraction mapping, we verify Blackwell sufficient

conditions. Monotonicity is trivially satisfied. To check discounting, consider the function
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W (ε, v, t) + a for a ≥ 0 on the right hand side of the Bellman equation (16):

´ T
t min (W (ε, v′, τ ′) + a, 0) dP (v′, τ ′|v, t) +

ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t)

≤
´ T
t min (W (ε, v′, τ ′) , 0) dP (v′, τ ′|v, t) +a (1−Π(N (v, t) |v, t)) +

ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t)(18)

= W (ε, v, t) + a (1−Π(N (v, t) |v, t)) .

By Assumption 3 Π (N (v, t) |v, t) > δ for some 0 < δ < 1, proving the second Blackwell

sufficient condition.

It follows that the function W (ε, v, t) is uniquely defined and from the necessity part of the

proof it satisfies:

W (ε, v, t) =

ˆ
H(ε,v,t)

(vT (ω)− ε) dΠ(ω|v, t) .

For ε = e (v, t) , it follows form the definition of e (v, t) given in equation (11) thatW (e (v, t) , v, t) =

0. We now show that there is a unique function satisfying this property, by establishing that

W (ε, v, t) is strictly increasing in ε.

The proof is by induction, showing that the Bellman equation (16) maps weakly decreasing

functions into strictly decreasing ones. So, assume that the W function on the right hand

side of the Bellman equation (16) is weakly decreasing. Letting ε′ > ε,

TW
(
ε′, v, t

)
=

ˆ T

t
min

(
W
(
ε′, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, t

)
+

ˆ
N(v,t)

(
vT (ω)− ε′

)
dΠ(ω|v, t)

≤
ˆ T

t
min

(
W
(
ε, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, t

)
+

ˆ
N(v,t)

(
vT (ω)− ε′

)
dΠ(ω|v, t) ,

which is strictly less than TW (ε, v, t) since by Assumption 3 Π (N (v, t) |v, t) > 0. The

function W is continuous, so to prove that there exists an ε such that W (ε, v, t) = 0, it

suffices to show that it will be negative for large values of ε and positive for small ones.

Looking at the above Bellman equation, the first term is non-positive and the second term

is strictly decreasing in ε, so it will also be arbitrarily negative for large ε. Furthermore, by

Assumption 3 Π (N (v, t) |v, t) > δ, so for large enough ε this term will dominate. The same

argument can be used by making ε small enough (negative if needed) to make the second

term become positive enough to dominate.

Proof of Theorem 1 We need to show that the strategy defined in Theorem 1 is a solution

to the dynamic decision problem. Consider a node (v, t) and some alternative action a2 ̸=
a1 ≡ S (v, t) . We will show that this one-period deviation is not an improvement. Let e1 =

41



e (v, t) so a1 = S̃ (e1). Consider first the case where a2 > a1 and let e2 = sup
{
v|S̃ (v) ≤ a2

}
.

Let V (v, t, a) denote the expected utility of choosing a at this state and following the (can-

didate) optimal policy for the future. We need to prove that V (v, t, a1) ≥ V (v, t, a2) .

Let s̄ (ω, v, t) = max {S (v′, t′) | (v′, t′) ϵD (ω) and (v′, t′) ̸= (v, t)}. For a path ω such that

(v, t) ∈ D (ω) this is the maximal action excluding the choice at node (v, t) and it is also

the final action if it is greater than or equal to the choice at this node. Define H (e, v, t)

as in Section 4.2.1 and H (e, v, t)c its complement in the set of paths following (v, t) :

{ω| (v, t) ∈ D(ω)} . To simplify notation, from now on we drop the argument (v, t) from

these functions. We can decompose the histories following ai, iϵ {1, 2} into these two sets. In

the set of histories H (ei, v, t), ai will be the final choice as no higher equivalent value than

ei is reached. In Hc, the choice ai does not bind because an equivalent value higher than ei

is reached and the final corresponding action is s̄ (ω). It follows that

V (v, t, ai) =

ˆ
H(ei)

U (v (T ) , ai) dP (ω) +

ˆ
H(ei)

c
U (v (T ) , s̄ (ω)) dP (ω) ,

for i = {1, 2}. Note that H (e2) = H (e1) ∪ {ω|e1 < ē (t+, ω) ≤ e2} so

V (v, t, a2) =

ˆ
H(e1)

U (v (T ) , a2) dP (ω) +

ˆ
e1<ē(t+,ω)≤e2

U (v (T ) , a2) dP (ω)

+

ˆ
H(e2)

c
U (v (T ) , s̄ (ω)) dP (ω) . (19)

Consider a more relaxed problem where this agent is allowed to follow the original strategy,

i.e., if the agent arrives at histories where e1 < ē(t+, ω) ≤ e2, the agent is unconstrained by

the preexisting choice a2, so its final action is s̄ (ω). As a result,

V (v, t, a2) ≤
ˆ
H(e1)

U (v (T ) , a2) dP (ω) +

ˆ
H(e1)

c
U (v (T ) , s̄ (ω)) dP (ω) ,

where the right hand side value is the optimal for the relaxed problem. It follows that

V (v, t, a2)− V (v, t, a1) ≤
ˆ
H(e1)

[U (v (T ) , a2)− U (v (T ) , a1)] dP (ω) (20)

= U
(
EH(e1)v (T ) , a2

)
− U

(
EH(e1), a1

)
≤ 0,

where the equality follows the linearity of U in v, and the last inequality follows from the

e(v, t) = EH(e1)v (T ) and S̃(e(v, t)) = a1.

Now suppose instead that a2 < a1. Define e1 as before and let e2 = inf
{
v|S̃ (v) > a2

}
. For
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the alternative action a2 < a1, it easily follows that

V (v, t, a2) =

ˆ
H(e2)

U (v (T ) , a2) dP (ω) +

ˆ
H(e2)

c
U (v (T ) , s̄ (ω)) dP (ω) (21)

=

ˆ
H(e1)

U (v (T ) , a2) dP (ω) +

ˆ
H(e1)

c
U (v (T ) , s̄ (ω)) dP (ω)

+

ˆ
e2<ē(t+,ω)≤e1

(U (v (T ) , s̄ (ω))− U (v (T ) , a2)) dP (ω) .

Subtracting the above from V (v, t, a1) we can write

V (v, t, a1)− V (v, t, a2) =

ˆ
H(e1)

U (v (T ) , a1) dP (ω)−
ˆ
H(e1)

U (v (T ) , a2) dP (ω)

−
ˆ
e2<ē(t+,ω)≤e1

(U (v (T ) , s̄ (ω))− U (v (T ) , a2)) dP (ω) (22)

= (U (e1, a1)− U (e1, a2))P (H (e1))

−
ˆ
e2<ē(t+,ω)≤e1

(U (v (T ) , s̄ (ω))− U (v (T ) , a2)) dP (ω)

= (U (e1, a1)− U (e1, a2))P (H (e1))

−
ˆ
e2<ē(t+,ω)≤e1

(
U
(
ē(t+, ω), S̃

(
ē(t+, ω)

))
− U

(
ē(t+, ω), a2

))
dP (ω) ,

where, as before, the second equality follows from the linearity of U in v and e1 = e (v, t) =

EH(e1) (v (T )), and the third equality follows from the linearity of U and application of

Lemma 1.

Consider the last integral. The supermodularity of the U function implies that S̃ (v) must

be an increasing function, so for ω such that e2 < ē(t+, ω) ≤ e1 it follows that

a1 ≥ S̃
(
ē(t+, ω)

)
= s (ω) ≥ S̃ (e2) ≥ a2.

It also follows from supermodularity and e1 ≥ ē(t+, ω) that

U
(
ē(t+, ω), S̃

(
ē(t+, ω)

))
− U

(
ē(t+, ω), a2

)
≤ U

(
e1, S̃

(
ē(t+, ω)

))
− U (e1, a2) . (23)

Finally, since a1 = S̃ (e1) it follows that

U
(
e1, S̃

(
ē(t+, ω)

))
− U (e1, a2) ≤ U (e1, a1)− U (e1, a2) . (24)
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Combining (22), (23) and (24), it follows that

V (v, t, a1)− V (t, v, a2) ≥ (U (e1, a1)− U (e1, a2))P (H (e1)) (25)

−
ˆ
e2<ē(t+,ω)≤e1

U (e1, a1)− U (e1, a2) dP (ω) ,

and since the set of paths {e2 ≤ ē(t+, ω) ≤ e1} is a subset of H (a1) , then V (v, t, a1) −
V (t, v, a2) ≥ 0, so the proof is complete.

Proof of Proposition 2 The value of the repurchase option at price ε in state (v, t)

satisfies the following Bellman equation:

V (ε, v, t) =

ˆ T

t
max

(
V
(
ε, v′, τ ′

)
, v′ − ε

)
dP
(
v′, τ ′|v, t

)
(26)

Guess that the solution to this functional equation is

V (ε, v, t) = v − (W (ε, v, t) + ε) .

Using equation (12)

V (ε, v, t) =

ˆ T

t
max

(
v′ −

(
W
(
ε, v′, t′

)
+ ε
)
, v′ − ε

)
dP
(
v′, τ ′|v, t

)
=

ˆ T

t

(
v′ − ε

)
+max

(
−
(
W
(
ε, v′, t′

))
, 0
)
dP
(
v′, τ ′|v, t

)
=

ˆ T

t

(
v′ − ε

)
−min

((
W
(
ε, v′, t′

))
, 0
)
dP
(
v′, τ ′|v, t

)
=

ˆ T

t

(
v′ − ε

)
dP
(
v′, τ ′|v, t

)
−W (ε, v, t) +

ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t)

= v − (W (ε, v, t) + ε)

This proves the claim. Using the definition of ECV, It follows that the value of the repurchase

option at price ε = e (v, t), V (e (v, t) , t) = v − e (v, t) . Moreover, the repurchase option at any

future trading window t′ is exercised if and only if

0 ≤ v′ − e (v, t)− V
(
e (v, t) , v′ − ε

)
= v′ − e (v, t)−

(
v′ −W

(
e (v, t) , v′, t′

)
+ e (v, t)

)
= W

(
e (v, t) , v′, t′

)
or, equivalently, if and only if e (v′, t′) ≥ e (v, t) . This is precisely the threshold used to define the
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ECV e (v, t) in our definition.

Proof of Theorem 2 Let Ui (viT , aiT ) = Ea−iT
u (viT , aiT , a−iT |S−i), that is, the expected

final payoff given viT , aiT after integrating out the strategies of the other players. Assumption

4 implies that Ui is linear in v and supermodular. This payoff function and the stochastic

process Pi for values and decision times define a dynamic decision problem that satisfies the

assumptions of Theorem 1. Since S̃i is a best response for agent i in the Bayesian game, it

follows that almost surely for ṽ in the support of Ψi

UiT

(
ṽ, S̃i (ṽ)

)
= Ea−i

uiT

(
ṽ, S̃i (ṽ) , a−i|S−i

)
≥ Ea−i

uiT (ṽ, a, a−i|S−i) = UiT (ṽ, a)

for all aϵAi. So, S̃i (ṽ) is an optimal solution for any ECV ṽ and thus the corresponding

Si as defined is an optimal strategy for the dynamic decision problem defined by the best

response. As a result, the strategy vector {Si}i∈N is a Nash equilibrium for game Γ.

Proof of Proposition 3 We prove that the property W (ε, v, t) ≤ E (vT |v, t) − ε is pre-

served under the Bellman equation. Suppose that W (ε, v′, τ ′) ≤ E (v (T ) |v′, τ ′)− ε. Then

W (ε, v, t) =

ˆ T

t

min (W (ε, v′, τ ′) , 0) dP (v′, τ ′|v, t) +
ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t)

≤
ˆ T

t

W (ε, v′, τ ′) dP (v′, τ ′|v, t) +
ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t)

≤
ˆ T

t

E ([vT |v′, τ ′]− ε|v′, τ ′) dP (v′, τ ′|v, t) +
ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t) .

= E [vT |v, t]− ε,

where the last equality follows from the law of iterated expectation. It immediately fol-

lows from W (e (v, t) , v, t) = 0 that e (v, t) ≤ E (vT |v, t) . By Assumption 5, it follows that

W (ε, v, t) is strictly increasing in v. Together with Assumption 2, it implies that the first

inequality is strict. In particular, for ε = e (v, t) it follows that the first inequality above is

strict, so E (vT |v, t) > e (v, t) .

Proof of Proposition 4 Using Lemma 1 by setting B = {ω|ē (t+, ω) ≥ e (v, t)}, we have

the following:
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ˆ
ē(t+,ω)≥e(v,t)

(
vT (ω)− ē

(
t+, ω

))
dΠ(ω|v, t) = 0

and by the definition of self-generating expectation

ˆ
ē(t+,w)<e(v,t)

(vT (ω)− e (v, t)) dΠ(w|v, t) = 0

Adding the two implies that

v =

ˆ
vT (ω) dΠ(ω|v, t)

= e (v, t)Π
{
ω|ē
(
t+, w

)
< e (v, t)

}
+

ˆ
ē(t+,ω)≥e(v,t)

ē
(
t+, ω

)
dΠ(ω|v, t)

= E
[
max

{
ē(t+, ω), e(v, t)

}
|ω
]

Proof of Proposition 5 We first show the claim for the first condition. Consider the

Bellman equation:

W (ε, v, t) =

ˆ T

t

[ˆ
min (W (ε, v′, τ ′) , 0) dP (v′|v)

]
dF (τ ′|t) (27)

+

ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t)

=

ˆ T

t

[ˆ
min (W (ε, v′, τ ′) , 0) dP (v′|v)

]
dF (τ ′|t) (28)

+ (1− F (T |t)) [E (vT |v)− ε] . (29)

We show that the condition is preserved under the Bellman equation. By way of induction,

assume that the right hand side W is increasing in τ ′. Given the assumption of stochastic

dominance, F (τ ′|t) is stochastically increasing in t and so is the integral. The other effect

of increasing t involves shifting mass from the first to the second term. By Proposition 3,

W (ε, v, t) ≤ E (vT |v, t)− ε, implying that the second term on the right hand side of (27) is

greater in expectation than the first term. So, the shift in mass also contributes to increasing

the overall expectation. This proves the case for the first condition.

To show the claim for the second condition, we show that monotonicity is preserved under

the Bellman equation. Assume by way of induction that W (ε, v′, τ ′) is increasing in its last
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argument. Using the first assumption in the proposition, equation (12) can be rewritten as

W (ε, v, t) =

ˆ T−t

0

ˆ
min

(
W
(
ε, v′, t+ x

)
, 0
)
dPv

(
v′|v, x

)
dF (x)

+

ˆ
x>T−t

ˆ (
v′ − ε

)
dPv

(
v′|v, x

)
dF (x) .

Take τ2 > τ1.

W (ε, v, τ2) =

ˆ T−τ2

0

ˆ
min

(
W
(
ε, v′, τ2 + x

)
, 0
)
dPv

(
v′|v, x

)
dF (x)

+

ˆ
x>T−τ2

ˆ (
v′ − ε

)
dPv

(
v′|v, x

)
dPτ (x)

≥
ˆ T−τ2

0

ˆ
min

(
W
(
ε, v′, τ1 + x

)
, 0
)
dPv

(
v′|v, x

)
dF (x)

+

ˆ
x>T−τ2

ˆ (
v′ − ε

)
dPv

(
v′|v, x

)
dF (x)

=

ˆ T−τ1

0

ˆ
min

(
W
(
ε, v′, τ1 + x

)
, 0
)
dPv

(
v′|v, x

)
dF (x)

+

ˆ
x>T−τ1

ˆ (
v′ − ε

)
dPv

(
v′|v, x

)
dF (x)

−
ˆ T−τ1

T−τ2

ˆ
min

(
W
(
ε, v′, τ1 + x

)
, 0
)
dPv

(
v′|v, x

)
dF (x)

+

ˆ T−τ1

T−τ2

ˆ (
v′ − ε

)
dPv

(
v′|v, x

)
dF (x)

≥ W (ε, v, τ1)−
ˆ T−τ1

T−τ2

ˆ [
W
(
ε, v′, τ1 + x

)
−
(
v′ − ε

)]
dPv

(
v′|v, x

)
dF (x) ,

where the first inequality follows from the induction hypothesis. As in the proof of Propo-

sition 3, W (ε, v′, τ1 + x) ≤ E (vT |v′, τ1 + x) − ε = v′ − ε by the martingale assumption.

As a consequence, the term subtracted in the last line above is negative. It follows that

W (ε, v, τ2) ≥ W (ε, v, τ1) .

Proof of Proposition 6 As a first step, it should be clear that starting at any node (v, t)

the conditional distribution of final values is unbiased, so its expectation equals E (vT |v, t) .
This follows from iterated expectation: For τ ≥ t let v̄ (τ |v, t) denote the expected final value

conditional on (v, t) and τ being the last arrival time after this node. Let P (τ |v, t) be the

corresponding conditional distribution for this event. By the law of iterated expectation,

it follows that v =
´
v̄ (τ, v, t) dP (τ |v, t) . By Proposition 4, the distribution of expected

final values starting from (v, t) is also unbiased. We now show that the distribution of v̄ (ω)

conditional on (v, t) is more dispersed than the corresponding conditional distribution for

47



ē (ω) . Let A = {ω ⪰ (v, t) |ē (ω) = e (v, t)} and Ac = {ω ⪰ (v, t) |ē (ω) > e (v, t)} . This is a
partition of the paths following (v, t) where A corresponds to all paths such that the ECV

e (v, t) remains the maximum, while the set Ac is the complement. It follows that

v = Π(A)E (vT |A) + Π (Ac)E (vT |Ac) . (30)

= Π (E) e (v, t) + Π (Ac)E (vT |Ac)

where the equality follows from the definition of ECVs. Starting from any (v′, t′) ∈ Ac,

Proposition 4 implies that the conditional distribution of terminal ECVs ē (ω| (v′, t′)) is

unbiased, integrating over all such decision nodes, it follows that E (ē (ω) |Ac) = E (vT |Ac)

and by a similar argument, the same holds for E (v̄ (ω) |Ac) . It then follows from equation

(30) that e (v, t) = E (v̄ (ω) |A) so the conditional distribution for v̄ (ω) in A is a mean

preserving spread of the corresponding distribution of ē (ω) which is a point mass on e (v, t) .

Repeating the same argument for all (v′, t′) ∈ Ac, it follows that the conditional distribution

of v̄ (ω) in Ac is also a mean preserving of the corresponding distribution of ē (ω) , which

completes the proof.

Proof of Proposition 7 Consider the recursive formulation

W (ε, v, t) =

ˆ T

t

ˆ
min

(
W
(
ε, v′, τ ′

)
, 0
)
dP
(
v′|v, τ ′

)
dF
(
τ ′|t
)

(31)

+ (1− F (T |t)) (v − ε)

First note that this functional equation is monotone: increasing pointwise the integrated function

W increases the integral. Also note that from the proof of Proposition 5, the second assumption

implies that W (ε, v, t) is nondecreasing in t. Let W̃ (ε, v, t) denote the value function under distri-

bution F̃ (t′|t) . We will prove, recursively, that W̃ (ε, v, t) ≤ W (ε, v, t) . So assume this is true for

τ ′ > t. Then

W̃ (ε, v, t) =

ˆ T

t

ˆ
min

(
W̃
(
ε, v′, τ ′

)
, 0
)
dP
(
v′|v, τ ′

)
dF̃
(
τ ′|t
)
+
(
1− F̃ (T |t)

)
(vT − ε)

≤
ˆ T

t

ˆ
min

(
W
(
ε, v′, τ ′

)
, 0
)
dP
(
v′|v, τ ′

)
dF̃
(
τ ′|t
)
+
(
1− F̃ (T |t)

)
(vT − ε)

≤
ˆ T

t

ˆ
min

(
W
(
ε, v′, τ ′

)
, 0
)
dP
(
v′|v, τ ′

)
dF
(
τ ′|t
)
+ (1− F (T |t)) (vT − ε)

The first inequality follows from the inductive assumption, while the second inequality follows from

the fact that W (ε, v′, t′) is nondecreasing in t and F stochastically dominates F̃ and that

W (ε, v, τ) ≤ v − ε .
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C Extension and Special Cases (For online publica-

tion)

We first consider an extension to the case where the ending time T is random and re-examine

the aforementioned properties of shading over time. We subsequently analyze two special

cases of practical importance where the determination of ECVs is greatly simplified and

shading is either independent or proportional to value, so it is only a function of time t.

C.1 Random Termination

We have assumed that the decision problem lasts for a fixed time [0, T ]. Our formulation

allows for random termination without modification. Consider equation (12), repeated below,

which is the key equation used to find the self-generated expectation:

W (ε, v, t) =

ˆ T

t
min

(
W
(
ε, v′, τ ′

)
, 0
)
dP
(
v′, τ ′|v, t

)
+

ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t) .

We can consider T in this equation as a random termination without any changes, with a

slightly different interpretation: the term P (v′, τ ′|v, t) can be interpreted as the probability

of the event that the next decision node is τ ′ and that τ ′ < T (i.e., the decision problem

has not ended by then). Similarly, the second term, N (v, t), can be interpreted as the set

of paths following (v, t) where the random termination occurs before the next arrival. With

this change of interpretation, the same equation applies and so are all the results that follow.

It is useful to examine the conditions of Proposition 5 in light of this reinterpretation.

Rewriting the assumption as F (τ ′ − T, t) stochastically increasing in t (which in the case

of deterministic T is equivalent to the condition given in Proposition 5), the result follows.

This is now an assumption regarding the difference between the two random variables, τ ′

and T. The following corollary gives sufficient conditions for this assumption to hold.

Corollary 2. Let H (y|t) = P (T − t ≤ y|t) denote the cdf for the remaining time of the

decision problem conditional on T ≥ t. Let G (x|t) = P (τ ′ − t ≤ x|t) denote the conditional

cdf of the time to the next arrival. Assume that τ ′ and T are conditionally independent given

t and

1. H (y, t) is weakly increasing in t and
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2. G (x|t) is weakly decreasing in t.

Then F (τ ′ − T |t) is (weakly) decreasing and e (v, t) is (weakly) increasing in t.

Proof. Note that τ ′ − T = τ ′ − t − (T − t) . Let (T − t) = x so P (τ ′ − T ≤ z|t, x) =

P (τ ′ − t ≤ z + x) = G (z + x|t). Integrating over x results in F (z|t) =
´
G (z + x|t) dH (x|t).

By the second assumption, the integrand is point-wise decreasing in t. By the first assump-

tion, the distributionH is stochastically decreasing in t and, since G is an increasing function,

it also implies that the integral is decreasing in t. This proves that F (z|t) is decreasing in t.

The second conclusion follows directly from Proposition 5.

The assumptions of this corollary have an intuitive interpretation. The second one is the

analogue of the assumption made in Proposition 5. The first assumption simply states

that the hazard rate for termination of the decision time increases with duration, which

seems a natural assumption in the case of random termination. These assumptions imply

that the level curves for self-generated expectations are decreasing, as depicted in Figure

1. In the special—time stationary—case where both conditional distributions G and H are

independent of t, W (ε, v, t) and ε (v, t) will also be independent of t, so the level curves will

be flat. Shading will still occur but will not change over time.

C.2 Independent Increments

We consider two special cases that come up frequently in applications, where the derivation

of optimal strategies is considerably simplified: (1) increments in value independent of the

current value v and (2) increments in value proportional to v. In particular, these conditions

apply to the cases where v follows an arithmetic and geometric Brownian motion, respec-

tively. In both cases, we assume that decision times are given by a homogeneous Poisson

process that is independent of the past realized signals {vn}. These assumptions considerably

simplify the derivation of shading that becomes either independent from or proportional to

v. In addition, we provide a new result connecting shading to the variance of innovations.

Proposition 8. Assume P (v′ = v + δ, t′|v, t) is independent of v for all δ and all t, and

decision times are independent of v. Then

W (ε+ δ, v + δ, t) = W (ε, v, t) ,∀ε, δ, v ∈ R, t ∈ R+

and consequently e (v + δ, t) = e (v, t) + δ.

50



Proof. We have previously shown that the functional equation (12) is a contraction mapping.

Assume that W has the property stated above. It follows that

TW (ε+ δ, v + δ, t) =

ˆ T

t

min (W (ε+ δ, v′ + δ, τ ′) , 0) dP (v′ + δ, τ ′|v + δ, t)

+

ˆ
N(v,t)

(vT (ω) + δ − (ε+ δ)) dΠ(ω + δ|v + δ, t)

=

ˆ T

t

min (W (ε, v′, τ ′) , 0) dP (v′, τ ′|v, t) +
ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t)

= TW (ε, v, t) .

This property is thus preserved under the functional equation and is clearly closed in the

space of continuous and bounded functions under the sup norm. Therefore, it must hold for

the unique fixed point. The second property stated in the proposition follows immediately

from the definition of a self-generated expectation.

Letting δ = −ε, the above proposition implies that W (ε, v, t) = W (0, v − ε, t). Letting

s = v − ε, functional equation (12) can be written as

W (s, t) =

ˆ T

t
min

(
W
(
s+ z, τ ′

)
, 0
)
dF (z) +

ˆ
N(s,t)

(sT (ω)) dΠ(ω|s, t) ,

where F is the distribution of the increments. Defining s (t) implicitly by W (s (t) , t) = 0, ECVs

e (v, t) = v − s (t), so the shading factor s (t) thus defined is independent of t.

Consider now the case where P (γv′, τ ′|γv, t) = P (v′, τ ′|v, t) , which, as the next proposition
shows, implies that W (γε, γv, t) = γW (ε, v, t) .

Proposition 9. Assume P (γv′, τ ′|γv, t) = P (v′, τ ′|v, t) for all γ, v, v′ ∈ R, t, τ ′ ∈ R+. Then

W (γε, γv, t) = γW (ε, v, t) for all ε, γ, v ∈ R, t ∈ R+ and consequently e (γv, t) = γe (v, t) .

Proof. The proof follows a similar inductive argument as in the previous proposition. Assume

the function W has this property. Then evaluate

TW (γε, γv, t) =

ˆ T

t

min (W (γε, γv′, τ ′) , 0) dP (γv′, τ ′|γv, t)

+

ˆ
N(v,t)

(γvT (ω)− γε) dΠ(γω|γv, t)

=

ˆ T

t

min (γW (ε, v′, τ ′) , 0) dP (v, τ ′|v, t) +
ˆ
N(v,t)

γ (vT (ω)− ε) dΠ(ω|v, t)

= γTW (ε, v, t) .
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This property is thus preserved under the functional equation and is clearly closed in the

space of continuous and bounded functions under the sup norm. Therefore, it must hold for

the unique fixed point. The second property stated in the proposition follows immediately

from the definition of a self-generated expectation.

Shading over Time with Independent Increments While the propositions derived in

Section C.2 apply to this special case, an additional intuitive and useful result can be proved.

A natural question is how the variance of new values affects shading, as it affects the option

value of future actions. In the extreme, if variance were zero so v (T ) = v with probability

one, there would be no shading. We prove a monotonicity result for the case of independent

increments considered in Proposition 8.

Proposition 10. Under the assumptions of Proposition 8, W is concave in v. A mean

preserving increase in spread of the distribution of increments decreases e (v, t).

Proof. Consider the dynamic programming equation for W,

W (ε, v, t) =

ˆ T

t

min (W (ε, v′, τ ′) , 0) dP (v′, τ ′|v, t) +
ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t) .

Given the assumption of scale invariance and that arrival times and values are independent,

it follows that

ˆ
N(v,t)

(vT (ω)− ε) dΠ(ω|v, t) = E [vT |v, t, τ ′ > T ] Π(N(v, t)|v, t),

= (v + E [vT |0, t, τ ′ > T ]) Π(N(v, t)|v, t)

where Π(N(v, t)|v, t) is the probability of no arrivals, which is independent of v given the

assumptions. This implies that the second term is linear in v; hence, we just need to prove

that the first term is concave in v. We show that concavity is preserved under the Bellman

equation. Assume W is concave in v′. Then

52



ˆ T

t

min (W (ε, v′, τ ′) , 0) dP (v′, τ ′| (αv2 + (1− α) v1) , t)

=

ˆ T

t

min (W (ε, α (v′ + v2) + (1− α) (v′ + v1) , τ
′) , 0) dP (v′, τ ′|0, t)

≥
ˆ T

t

(αmin {W (ε, (v′ + v2) , τ
′) , 0}+ (1− α)W (ε, (v′ + v1) , τ

′)) dP (v′, τ ′|0, t)

= α

ˆ T

t

min {W (ε, v′, τ ′) , 0} dP (v′, τ ′|v2, t) + (1− α)

ˆ T

t

min {W (ε, v′, τ ′) , 0} dP (v′, τ ′|v1, t) .

The second result follows immediately from concavity and the definition of a mean preserving

increase in spread.

Shading Over Time and Learning Note that while the assumptions require that the

next arrival τ ′ be independent of current value v, they do not require that the next value v′

be independent from either t or τ ′.

In a Bayesian learning environment, the weight of new information decreases over time and

so does the variance of the change in the posterior, which gives another reason for decreasing

the level of shading over time. As an example, consider an environment where the signals

for the value vT are given by a Brownian motion with drift vT , where vT is itself drawn from

a normal distribution with known mean and variance. The history at time t is the state of

the Brownian motion x (t) . Letting v0 be the mean of the distribution of vT , σ0 its variance,

and σ the volatility of the Brownian motion, the posterior mean at time t is

v (t) = x0
1/σ0

1/σ0 + t/σ
+

x (t)

t

t/σ

1/σ0 + t/σ
,

and the variance is 1/ (1/σ0 + t/σ) . Together with an independent arrival process for decision

nodes, this formula can be used recursively to define the Markov process P (v′, t′|v, t) that
satisfies the assumption of independent increments in Proposition 8. As the variance of the

increments decreases over time, Proposition 10 implies that shading decreases over time.

C.3 Anonymous Sequential Game

Consider a stationary population of agents. Time is discrete. Each period an agent continues

in the game with probability δ and a value v that follows a Markov process with conditional

distribution F (v′|v). Exiting agents are replaced by new ones with values v drawn from
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some initial distribution G (v) . At each of these decision nodes, the agent chooses whether

to increase its capital k by ∆k at unit cost c and is then faced with a random match to a

subset of other players in the population. Profits in the period (gross of investment costs)

are given by π
(
v, k, k̃

)
, where k̃ is the vector of capital of other competing agents. Assume

this is linear in v and supermodular in v, k. For simplicity, suppose the Markov process has

independent increments so that v′ = v+ z, where z has cdf Φ (z). Define the payoff function

as follows: u
(
v, k, k̃

)
= 1

1−δ

(
π
(
v, k, k̃

)
− ck

)
.

We consider a stationary equilibrium where the measure over firm capital stocks µ (k) is

time invariant. Each period, competing firms are drawn randomly from the corresponding

distribution. A stationary equilibrium is given by investment strategies k′ = g (v, k, µ) that

solve the firm’s dynamic problem of capital accumulation and such that µ is an invariant

measure generated by these decision rules.

We explain now how to derive the stationary equilibrium using our approach. Given the
assumption of independent increments and noting that as a consequence of stationarity there
is no time argument, shading is given by a shift s independent of v so that e (v) = v − s.
The shading factor s satisfies W̃ (s) = 0, where the function W̃ is the solution to functional
equation

W̃ (x) = δ

ˆ
min

(
0, W̃ (x+ z)

)
dΦ (z) + (1− δ)x.

Having solved for s, we can define the distribution of ECVs for a player. Letting vt denote the

random value at time t, then the distribution of ECVs for a given player is the mixture of the

random variable vt − s for t = 1, ... with weights (1− δ) δt−1, as explained in Section 3.1. In

the symmetric case this can be interpreted as the distribution from which all competitors in

a period draw their values. The steps for finding the equilibrium and estimating parameters

to match moments in the data are explained below. For comparison, we describe first the

standard nested fixed point algorithm that is used in practice.

Solving this through a nested fixed point algorithm would require the following steps:

1. Derive a stationary distribution of values F (v).

2. Outer fixed point:

(a) Choose the estimated parameters θ of the payoff function.

(b) Inner fixed point:

i. Guess a strategy k (v) for all players.

ii. Solve the dynamic problem for an agent to get the best response strategy.

Define this as a new guess for strategy.
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iii. Get new strategies for all players.

(c) Adjust parameters θ until a good match to the data is obtained.

Using our method, the steps would be:

1. Find equivalent values (in this case the scalar s).

2. Derive the stationary distribution of equivalent values (this is the same distribution as

in step 1 of the previous procedure, shifted by the shading factor s).

3. Outer fixed point:

(a) Choose the estimated parameters θ of the payoff function.

(b) Inner fixed point:

i. Guess the strategies k (v) for all players.

ii. Calculate the static best responses solving the static problem

k (v) = argmax
k

ˆ
u
(
k, k̃ (ṽ) , v − s

)
dF (ṽ) .

iii. Get new strategies for all players.

(c) Adjust parameters θ until a good match to the data is obtained.

While in both cases a dynamic programming problem needs to be solved, the nested fixed

point algorithm requires this to be done in the most inner loop (for each parameter vector θ

and each strategy of other players), while in our setting it is done only once.

A simple solution to our first step can be found for the following stochastic

process. Assume that with probability (1− p) the value continues to be the

same, while with probability p it is drawn again from distribution F (v) .22 It

easily follows that

e (v) =
(1− δ (1− p (1− F (v)))) v + δp

´ v
ydF (y)

1− δ (1− p)
.

This is a weighted average of v and E (y|y ≤ v), so it is clearly lower than v.

Accordingly, the agent behaves as if the value v where lower.

22Note that this stochastic process does not have independent increments.
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