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Abstract

We address an important practical problem related to rating design: If a market designer is

restricted to a limited set of ratings, how should these be chosen? How does the choice depend

on the objective of the market designer and on market characteristics? What is the value loss

from using simple ratings? We provide a characterization of optimal ratings, which for our

baseline setting is the solution to a standard clustering problem. Next we show that the value

loss due to using simple ratings is small and drops sharply as the number of ratings grows. The

methods are illustrated with an application to the Medicare Advantage insurance market and

one for eBay.
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1 Introduction

Ratings and in particular simple rating mechanisms are used by many online trading platforms

as well as many rating agencies. In this paper, we consider the question of optimal design and

performance of rating systems when the market designer is constrained to use a small number of

ratings. We also compute the welfare loss due to these simple ratings.

In practice, rating systems usually provide coarse signals of quality to buyers. For example,

in California, restaurants are given grades A, B, C, or none based on a hygiene inspection score.

Airbnb awards its top-quality hosts the Superhost badge, and eBay’s high-quality sellers are classi-

�ed as Top Rated Sellers. These quality ratings tend to use information that is not readily available

to users. Many governmental and non-pro�t agencies certify �rms that meet certain standards.
1

These examples raise two critical questions about simple rating design: First, given the number of

ratings and our constraints, what are the criteria for the design of rating mechanisms? In particu-

lar, when there are only two tiers, how stringent should the standards for certi�cation be?
2

Second,

what is the welfare loss from using a coarse rating system instead of using the unconstrained op-

timal mechanism?

Our baseline model considers a competitive market with a large set of buyers and sellers, though

our most important results apply equally to the canonical model of Cournot competition with

constant marginal cost. Sellers are endowed with di�erent levels of quality, which is the only source

of product di�erentiation.
3

Our analysis focuses on two main sources of market heterogeneity: the

distribution of seller qualities and the responsiveness of sellers’ supply to prices. Intuitively, the

heterogeneity and skewness of seller quality a�ect the spread of prices across ratings, while the

responsiveness of supply determines the resulting reallocation of output across these categories.

1
For example, the website ecolabelindex.com currently lists 456 certi�ers for food and consumer products across

199 countries and 25 industry sectors. To the best of our knowledge, they all use these simple mechanisms, mostly

certifying only a subset of the �rms in the sector that meet some minimum requirements. Accessed August 31, 2022.

2
Hui et al. (forthcoming) examine the e�ect of an increase in the requirements to become a badged seller on eBay.

They �nd that this increase leads to a higher market share of high-quality sellers while decreasing the sales of sellers

in the medium range of quality.

3
While moral hazard might be a critical consideration in some markets, in others adverse selection might play a

more critical role, as suggested by an empirical study using eBay data (see Hui et al. (2018)). Optimal rating design with

moral hazard and adverse selection is considered in Saeedi and Shourideh (2022) in a simpli�ed market environment.

Shi et al. (2020) and Vatter (2021) also study optimal information disclosure in a model that includes moral hazard.
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To the best of our knowledge, this is the �rst paper that systematically considers the interaction of

these two factors and their impact on rating design.

We �rst derive a necessary condition de�ning the thresholds that correspond to an intuitive

criterion. Consider a marginal seller with quality at the threshold between two adjacent intervals.

For this threshold to be optimal, the planner should be indi�erent between pooling this seller with

those in the intervals above or below. This decision ultimately a�ects the demand faced by the

seller, and thus its total output. The bene�t of the increased output is the extra value generated by

the additional sales, which at the optimum should equate the extra cost of production. Therefore,

one of the key determinants of this trade-o� is the supply behavior of sellers, in particular, the

curvature of the supply function.

Next, we �nd a simple characterization for the optimal thresholds in the case of linear supply

that also applies to the case of Cournot competition with constant marginal cost. These optimal

thresholds are the solution to a standard clustering problem that involves only information regard-

ing the distribution of qualities.
4

The thresholds also provide a useful benchmark for other cases,

as discussed in the paper.

Regarding the performance of ratings, we show that a one-threshold partition closes at least

half of the surplus gap between the no-information case and full-information case for quality dis-

tributions that follow some general conditions, such as log-concave density. In our numerical

computations, we �nd that this partition closes from 46% to nearly 77% of the gap, depending on

the underlying distribution of qualities. The loss due to coarse ratings diminishes rapidly as the

number of thresholds increases, implying that a simple and cost-e�ective system with a few tiers

can achieve a large part of the full-information disclosure value. To illustrate our methods, we cal-

culate optimal certi�cation thresholds based on data from two markets: eBay sellers and Medicare

Advantage providers.

The design of a rating system faces the following challenges, which we address. How strict

and how selective should the standards for certi�cation be? And how does their choice depend

on the distribution of quality and supply considerations? We �nd that an increase in right (resp.,

4
This clustering problem can be solved by the k−means algorithm as introduced by MacQueen et al. (1967) and

used extensively in machine learning and statistics.

3



left) skewness reduces (resp., increases) the share of producers with high ratings and increases

(resp., decreases) the share of those with lower ratings. Similar considerations apply to the degree

of convexity of the supply function. An intuition for this result is that optimal ratings trade o�

pooling in di�erent regions. Pooling is more costly where there is more quality dispersion or

where supply is more responsive to prices.

Related Literature Our paper is related to two strands of literature: �rst, the papers considering

the impact of information disclosure on consumer and producer surplus; second, those concerning

both the determinants of coarse rating systems and their performance.
5

There is a large literature on certi�cation and quality disclosure. Dranove and Jin (2010) provide

an excellent survey of the earlier papers. Most of the literature focuses either on the incentives for

�rms to reveal their information or the incentives of certi�ers to do so. The main question in this

literature is how much information will be revealed in equilibrium and how this might depend

on the nature of competition in the product or certi�cation markets. This paper is a follow-up to

Hopenhayn and Saeedi (Forthcoming), where we study the optimal information disclosure without

restricting the planner to use a limited number of signals.

Coarse ratings have also been justi�ed in the literature by their simplicity and overall perfor-

mance. Wilson (1989) shows that losses relative to the full-information case are of order 1/n2
for

a partition with n classes. This �nding is consistent with our computed bounds in Section 4. Our

theoretical bound on the gains from a two-tier certi�cation is also related to the bounds found by

the coarse matching literature, such as in McAfee (2002), Hoppe et al. (2011), and Shao (2016).

The most relevant empirical papers related to our theory are Vatter (2021), Saeedi (2019), Elfen-

bein et al. (2015), Fan et al. (2013), and Jin and Leslie (2003). Vatter (2021) studies the market for

Medicare Advantage providers and �nds optimal simple information disclosure mechanisms that

maximize welfare. Saeedi (2019) studies the value of reputation mechanisms and establishes a pos-

itive signaling value for the certi�cation done by eBay. Elfenbein et al. (2015) study the value of

certi�cation badges across di�erent markets and �nd that certi�cation provides more value when

5
Our paper focuses on a setting where uncertainty is about seller quality and information is provided to consumers.

There is a growing literature that focuses on the reverse channel, where an intermediary transmits information about

buyers to sellers. For a survey see Bergemann and Bonatti (2019).
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the number of certi�ed sellers is low and when markets are more competitive. Fan et al. (2013)

analyze the e�ect of badges on Taobao.com and �nd sellers o�er price discounts to move up to

the next reputation level. Jin and Leslie (2003) use data on restaurant hygiene ratings to examine

the e�ect of an increase in product quality information to consumers on �rms’ choices of product

quality. Our paper also relates to the literature that analyzes the e�ects of changes in marketplace

feedback mechanisms on price and quality (e.g., Hui et al. (2016), Filippas et al. (2018), and Nosko

and Tadelis (2015)). Hui et al. (2020) study the bene�t of adding a second tier to the reputation

mechanism to mitigate the cold-start problem and to promote entry.

Section 2 describes the model. In Section 3, we �nd the conditions for the design of optimal

simple ratings, and in Section 4, we study the performance of these simple ratings relative to un-

constrained optimal information disclosure. In Section 5, we consider other design issues, the role

of asymmetries in the distribution of seller quality, consumer vs. producer surplus, and entry con-

siderations. Section 6 concludes the paper. Proofs are relegated to the appendix unless otherwise

speci�ed.

2 The Model

This model is based on our previous work Hopenhayn and Saeedi (Forthcoming). There is a unit

mass of sellers with qualities z distributed according to a continuous cumulative distribution func-

tion (cdf) F (z) on the real numbers. Production technology is the same for all sellers and is given

by a di�erentiable, strictly increasing, and strictly convex cost function of quantity c (q) and, cor-

respondingly, a strictly increasing twice continuously di�erentiable supply function S (p). On the

demand side, there is mass M of consumers who face a discrete choice problem, with preferences

U (z, θ, p) = z + θ − p,

where z is the quality of the good purchased, θ is a taste parameter measuring the preference for

goods o�ered in this market vis-à-vis an outside option, and p is the price of the good. The taste

parameter θ ≥ 0 is distributed according to a continuous and strictly increasing cdf Ψ (θ), while

5



the outside good’s utility (no purchase) is normalized to zero. Goods are di�erentiated only by

their quality level, which is equally valued by all consumers. Given the linearity of the utility

function in z, we can replace a good of quality z with a good of expected quality z and the utility

of the consumer stays the same. Throughout the paper, we use z interchangeably as the quality or

expected quality of a good.

We assume the following timing: (a) information about seller qualities is provided by the plan-

ner, (b) based on this information, consumers form posteriors about each seller’s expected quality;

(c) given these posteriors, perfectly competitive equilibrium prices are determined as a function of

expected quality, considering the supply response of each seller to the corresponding price.
6

We

interpret F (z) as the distribution of the posterior means of quality of sellers given all the informa-

tion the planner has. We assume all market participants have the same posterior information about

the expected qualities of sellers after receiving any set of signals from the planner, represented by

the distribution function G (z).
7

In particular, in a �nite rating system, we assume that G is a dis-

crete distribution with point masses at the conditional mean qualities associated with each rating.

We say that a seller has expected quality z if conditional on all signals received, that is the quality

expected by all consumers.
8

Given expected quality z, equilibrium prices arbitrage away the di�erences in expected quality,

taking the form p (z) = p (0) + z, where p (0) corresponds to the demand price of a hypothetical

good of quality zero. This expression for prices guarantees that consumers are indi�erent between

goods with di�erent signal realizations with any positive sales, which is a necessary condition for

an equilibrium. The baseline price p (0) determines the extent of the market, where the marginal

consumer’s θ is found by settingU (0, θ, p (0)) = 0, or simply θ (p (0)) = p (0). All consumers with

6
While throughout the paper we use the assumption of perfect competition among sellers, our main characteriza-

tion of an optimal simple rating holds unchanged in the canonical case of Cournot equilibrium with constant marginal

cost, as shown in Section 3.2.

7
This representation of the information structure is consistent with the approach followed in Ganuza and Penalva

(2010) and Gentzkow and Kamenica (2016). Given a common prior F (z0) over seller qualities and a signal structure π,

we can let G (z) be the distribution of the expected posterior of seller quality. Any information structure can thus be

represented as a garbling of F (z) ,which corresponds to the �nest level of information available to the planner.

8
If the planner gives all the information to buyers, then expected quality z will be equal to the actual quality of the

seller, but when there is some pooling, this expected quality will be a function of other sellers that are pooled with the

target seller. For example, a simple certi�cation rating divides sellers into two groups, those certi�ed and those not

certi�ed. As a result, there will be two di�erent levels of expected quality and equilibrium prices, one for each group,

with possibly many di�erent levels of heterogeneity in quality within each group that are unobserved by buyers.
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θ ≥ p (0) will make their unit purchase, so aggregate demand is Q = M (1−Ψ (p (0))). Inverting

this function, we can de�ne an inverse baseline demand function,

P (Q) = Ψ−1 (1−Q/M) = p(0). (1)

On the supply side, each seller with expected quality z chooses its output, q = S (p (z)), so

aggregate supply Q =
∫
S (p (z)) dG (z).

De�nition. An (interior) equilibrium, given the distribution of expected qualities G (z), is given

by prices p (z) = P (Q) + z, where total quantity

Q =

∫
S (P (Q) + z) dG (z) . (2)

It is immediate to see that this last equation gives a necessary and su�cient condition for an equi-

librium. Moreover, if P (Q) is strictly decreasing and continuous, for any distribution G there will

be a unique equilibrium value Q∗ and under some regularity conditions, it will be interior.

Using the following assumption, Hopenhayn and Saeedi (Forthcoming) prove that a unique

interior equilibrium exists.

Assumption 1. There exists θ̃ in the support of Ψ such that

M >

∫
S
(
θ̃ + z

)
dG (z)

for all distributionsG such thatF is amean-preserving spread ofG. In addition,
∫
S (p (0) + z) dG (z) >

0 for the same class of distributions.

The �rst assumption rules out the possibility that all consumers make purchases in this market;

in other words, we assume that the consumers are on the long side of the market.
9

The second

assumption rules out no output as an equilibrium. While a corner equilibrium, if it exists, is also

unique, we rule this out as a matter of convenience.

9
As explained below, the assumption spans the set of all possible information structures.
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2.1 Optimal Ratings

In order to de�ne optimal ratings, we �rst derive expressions for consumer and producer surplus.

Consider a consumer of type θ who buys a good of expected quality z and therefore receives utility

θ+z−p (z) .Given the equilibrium price p (z) = P (Q)+z, the consumer’s net utility is θ−P (Q).

It follows that total consumer surplus is

M

∫
P (Q)

(θ − P (Q)) dΨ (θ) =

∫ Q

0

(P (x)− P (Q)) dx,

where the equality follows from the change of variables x = M (1−Ψ (θ)) and our de�nition

of P (Q): P (Q) = Ψ−1 (1−Q/M). This implies that consumer surplus will move in the same

direction as market size, as given by total quantity Q. Producer surplus is de�ned more simply as

total pro�ts:

Π (Q) =

∫
π (P (Q) + z) dG (z) .

A couple of observations are in order. First, notice that for �xed Q, producers bene�t from better

information. This follows from the convexity of the pro�t function and the fact that better infor-

mation is de�ned by mean preserving spreads. But changes in the information structure might also

a�ect the equilibrium value of total output Q, which is also market size as measured by the num-

ber of consumers served. This equilibrium e�ect has opposite impacts on consumer and producer

surplus: while consumers prefer a larger market, producers prefer a smaller one. This countervail-

ing e�ect of total quantity leads to a con�ict of interest between consumers and producers in the

design of an optimal rating system, as we analyze in Section 5.2.

With the exception of that section, we take the planner’s objective to be the maximization

of total surplus, the unweighted sum of consumer and producer surplus. For any information

structure as given by the posterior distribution of mean quality G, total surplus is then given by

TS (G) =

∫
π (P (Q) + z) dG (z) +

∫ Q

(P (x)− P (Q)) dx,

8



where Q is the unique equilibrium output corresponding to G. This equation simpli�es to

TS (G) =

∫ Q(G)

(P (x)) dx+

∫
(z − c (q (z))) (q (z)) dG (z) . (3)

An optimal simple rating is given by the distributionG that maximizes this objective among a class

of distributions de�ned in the following section.

3 Simple Ratings: Design

Most rating systems are coarse, ranking participants into a small number of categories. For exam-

ple, in the case of Yelp, the partition involves �ve stars, including the possibility of half-stars. In

the case of California restaurants, the partition involves three elements: A, B, and C. In addition,

hundreds of governmental or non-pro�t certi�cation agencies use a pass-fail or tiered signal for

their certi�cation method. In this section, we consider the question of optimal information design

when the number of ratings the market designer can employ is limited. This restriction can be

motivated not only by its wide use but also by its cost-e�ectiveness, as giving very precise infor-

mation might be di�cult or costly, and simple rankings might be easier to interpret. Moreover, as

we �nd, most of the gains from optimal information provision can be achieved with a very limited

number of ratings, which can make coarse ratings optimal if there is any cost associated with a

more detailed rating mechanism.
10

In this section, we focus on simple ratings that partition the set of sellers into N groups. We

assume that consumers have no information other than that provided by the certi�er.

Following our earlier discussion on information structures, the certi�er’s information can be

summarized by a distribution of posterior mean qualities that, in order to avoid further notation,

we denote by F (z). This is the basis on which the certi�er classi�es sellers into rating bins. To

simplify the exposition, we refer to the expected value z as the quality of the seller. We assume F

is di�erentiable on its support with density f (z).

10
We do not model this cost component explicitly, but one can include it as part of the modeling assumptions.

Including the cost of more precise information into the model requires many modeling assumptions, which we believe

would interfere with the main message of the paper.
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A threshold partition totally orders sellers intoN quality intervals. The following lemma proves

that threshold partitions are the best among the set of �nite partitions.

Lemma 1. An optimal simple rating is given by a threshold partition.

Given this lemma, the design of an optimal simple rating system reduces to �nding the vector

of optimal thresholds, z = (z1....zN−1), that divide sellers into N partitions, {[z0, z1] , [z1, z2], ...,

[zN−1, zN ]}, where z0 and zN are the lower and upper supports of the distribution of expected

qualities given the planner’s information (−∞ or +∞ if unbounded), respectively.
11

3.1 A Necessary Condition

In this section, we derive a simple and intuitive necessary condition to characterize these optimal

thresholds. Let Mk = m (zk−1, zk) , k = 1, ..., N denote the conditional means of sellers’ quality

within the interval [zk−1, zk]. LetQ (z) denote the unique equilibrium total quantity at the optimal

threshold vector z = (z1....zN−1). The prices for sellers in partition [zk−1, zk] are denoted by

pk = P (Q (z)) + Mk, and quantities, by qk = S (pk). From equation (3) it follows that total

surplus for partition z is given by

W (z) =

∫ Q(z)

0

P (x) dx+
N∑
k=1

[F (zk)− F (zk−1)] [Mkqk − c (qk)] . (4)

Taking �rst-order conditions with respect to zk proves the following necessary condition:

Lemma 2. Let the thresholds z = (z1, ..., zN−1) maximize (3). Then

(P (Q (z)) + zk) (qk+1 − qk) = c (qk+1)− c (qk) (5)

for all zk.

Condition (5) has an intuitive interpretation. Consider a marginal seller with quality at the

threshold between two adjacent intervals. For this threshold to be optimal, the planner should be

11
Bergemann and Pesendorfer (2007) �nd a similar result in the context of optimal information design in auctions.
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indi�erent between pooling this marginal seller with those in the lower or upper interval. The

left hand side shows the marginal value obtained by increasing the quantity of the marginal seller

with quality zk, from qk to qk+1. The right hand side shows the di�erence in cost. This condition

highlights the relevance of the supply behavior of sellers, in particular, the curvature of the supply

function, as it impacts both the changes in total output and the production cost.

Figure 1 provides a graphical representation of this necessary condition and its connection

to the supply function. Three cases are considered: a linear supply function, given by the solid

diagonal line, an upper convex supply (concave marginal cost function), and a lower concave supply

(convex marginal cost function).
12

The area below the marginal cost function, i.e., supply function,

between qk and qk+1 equals the right hand side of (5), while the area under the line P + zk equals

the left hand side of the equation. The di�erence between these two areas is

∫ qk+1

qk

(P + zk − C ′ (q)) dq,

which equals zero if and only if condition (5) holds, at the optimal threshold level for zk. In the

linear case, the integrand is positive up to point b (the triangle in blue) and negative thereafter.

Point P + zk is such that the regions from a to b (the triangle in blue) and from b to c (the triangle

in red) have the same areas. It is immediate that in the linear case, the corresponding value of

zk = (Mk+1 +Mk) /2. It also follows easily that for the convex supply case, P +zk must be higher

so the two corresponding areas will have the same area, while the converse holds for the concave

supply case.

Proposition 1. Let the thresholds z = (z1, ..., zN−1) maximize (3), and denote by Mk =

E (z|zk−1 ≤ z ≤ zk) the corresponding conditional means. Then

1. zk = (Mk +Mk+1) /2 if the supply function S (p) is linear;

2. zk > (Mk +Mk+1) /2 if the supply function is strictly convex in the interval [Mk,Mk+1]; and

3. zk < (Mk +Mk+1) /2 if the supply function is strictly concave in the interval [Mk,Mk+1].
12

We follow the practice of putting price on the y-axis and quantity on the x-axis.
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<latexit sha1_base64="qWWq3ymmhAeqavBGnZp7W2Lcb9M=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXvRY9OKxgv2QdinZNNuGJtk1yQpl6a/w4kERr/4cb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyU3md56o0iyS92YaU1/gkWQhI9hY6aH6OEgnF96sOihX3Jo7B1olXk4qkKM5KH/1hxFJBJWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LJRZU++n84Bk6s8oQhZGyJQ2aq78nUiy0norAdgpsxnrZy8T/vF5iwis/ZTJODJVksShMODIRyr5HQ6YoMXxqCSaK2VsRGWOFibEZlWwI3vLLq6Rdr3luzburVxrXeRxFOIFTOAcPLqEBt9CEFhAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwCxHI+p</latexit><latexit sha1_base64="qWWq3ymmhAeqavBGnZp7W2Lcb9M=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXvRY9OKxgv2QdinZNNuGJtk1yQpl6a/w4kERr/4cb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyU3md56o0iyS92YaU1/gkWQhI9hY6aH6OEgnF96sOihX3Jo7B1olXk4qkKM5KH/1hxFJBJWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LJRZU++n84Bk6s8oQhZGyJQ2aq78nUiy0norAdgpsxnrZy8T/vF5iwis/ZTJODJVksShMODIRyr5HQ6YoMXxqCSaK2VsRGWOFibEZlWwI3vLLq6Rdr3luzburVxrXeRxFOIFTOAcPLqEBt9CEFhAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwCxHI+p</latexit><latexit sha1_base64="qWWq3ymmhAeqavBGnZp7W2Lcb9M=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXvRY9OKxgv2QdinZNNuGJtk1yQpl6a/w4kERr/4cb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyU3md56o0iyS92YaU1/gkWQhI9hY6aH6OEgnF96sOihX3Jo7B1olXk4qkKM5KH/1hxFJBJWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LJRZU++n84Bk6s8oQhZGyJQ2aq78nUiy0norAdgpsxnrZy8T/vF5iwis/ZTJODJVksShMODIRyr5HQ6YoMXxqCSaK2VsRGWOFibEZlWwI3vLLq6Rdr3luzburVxrXeRxFOIFTOAcPLqEBt9CEFhAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwCxHI+p</latexit><latexit sha1_base64="qWWq3ymmhAeqavBGnZp7W2Lcb9M=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXvRY9OKxgv2QdinZNNuGJtk1yQpl6a/w4kERr/4cb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyU3md56o0iyS92YaU1/gkWQhI9hY6aH6OEgnF96sOihX3Jo7B1olXk4qkKM5KH/1hxFJBJWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LJRZU++n84Bk6s8oQhZGyJQ2aq78nUiy0norAdgpsxnrZy8T/vF5iwis/ZTJODJVksShMODIRyr5HQ6YoMXxqCSaK2VsRGWOFibEZlWwI3vLLq6Rdr3luzburVxrXeRxFOIFTOAcPLqEBt9CEFhAQ8Ayv8OYo58V5dz4WrQUnnzmGP3A+fwCxHI+p</latexit>

P + Mk+1
<latexit sha1_base64="RnD+qkl9acyamzfLXtWQyZMvRiA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BFtBKJTdXuyx4MWLUMF+wHYp2TTbhmaTJZkVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oWJ4AZc99spbG3v7O4V90sHh0fHJ+XTs65RqaasQ5VQuh8SwwSXrAMcBOsnmpE4FKwXTm8Xfu+JacOVfIRZwoKYjCWPOCVgJb/art0Ps2nNm1eH5Ypbd5fAm8TLSQXlaA/LX4ORomnMJFBBjPE9N4EgIxo4FWxeGqSGJYROyZj5lkoSMxNky5Pn+MoqIxwpbUsCXqq/JzISGzOLQ9sZE5iYdW8h/uf5KUTNIOMySYFJuloUpQKDwov/8YhrRkHMLCFUc3srphOiCQWbUsmG4K2/vEm6jbrn1r2HRqXVzOMoogt0ia6Rh25QC92hNuogihR6Rq/ozQHnxXl3PlatBSefOUd/4Hz+AH9jkAo=</latexit><latexit sha1_base64="RnD+qkl9acyamzfLXtWQyZMvRiA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BFtBKJTdXuyx4MWLUMF+wHYp2TTbhmaTJZkVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oWJ4AZc99spbG3v7O4V90sHh0fHJ+XTs65RqaasQ5VQuh8SwwSXrAMcBOsnmpE4FKwXTm8Xfu+JacOVfIRZwoKYjCWPOCVgJb/art0Ps2nNm1eH5Ypbd5fAm8TLSQXlaA/LX4ORomnMJFBBjPE9N4EgIxo4FWxeGqSGJYROyZj5lkoSMxNky5Pn+MoqIxwpbUsCXqq/JzISGzOLQ9sZE5iYdW8h/uf5KUTNIOMySYFJuloUpQKDwov/8YhrRkHMLCFUc3srphOiCQWbUsmG4K2/vEm6jbrn1r2HRqXVzOMoogt0ia6Rh25QC92hNuogihR6Rq/ozQHnxXl3PlatBSefOUd/4Hz+AH9jkAo=</latexit><latexit sha1_base64="RnD+qkl9acyamzfLXtWQyZMvRiA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BFtBKJTdXuyx4MWLUMF+wHYp2TTbhmaTJZkVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oWJ4AZc99spbG3v7O4V90sHh0fHJ+XTs65RqaasQ5VQuh8SwwSXrAMcBOsnmpE4FKwXTm8Xfu+JacOVfIRZwoKYjCWPOCVgJb/art0Ps2nNm1eH5Ypbd5fAm8TLSQXlaA/LX4ORomnMJFBBjPE9N4EgIxo4FWxeGqSGJYROyZj5lkoSMxNky5Pn+MoqIxwpbUsCXqq/JzISGzOLQ9sZE5iYdW8h/uf5KUTNIOMySYFJuloUpQKDwov/8YhrRkHMLCFUc3srphOiCQWbUsmG4K2/vEm6jbrn1r2HRqXVzOMoogt0ia6Rh25QC92hNuogihR6Rq/ozQHnxXl3PlatBSefOUd/4Hz+AH9jkAo=</latexit><latexit sha1_base64="RnD+qkl9acyamzfLXtWQyZMvRiA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BFtBKJTdXuyx4MWLUMF+wHYp2TTbhmaTJZkVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oWJ4AZc99spbG3v7O4V90sHh0fHJ+XTs65RqaasQ5VQuh8SwwSXrAMcBOsnmpE4FKwXTm8Xfu+JacOVfIRZwoKYjCWPOCVgJb/art0Ps2nNm1eH5Ypbd5fAm8TLSQXlaA/LX4ORomnMJFBBjPE9N4EgIxo4FWxeGqSGJYROyZj5lkoSMxNky5Pn+MoqIxwpbUsCXqq/JzISGzOLQ9sZE5iYdW8h/uf5KUTNIOMySYFJuloUpQKDwov/8YhrRkHMLCFUc3srphOiCQWbUsmG4K2/vEm6jbrn1r2HRqXVzOMoogt0ia6Rh25QC92hNuogihR6Rq/ozQHnxXl3PlatBSefOUd/4Hz+AH9jkAo=</latexit>

P + Mk
<latexit sha1_base64="4I+sDA4VrCfnAFo+DgKpj5hwEXM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MWLUMF+SLuUbJptQ5PskmSFsvRXePGgiFd/jjf/jdl2D9r6YODx3gwz84KYM21c99spbGxube8Ud0t7+weHR+Xjk46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfQm87tPVGkWyQczi6kv8FiykBFsrPRYbV3dDdPpvDosV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4uA5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGXfoxFTlBg+swQTxeytiEywwsTYjEo2BG/15XXSqdc8t+bd1yvNRh5HEc7gHC7Bg2towi20oA0EBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+ktY+a</latexit><latexit sha1_base64="4I+sDA4VrCfnAFo+DgKpj5hwEXM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MWLUMF+SLuUbJptQ5PskmSFsvRXePGgiFd/jjf/jdl2D9r6YODx3gwz84KYM21c99spbGxube8Ud0t7+weHR+Xjk46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfQm87tPVGkWyQczi6kv8FiykBFsrPRYbV3dDdPpvDosV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4uA5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGXfoxFTlBg+swQTxeytiEywwsTYjEo2BG/15XXSqdc8t+bd1yvNRh5HEc7gHC7Bg2towi20oA0EBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+ktY+a</latexit><latexit sha1_base64="4I+sDA4VrCfnAFo+DgKpj5hwEXM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MWLUMF+SLuUbJptQ5PskmSFsvRXePGgiFd/jjf/jdl2D9r6YODx3gwz84KYM21c99spbGxube8Ud0t7+weHR+Xjk46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfQm87tPVGkWyQczi6kv8FiykBFsrPRYbV3dDdPpvDosV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4uA5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGXfoxFTlBg+swQTxeytiEywwsTYjEo2BG/15XXSqdc8t+bd1yvNRh5HEc7gHC7Bg2towi20oA0EBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+ktY+a</latexit><latexit sha1_base64="4I+sDA4VrCfnAFo+DgKpj5hwEXM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MWLUMF+SLuUbJptQ5PskmSFsvRXePGgiFd/jjf/jdl2D9r6YODx3gwz84KYM21c99spbGxube8Ud0t7+weHR+Xjk46OEkVom0Q8Ur0Aa8qZpG3DDKe9WFEsAk67wfQm87tPVGkWyQczi6kv8FiykBFsrPRYbV3dDdPpvDosV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4uA5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGXfoxFTlBg+swQTxeytiEywwsTYjEo2BG/15XXSqdc8t+bd1yvNRh5HEc7gHC7Bg2towi20oA0EBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+ktY+a</latexit>

P + zk
<latexit sha1_base64="QYJWGQeUg44Y0GE+nVZTCIfTvl8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MVjBfsh7VKyabYNTbJLkhXq0l/hxYMiXv053vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G05vM7z5SpVkk780spr7AY8lCRrCx0kO1dfU0TKfz6rBccWvuAmideDmpQI7WsPw1GEUkEVQawrHWfc+NjZ9iZRjhdF4aJJrGmEzxmPYtlVhQ7aeLg+fowiojFEbKljRoof6eSLHQeiYC2ymwmehVLxP/8/qJCRt+ymScGCrJclGYcGQilH2PRkxRYvjMEkwUs7ciMsEKE2MzKtkQvNWX10mnXvPcmndXrzQbeRxFOINzuAQPrqEJt9CCNhAQ8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwDpyo/H</latexit><latexit sha1_base64="QYJWGQeUg44Y0GE+nVZTCIfTvl8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MVjBfsh7VKyabYNTbJLkhXq0l/hxYMiXv053vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G05vM7z5SpVkk780spr7AY8lCRrCx0kO1dfU0TKfz6rBccWvuAmideDmpQI7WsPw1GEUkEVQawrHWfc+NjZ9iZRjhdF4aJJrGmEzxmPYtlVhQ7aeLg+fowiojFEbKljRoof6eSLHQeiYC2ymwmehVLxP/8/qJCRt+ymScGCrJclGYcGQilH2PRkxRYvjMEkwUs7ciMsEKE2MzKtkQvNWX10mnXvPcmndXrzQbeRxFOINzuAQPrqEJt9CCNhAQ8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwDpyo/H</latexit><latexit sha1_base64="QYJWGQeUg44Y0GE+nVZTCIfTvl8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MVjBfsh7VKyabYNTbJLkhXq0l/hxYMiXv053vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G05vM7z5SpVkk780spr7AY8lCRrCx0kO1dfU0TKfz6rBccWvuAmideDmpQI7WsPw1GEUkEVQawrHWfc+NjZ9iZRjhdF4aJJrGmEzxmPYtlVhQ7aeLg+fowiojFEbKljRoof6eSLHQeiYC2ymwmehVLxP/8/qJCRt+ymScGCrJclGYcGQilH2PRkxRYvjMEkwUs7ciMsEKE2MzKtkQvNWX10mnXvPcmndXrzQbeRxFOINzuAQPrqEJt9CCNhAQ8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwDpyo/H</latexit><latexit sha1_base64="QYJWGQeUg44Y0GE+nVZTCIfTvl8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCIJTdXuyx4MVjBfsh7VKyabYNTbJLkhXq0l/hxYMiXv053vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G05vM7z5SpVkk780spr7AY8lCRrCx0kO1dfU0TKfz6rBccWvuAmideDmpQI7WsPw1GEUkEVQawrHWfc+NjZ9iZRjhdF4aJJrGmEzxmPYtlVhQ7aeLg+fowiojFEbKljRoof6eSLHQeiYC2ymwmehVLxP/8/qJCRt+ymScGCrJclGYcGQilH2PRkxRYvjMEkwUs7ciMsEKE2MzKtkQvNWX10mnXvPcmndXrzQbeRxFOINzuAQPrqEJt9CCNhAQ8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwDpyo/H</latexit>

Concave supply

Convex supply

a
<latexit sha1_base64="cYQDb9W+0/s5KPx+8k3UZ6+HGfM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLW9s7uXnG/dHB4dHxSPj3rmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilhyqtDssVt+YuQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOidXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/FsOFnQiUpcsVWi8JUEozJ4m8yEpozlDNLKNPC3krYhGrK0KZTsiF46y9vkk695rk1775eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c6L86787FqLTj5zDn8gfP5A3ddjTU=</latexit><latexit sha1_base64="cYQDb9W+0/s5KPx+8k3UZ6+HGfM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLW9s7uXnG/dHB4dHxSPj3rmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilhyqtDssVt+YuQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOidXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/FsOFnQiUpcsVWi8JUEozJ4m8yEpozlDNLKNPC3krYhGrK0KZTsiF46y9vkk695rk1775eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c6L86787FqLTj5zDn8gfP5A3ddjTU=</latexit><latexit sha1_base64="cYQDb9W+0/s5KPx+8k3UZ6+HGfM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLW9s7uXnG/dHB4dHxSPj3rmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilhyqtDssVt+YuQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOidXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/FsOFnQiUpcsVWi8JUEozJ4m8yEpozlDNLKNPC3krYhGrK0KZTsiF46y9vkk695rk1775eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c6L86787FqLTj5zDn8gfP5A3ddjTU=</latexit><latexit sha1_base64="cYQDb9W+0/s5KPx+8k3UZ6+HGfM=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfswYa9vcvunAm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekEhh0HW/ncLW9s7uXnG/dHB4dHxSPj3rmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mtwu/+8S1EbF6xFnC/YiOlQgFo2ilhyqtDssVt+YuQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOidXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/FsOFnQiUpcsVWi8JUEozJ4m8yEpozlDNLKNPC3krYhGrK0KZTsiF46y9vkk695rk1775eaTbyOIpwAZdwDR7cQBPuoAVtYDCGZ3iFN0c6L86787FqLTj5zDn8gfP5A3ddjTU=</latexit>

b
<latexit sha1_base64="zDzgd19oc4eNBAfkWrPau0/xO7s=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfMwYa9vcvungm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0duF3n1BpHstHM0vQj+hY8pAzaqz0UA2qw3LFrblLkE3i5aQCOVrD8tdgFLM0QmmYoFr3PTcxfkaV4UzgvDRINSaUTekY+5ZKGqH2s+Wpc3JllREJY2VLGrJUf09kNNJ6FgW2M6Jmote9hfif109N2PAzLpPUoGSrRWEqiInJ4m8y4gqZETNLKFPc3krYhCrKjE2nZEPw1l/eJJ16zXNr3n290mzkcRThAi7hGjy4gSbcQQvawGAMz/AKb45wXpx352PVWnDymXP4A+fzB3jijTY=</latexit><latexit sha1_base64="zDzgd19oc4eNBAfkWrPau0/xO7s=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfMwYa9vcvungm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0duF3n1BpHstHM0vQj+hY8pAzaqz0UA2qw3LFrblLkE3i5aQCOVrD8tdgFLM0QmmYoFr3PTcxfkaV4UzgvDRINSaUTekY+5ZKGqH2s+Wpc3JllREJY2VLGrJUf09kNNJ6FgW2M6Jmote9hfif109N2PAzLpPUoGSrRWEqiInJ4m8y4gqZETNLKFPc3krYhCrKjE2nZEPw1l/eJJ16zXNr3n290mzkcRThAi7hGjy4gSbcQQvawGAMz/AKb45wXpx352PVWnDymXP4A+fzB3jijTY=</latexit><latexit sha1_base64="zDzgd19oc4eNBAfkWrPau0/xO7s=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfMwYa9vcvungm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0duF3n1BpHstHM0vQj+hY8pAzaqz0UA2qw3LFrblLkE3i5aQCOVrD8tdgFLM0QmmYoFr3PTcxfkaV4UzgvDRINSaUTekY+5ZKGqH2s+Wpc3JllREJY2VLGrJUf09kNNJ6FgW2M6Jmote9hfif109N2PAzLpPUoGSrRWEqiInJ4m8y4gqZETNLKFPc3krYhCrKjE2nZEPw1l/eJJ16zXNr3n290mzkcRThAi7hGjy4gSbcQQvawGAMz/AKb45wXpx352PVWnDymXP4A+fzB3jijTY=</latexit><latexit sha1_base64="zDzgd19oc4eNBAfkWrPau0/xO7s=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaKUlsLDHKRwIXsrfMwYa9vcvungm58BNsLDTG1l9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0duF3n1BpHstHM0vQj+hY8pAzaqz0UA2qw3LFrblLkE3i5aQCOVrD8tdgFLM0QmmYoFr3PTcxfkaV4UzgvDRINSaUTekY+5ZKGqH2s+Wpc3JllREJY2VLGrJUf09kNNJ6FgW2M6Jmote9hfif109N2PAzLpPUoGSrRWEqiInJ4m8y4gqZETNLKFPc3krYhCrKjE2nZEPw1l/eJJ16zXNr3n290mzkcRThAi7hGjy4gSbcQQvawGAMz/AKb45wXpx352PVWnDymXP4A+fzB3jijTY=</latexit>
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Figure 1: Optimal Pattern

A simple characterization for the solution in the linear supply case and conditions for unique-

ness are provided in the following proposition.

Proposition 2. If the supply function is linear, the optimal thresholds z = (z1, ..., zN) are the ones

that minimize
N∑
k=1

∫ zk

zk−1

(z −Mk)
2 dF (z) . (6)

If in addition F has log-concave density, the solution to this minimization problem is unique.

According to this proposition, the optimal thresholds for the linear supply case are the ones

that minimize the sum of the variance of qualities within partitions. This objective coincides with

the popular k −means criteria for clustering as introduced by MacQueen et al. (1967), commonly

used in the machine learning and statistics literature. Therefore, estimating the optimal thresholds

is a trivial task, because many software programs incorporate algorithms to solve this problem.

Additionally, the linear supply function helps us simplify the pro�t function for the sellers. For a

seller with expected quality z, pro�ts are equal to p (z)2 /2 = (P (Q) + z)2 /2. Therefore, for any
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distribution G of observed qualities, total pro�ts are

Π =
1

2

∫
(P (Q) + z)2 dG (z)

=
1

2
P (Q)2 + P (Q) z̄ +

1

2

∫
z2dG (z) . (7)

In addition, when the supply function is linear, the equilibrium condition 2 reduces to

Q = α

∫
P ((Q) + z) dG (z) = αP (Q) + z̄,

so the equilibrium quantity Q does not depend on G and thus on the partition. Consequently,

maximizing total pro�ts as given in equation (7) is equivalent to maximizing

∫
z2dG (z).

Proposition 1 suggests that the thresholds for the linear case can be lower (resp., upper) bounds

for the case of convex (resp., concave) supply. While this proposition gives the criteria for local

deviations for a single threshold, convex to the right and concave to the left, starting with those

obtained for the linear case, it does not imply an ordering of the whole vector of thresholds. The

following proposition gives the conditions for total ordering.

Proposition 3. Suppose the quality distribution F (z) has a log-concave density. Let
(
zL1 , ..., z

L
N−1

)
be the optimal thresholds for the linear supply case. The optimal vector of thresholds (z1, ..., zN−1) for

a convex (resp., concave) supply function is pointwise higher (resp., lower) than
(
zL1 , ..., z

L
N−1

)
.

The formula in equation (6) gives a simple characterization for the optimal thresholds in the lin-

ear supply case that depends only on the distribution of qualities, and, by the previous proposition,

provides a lower (resp., upper) bound when the supply function is convex (resp., concave).

This proposition also suggests that the thresholds for the linear case can provide a good refer-

ence point in solving for the optimal thresholds for non-linear supply. In practice, online platforms,

such as eBay and Airbnb, often experiment with di�erent certi�cation thresholds. The thresholds

for the linear case are very easy to compute and provide a good starting point, while Proposition

3 indicates the direction of improvement.

There is an additional reason why the solution to the linear case is of interest. As we show in the

following section, this solution coincides with the optimal thresholds under Cournot competition
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with constant marginal costs, a workhorse model of imperfect competition. In consequence, the

numerical results and applications we provide in Section 4 for the linear supply case also apply to

Cournot competition.

3.2 Cournot Competition

Up to here we have assumed that sellers are price takers and are in perfect competition. In this

section, we extend our analysis to the case of Cournot competition among sellers with constant

marginal cost, c. Our main result is that the optimal thresholds in this setting coincide with those

derived above for the perfect competition case with linear supply.

There are in total n sellers in the market. Assuming an interior solution, the �rst-order condi-

tion for a seller of quality level z is given by

MR (z) = P ′ (Q) q (z) + P (Q) + z = c. (8)

Summing over all sellers gives

P ′ (Q)Q+ nP (Q) + nz̄ = nc, (9)

where z̄ is the average quality of sellers in the market, which is assumed to be exogenous.
13

Equa-

tion (9) determines Q independently of the distribution of z up to its mean, which is thus indepen-

dent of the information structure.
14

Furthermore, from equation (8) it follows that

q (z) =
P (Q) + z − c
−P ′ (Q)

,

13
The value Q that solves this equation is unique provided marginal revenue is decreasing for the average-sized

seller.

14
This is true for an interior equilibrium where no sellers are excluded from production. A su�cient condition is

that P (Q) + z > c, where Q is the solution to equation (9). .
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so it is linear in z, given Q. Seller pro�ts are given by

π (z) = [(P (Q) + z)− c] q (z)

= −P ′ (Q) q (z)2

=
[(P (Q) + z)− c]2

−P ′ (Q)

=
(P (Q)− c)2 + 2 (P (Q)− c) z + z2

−P ′ (Q)
.

Consumer surplus is independent of the information structure, because it depends only onQ. Thus,

maximizing total surplus is equivalent to maximizing total pro�ts. For any information structure

G (z) , total pro�ts are given by

Π =
1

−P ′ (Q)

[
(P (Q)− c)2 + 2 (P (Q)− c) z̄ +

∫
z2dG (z)

]
.

All the terms involvingQ and z̄ are independent of the information structureG. Thus, total surplus

can be written as

S0 + a

∫
z2dG (z) (10)

for constants S0 and a. Hence surplus maximization is equivalent to maximizing

∫
z2dG (z), as in

the case of perfect competition with linear supply (see equation 7).
15

4 Simple Ratings: Performance

In this section, we consider the performance of a simple rating system in the case of perfect com-

petition with linear supply, or, equivalently, Cournot competition with constant marginal cost. We

focus on the simplest case of a two-tier rating system that certi�es sellers whose expected qualities

are above a predetermined threshold. This type of rating is simple to interpret (“certi�ed or not”)

and widely used in practice; for example, many governmental or non-pro�t agencies certify a sub-

group of sellers while not giving any information about the others. Section 4.1 gives a theoretical

15
Here we have considered quantity competition. For a model of price competition with partially informed con-

sumers, see Moscarini and Ottaviani (2001).
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bound on performance. Section 4.2 provides numerical calculations to gauge the performance for a

wide range of distribution functions, including those more widely used in applications. In Section

4.3 we derive the optimal thresholds for two particular scenarios, Medicare Advantage insurers and

eBay sellers, based on distributions of qualities identi�ed in other papers.

Total surplus is maximized with full information, as shown in Hopenhayn and Saeedi (Forth-

coming). Our measure of performance of a simple rating system is the fraction of the gap between

the full-information and no-information cases that is closed with this rating system. Given that in

the case of linear supply, or Cournot equilibrium, total quantity and consumer surplus are invari-

ant to the information structure, our performance measure coincides with the fraction of the gap

in producer surplus that is covered by the simple rating, using equation 7. Under full information,

total pro�ts are
1
2
P (Q)2 + P (Q) z̄ + 1

2

∫
z2dF (z). Therefore, the surplus gap with respect to the

full-information case is

∆Π =
1

2

(∫
z2dF (z)−

∫
z2dG (z)

)
for any distribution of a rating system, G, that is a garbling of F .

16
In particular, the maximum

surplus gap 11between the full-information and no-information cases is

∆Π =
1

2

(∫
z2dF (z)− z̄2

)
. (11)

For a threshold partition (z1, ..., zN−1) , G hasN mass points at the conditional meansM1, ...,MN ;

therefore, we can write the surplus gap as

∆Π =
1

2

N∑
k=1

∫ zk

zk−1

(
z2 −M2

k

)
dF (z) (12)

=
1

2

N∑
k=1

∫ zk

zk−1

[
(z −Mk)

2] dF (z) .

This equation corresponds to the loss function used in k − means clustering, given that at the

optimal thresholds, as de�ned earlier, the expected values Mk are precisely the centroids of the

corresponding intervals [zk−1, zk] . We are interested in seeing how much of the possible total sur-

16
The total quantity stays the same given the assumption of linear supply.
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plus gain from information, as expressed in equation 11, is captured by 12, or, simply, the following

ratio:

γ ≡ ∆Π−∆Π

∆Π
= 1−

∑N
k=1

∫ zk
zk−1

(z −Mk)
2 dF (z)∫

z2dF (z)− z̄2

=

∑N
k=1 (F (zk)− F (zk−1)) (Mk − z̄)2∫

(z − z̄)2 dF (z)
,

which is the ratio of the variance between the conditional mean qualities and total variance. Intu-

itively, this bound is a measure of the relative importance of the variance between the means of the

partitions, separated by their ratings, and the variance that remains in each pool. This connection

to variance decomposition is used below to derive a theoretical bound on ratings’ performance.

4.1 Theoretical Bounds

The simplest coarse rating scheme is a two-tier certi�cation, widely used in many settings. The

next proposition provides a useful bound for the gains from certi�cation that builds on the variance

decomposition described above. The corollary that follows gives su�cient conditions so that a two-

tier rating achieves at least half of the surplus of the full-information case.

Proposition 4. The relative performance of a two-tier setting satis�es

γ ≥ 1

1 + max {cv2
1, cv

2
2}
,

where cv1 is the coe�cient of variation of z − z̄ conditional on z < z̄, and cv2 is the coe�cient of

variation of z − z̄ conditional on z ≥ z̄, where z̄ is the mean of sellers’ qualities.

Corollary 1. Suppose that the distribution F has an increasing hazard rate and a decreasing reverse

hazard rate. Then a two-tier rating achieves at least half of the surplus of the full-information case.

Proof. From a well-known result from Stoyan and Daley (1983) (pp. 16–19), the conditions of this

corollary imply that cv1 < 1 and cv2 < 1. Using the bound in Proposition 4 completes the proof.
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The conditions given in the corollary are satis�ed by a large class of distributions that include

all those with log-concave densities, such as uniform, normal, exponential and double exponential,

logistic, extreme value, and many others with some restriction on parameters (e.g., power function

F (z) = zc for c ≥ 1.) Related bounds for two-sided matching problems can be found in McAfee

(2002); Hoppe et al. (2011); Shao (2016). The results of Wilson (1989) imply that the losses from

N−ratings are of order 1/N2
.

4.2 Numerical Results

We now examine the numerical results for a variety of distribution functions often used in the eco-

nomics literature. Table 1 reports the share of the total surplus gap that is closed with partitions

of di�erent sizes n. As can be seen from the calculations, a one-threshold (certi�cation) partition

closes from near 50% to almost 80% of the total surplus gap, depending on the underlying distribu-

tion of qualities. The only case where one threshold cannot reach 50% of the bene�ts is the Pareto

distribution, which does not satisfy the conditions stated in 1. The gains are diminishing as the

number of thresholds increases. Even though total surplus increases with the number of tiers, our

numerical results suggest that most gains are attained with a small number of ratings.

The numerical results and the previous theoretical bounds suggest that in practice we may not

need very complicated mechanisms to attain most of the bene�ts from information provision. In

this paper, we do not explicitly model any cost related to providing information; but in practice,

providing information may involve various costs for both the market designer and consumers.

First, we have assumed that the market designer has costless access to information on the quality

of sellers; however, in practice, getting precise information may increase the market designer’s cost

of designing the rating system. Secondly, it might be costly for the market designer to convey �ner

information to consumers and for them to process this information. Therefore, these costs and the

small bene�ts from more complex information mechanisms might justify the coarse information

mechanisms seen in practice.
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Table 1: Optimal Thresholds

Distribution Case Mean/Median z∗ 1− F (z∗)
Share of Surplus Gap Closed

n = 2 n = 3 n = 5 n = 10

Pareto α = 3 1.19 2.73 0.05 0.46 0.68 0.84 0.94

α = 4 1.12 1.84 0.09 0.54 0.74 0.89 0.97

Exponential all 1.45 0.20 0.65 0.82 0.93 0.98

F (z) = zα α = 0.5 1.32 0.41 0.36 0.77 0.90 0.97 0.99

z ∈ [0, 1] α = 2 0.94 0.62 0.62 0.72 0.87 0.95 0.99

Log-normal σ = 0.25 1.03 1.09 0.36 0.63 0.81 0.92 0.98

(µ = 0) σ = 1 1.64 4.25 0.07 0.55 0.75 0.89 0.97

Note: The above calculations correspond to the linear supply case.

4.3 Empirical Application

Medicare Advantage Providers Here we apply our method of �nding optimal thresholds to

Medical Advantage providers. The data, which generously shared with us by Benjamin Vatter,

consists of estimates of the quality of products o�ered by insurance �rms across the United States

(details on the source of this data are given in Vatter (2021)). Our application is mainly meant to

illustrate the workings of our method using an empirically relevant distribution, and is an overly-

simpli�ed version of how this market works. In particular, we pool all the national data and abstract

from the local nature of many of these insurance markets, as well as abstracting from moral hazard

considerations.
17

Figure 2 gives the baseline discrete distribution of qualities along with a density kernel estima-

tion, which is the one used in our calculations. The optimal two-tier rating is de�ned by a threshold

quality equal to 14.9, which is slightly below the mean quality, implying that 66.5% of the �rms are

certi�ed. This threshold achieves 64% of the gap between the full-information and no-information

cases. Notice that by certifying a high fraction of �rms, this rating serves mostly the purpose of

screening out the lower tail of quality, which as seen in Section 5.1 is optimal when the distribution

of qualities is left skewed, as in this case.

eBay Sellers’ Ratings Nosko and Tadelis (2015) provides a quality measure given by the per-

17
All these features and other important considerations relevant to the design of a rating system for this industry

are carefully considered in Vatter’s excellent paper.
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Figure 2: Medicare Advantage Quality Distribution

centage time a seller got positive feedback (as opposed to negative or none). The distribution of

this statistic across sellers is given in Figure 3 together with a density kernel estimator.
18

If we

interpret this statistic as an ex ante probability of a good (vs. a bad) experience and the expected

utility from this purchase as (1− P (good))u (bad) + P (good)u(good), then expected utility is an

a�ne transformation of the probability of a good experience. Based on this interpretation, we can

use this distribution to calculate the optimal certi�cation threshold, as we did for other distribu-

tions above. Table 1 reports the results for the kernel estimate of this distribution. According to our

calculations, more than 65% of sellers should be certi�ed, closing about 63% of the surplus gap. As

in the Medicare application, the distribution of qualities is also left-skewed and certi�cation serves

the purpose of mainly screening out the lower tail.

5 Other Design Considerations

In this section we explore other features that are relevant to the design of optimal ratings. In Section

5.1, we consider the role of the distribution of seller qualities F, and in particular, its skewness, as

already emphasized in our applications. In Section 5.2, we discuss the con�ict of interest between

18
The data for the histogram comes directly from Table 4 in Nosko and Tadelis (2015).
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Figure 3: Distribution of Percent Positive Responses for eBay Sellers

consumers and producers in the design of simple ratings. Section 5.3 considers the case of vertical

di�erentiation, where buyers di�er in their preference for quality, and the matching between goods’

quality and consumer’s type becomes important. Section 5.4 considers the role of entry.

5.1 Skewness and Optimal Thresholds

The optimal thresholds, as depicted in equation 6, will depend on the distribution of sellers’ quality

(i.e., F distribution). In this section, we study how skewness in the distribution of qualities impacts

this optimal choice. In particular, we show that in the simple case of a two-tier certi�cation, the

optimal threshold is skewed in the same direction as the distribution of qualities. Then, we extend

this result, providing general comparative statics for the vector of thresholds with respect to an

appropriately de�ned skewness ordering.

Before proceeding to the analysis, we provide some intuition behind our results. Consider the

case of one certi�cation threshold, z∗. The following trade-o� appears when deciding how strictly

to draw the line separating the upper and lower segments. When putting z∗ in the upper group,
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there is an upward distortion of the supply of the seller at z∗, which is a function of the distance

MH − z∗. This distance also measures the extent to which the seller at z∗ gains from being pooled

with higher-quality sellers. When putting z∗ in the lower group, there is a downward distortion

of the supply of the seller at z∗, which is a function of ML − z∗. This distance also measures the

extent to which the seller at z∗ loses from being pooled with lower-quality sellers. Right skewness

(resp., left skewness) of the distribution F (z) will increase (resp., decrease) the upward distortion

and decrease (resp., increase) the downward distortion, making it optimal to have more restrictive

(resp., less restrictive) certi�cation standards.

The condition given in Proposition 2 for linear supply functions implies

z∗ =
1

2
(ML (z∗) +MH (z∗)) , (13)

which can be used to relate this threshold to properties of the distribution. Consider �rst the case

of a symmetric distribution (i.e., where the median, zmedian, equals the mean, z̄). Since for any z∗,

F (z∗)ML + (1− F (z∗))MH = z̄, setting the threshold z∗ = z̄ = zmedian would satisfy the above

condition.

The same reasoning suggests that when F is skewed, the optimal threshold will also be skewed

relative to the mean in the same direction. This can be easily proved, as follows. Consider the case

of a right skewed distribution where z̄ > zmedian. Let ML (.) and MH (.) denote functions equal

to the conditional average of the quality of sellers below and above any value within the range of

qualities, respectively. Furthermore, denote g (z) = 1
2

(ML (z) +MH (z)). Following Proposition

1, the optimal threshold is a �xed point of this function. When z → zmax (or as z →∞ in the case

of unbounded support), g (z) → 1
2
z̄ + 1

2
z < z, and when z → zmin(or as z → −∞ in the case of

unbounded support), g (z)→ 1
2
zmin + 1

2
z̄ > z. For z = zmedian, g (z) = z̄ > z. Since the function

g (z) is increasing and continuous, the unique �xed point z∗ must be to the right of zmedian and,

as a consequence, z∗ > z̄, as illustrated in Figure 4. The result for the case of left skewness can be

shown similarly. Consistently with these results, the empirical examples in Section 4.3 have both

left-skewed distributions and the optimal thresholds we found are below the respective means.

Table 1 shows the optimal threshold for a series of distributions, as well as the corresponding
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Figure 4: z∗ When the Mean Is Greater than the Median

fraction of certi�ed sellers. All distributions in our example are skewed to the right except for one,

so according to our argument, z∗ > z̄ > zmedian and it is optimal to have a smaller share of sellers

certi�ed. This is shown in the �fth column of Table 1. As an example, for the Pareto distributions

only a small fraction should get certi�ed, 5% when the power parameter is 3, and 9% when the

power parameter is 4.
19

For the exponential distribution, only 20% of sellers should be certi�ed

regardless of the hazard rate.

Now, we extend our �ndings to the case of multiple signals under a stronger skewness order.

This skewness order, the convex (resp., concave) order, was originally proposed by Van Zwet (1964).

De�nition. Distribution F̃ is more skewed to the right than F if F̃−1 (F (x)) is convex; equiva-

lently, there exists an increasing convex function g (x) such that F̃ (g (x)) = F (x).
20

We can think of this ordering as stretching to the right the quality scale with the transformation

g (x) . As an example, if F is a uniform distribution in [0, 1] and g (x) = x2
, then F̃ (x2) = x or,

equivalently, F̃ (x) = x1/2.

Proposition 5. Suppose the supply function is linear. Let F be a distribution with log-concave density

and F̃ a distribution such that F̃ (g (z)) = F (z) , where g is a strictly convex increasing function. Let

{lk} be the optimal thresholds for F , and {g (zk)}, the optimal thresholds for F̃ . Then zk > lk for all

k.

19
When α ≤ 2, the value of z∗ is unde�ned, as total surplus is strictly increasing in z∗ in all the support.

20
Note that this de�nition implies that F−1 (F (x)) = g−1 (x) is concave.
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This proposition implies that for all k, F̃ (g (zk)) = F (zk) > F (lk), so the percentiles de�ned

by the two optimal thresholds are ordered. In particular, for a two-tier certi�cation rating, the

share of certi�ed sellers should be lower for distribution F̃ . An example is given in Table 1 for the

case of power distributions F (z) = zα. It is easily shown that the distribution with α = 0.5 is

more skewed to the right than the one with α = 2.21
Consistently with the previous proposition,

the share of certi�ed sellers is lower when α = 0.5.

5.2 Consumer and Producer Surplus

We have focused on total surplus as the objective function. However, it is easy to show that at the

optimal thresholds, there is generically a con�ict of interest between consumers and producers, and

that the optimal choice balances o� these con�icting interests. The di�erence lies in the equilibrium

e�ects of ratings: consumers’ surplus increases with total output, while pro�ts decrease. These two

opposing e�ects balance each other exactly at the optimal thresholds. In which direction would

consumers like the threshold to move? In particular, would consumers prefer stricter or less strict

criteria for certi�cation? Again, the answer depends on the properties of the supply function.

In the case of concave supply, total output decreases with increasing information, so total out-

put and consumer surplus are maximized with thresholds at the extremes of the distribution, i.e.,

a trivial partition with no information. When supply is linear, total quantity is independent of the

amount of information, so consumer surplus is the same for any threshold. This implies that the

optimal threshold is also the one that maximizes pro�ts. The following proposition provides suf-

�cient conditions that determine the direction of change of output (and consumer surplus) at the

optimal thresholds. The direction of change of producer surplus has the opposite sign.

Proposition 6. Let z = (z1, ..., zN−1) be the thresholds that maximize total surplus. If S ′′ (p) /S ′ (p)

is decreasing (resp., increasing) in p, then dQ (z) /dzk and dCS (z) /dzk are negative (resp., positive)

at z.

To illustrate the above results, consider a simple example. Suppose the supply function s (p) =

pθ (cost function c (q) = q1+θ/ (1 + θ)). Therefore, S ′′ (p) /S ′ (p) = (θ − 1) /p. For θ > 1, this

21
Take g (x) = x4.
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expression is decreasing in p. Therefore, starting at the surplus maximizing thresholds, consumers

would prefer lower thresholds, while producers would prefer higher ones. Therefore, if the planner

puts more weight on consumers, it should lower the thresholds, while if it puts more weight on

sellers, it should increase them. The reverse occurs when θ < 1.

5.3 Heterogeneous Preference for Quality

In this extension, we consider a demand system where agents have heterogeneous preference for

quality, and sellers have inelastic supply. While by construction, improvements in information

do not increase total quantity, they contribute to welfare by increasing the correlation between

average seller quality and consumer preference for quality. The optimal threshold is de�ned by

a slightly modi�ed formula that weighs di�erences in the sellers’ quality gap in each interval by

the respective gap in consumers’ preferences. As a result, skewness in consumers’ preferences for

quality has similar implications to the ones observed for skewness in producers’ quality.

We examine brie�y the determination of optimal thresholds when consumers di�er in their

preferences for quality for the case of certi�cation, i.e., N = 2. Suppose consumers’ preferences

are given by the utility function u = θz + θ0 − p for a good of quality z, à la Mussa and Rosen

(1978). Consumers di�er in their preference for quality θ and for the value they assign the inside

vs. outside good θ0, which is distributed in the population according to some joint distribution

Ψ (θ, θ0). As earlier, seller qualities z are distributed according to the cdf F (z) . For simplicity, we

restrict our analysis to a partition of sellers into two groups de�ned by threshold z∗with qualities zL

and zH , respectively. Given prices pL and pH , consumers will be split into three groups: those that

do not consume and those that consume either theH or L product, with demandsDH (pL, pH) and

DL (pL, pH), respectively. Prices pL and pH will be equilibrium prices provided thatDH (pL, pH) =

(1− F (z∗)) q (pH) and DL (pL, pH) = F (z∗) q (pL) . As in our previous case, there is a unique

equilibrium under fairly general conditions.

Lemma 3. The optimal choice of threshold z∗ satis�es the following �rst-order necessary condition:

Π (pH)− Π (pL) = (z∗ − zL) θLqL + (zH − z∗) θHqH , (14)
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where θL is the average preference for quality of consumers who purchase the L product, and θH , of

those who purchase the H product.

This formula has an intuitive explanation. The �rst term is the loss of pro�ts of those sellers

that transition from the H to the L group, when z∗ is marginally increasing. The second term

measures the e�ect of the increase in the averages zL and zH as z∗ is increased, valued at the

quality preference of the average consumer in each group and weighted by their respective market

sizes.

Vertical Di�erentiation with Inelastic Supply

To establish further results, we consider the canonical model of vertical di�erentiation where con-

sumers di�er only in their preference for quality θ and where sellers supply inelastically one unit of

output.
22

Given equilibrium prices pL and pH , all consumers above a threshold θ∗ buy anH product,

while all those between θ and θ∗ buy an L product, where θzL = pL and θ∗ (zH − zL) = pH − pL.

Substituting in equation (14) gives the condition

(z∗ − zL) (θ∗ − θL) = (zH − z∗) (θH − θ∗) .

Notice that this equation is a modi�ed version of equation (16), where the gaps between z∗ and

the respective means are weighted by the corresponding preference gaps. This equation highlights

the role of the complementarities between average quality and preference for quality in the deter-

mination of the optimal threshold. In particular, when both distributions are symmetric, this also

implies that the optimal threshold z∗ (and also θ∗) will equal the corresponding mean. Moreover,

when z and θ have the same distribution, the optimal threshold is also given by our baseline con-

dition, as given in equation (16).
23

As an example, if both have uniform distributions, then when

θ∗ = z∗ = 1/2, this condition will hold.

22
This case can be reinterpreted as a one-to-one matching environment with surplus function θz.

23
It is interesting to note that when all consumers have the same preference for quality and supply is inelastic,

welfare is independent of z∗, as the average product quality is not a�ected by its choice.
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5.4 Entry

In our previous analysis we did not consider explicitly the e�ect of changes in z∗ on entry. Many of

our results extend to settings where the distribution of qualities of sellers is not a�ected by entry.

We discuss here two scenarios: one where entrants are ex ante di�erentiated and one where they

are ex ante homogeneous.

Consider �rst the case of di�erentiated entrants. Our analysis extends without modi�cation

to the following scenario. Suppose there is a mass n of entrants that are di�erentiated in qual-

ities z and �xed (or entry) costs f . Assume qualities are independent from �xed costs and are

given by distribution F and Φ, respectively. For a given threshold partition z∗, we can de�ne the

aggregate supply functions SL and SH as follows. Let SH (p) = S (p)NH (p), where NH (p) =

n (1− F (z∗)) Φ (π (p)). This supply function combines the e�ect of prices on the intensive and

extensive margin. We can de�ne similarly SL (p) . Our analysis remains unchanged if we substi-

tute S (p) by ŝ (p) = S (p)nΦ (f (p)), so total supplies are SL (p) = F (z∗) ŝ (p) and SH (p) =

ŝ (p) (1− F (z∗)) .24

For the homogeneous case, assume there is a setN of potential entrants that draw their qualities

independently from distribution F upon entry, after paying an entry cost f, which is distributed

according to cdf Φ (f) . For �xed output, improved information results in a mean preserving spread

of expected qualities and thus prices. Given that pro�t functions are convex in prices, this results

in an increase in expected pro�ts and a consequent increase in entry. In the case of linear supply,

where in the absence of entry, total output does not change, additional entry results in an increase

in total output and thus consumer surplus. In the case of concave supply, we have seen that total

output decreases. This increases pro�ts over what is produced by the mean preserving spread

of average qualities, thus inducing entry and mitigating, if not totally undoing, the drop in total

output that would result in the absence of entry. Finally, note that if all potential entrants were to

have the same entry cost, all surplus gains from improved information would accrue to consumers,

as expected, and average pro�ts would remain unchanged. The above results apply in particular

24
The properties of these modi�ed supply functions will now depend both on the individual supply functions and

the distribution of �xed costs. There exist assumptions on the latter that will guarantee that the modi�ed supply

functions are linear, convex, or concave when each of these properties holds for the original supply functions.
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to the e�ect of introducing a certi�cation mechanism in a market where there is none.

6 Final Remarks

In this paper we considered the optimal design of quality ratings in markets with adverse selection

and limited signals. Ratings reallocate demand across producers, impacting not only the average

quality of goods consumed but also average cost. The optimal thresholds in a discrete rating system

optimize this trade-o�. Optimal ratings thus depend on the characteristics of the market, given by

the distribution of producers’ quality, the elasticity of supply, and consumers’ preferences. We �nd

that the optimal thresholds in the case of a convex (resp., concave) supply function are pointwise

higher (resp., lower) than those in the linear case. Intuitively, in the case of a simple certi�cation

rating with two groups, more elastic supply leads to a higher threshold and lower share of certi�ed

sellers. We also �nd that skewness in the distribution of seller qualities matters for optimal ratings,

which move in the direction of the skew.

We have given a simple characterization for the optimal thresholds in the case of linear supply

as the solution to standard clustering problems. Our results thus provide a straightforward and

easy-to-compute method for the design of rating systems. This method is used to derive bounds

on the performance of the rating system as a function of the number of categories. We �rst the-

oretically showed that a simple certi�cation mechanism, or a two-tier rating, is enough to reach

half of the bene�ts of the best rating mechanism in a large family of sellers’ quality distributions

such as log-concave densities. As an example, we found that for the exponential family of distri-

butions, 65% of the total surplus gains from the full-information case can be achieved with only

two categories. We also applied our method to two empirical problems in order to �nd the optimal

thresholds and the gain from them. The large gains in total surplus with a very simple threshold

mechanism suggest that the added cost of a more complex one might not be compensated by the

gains from it. This �nding could explain the popularity of these simple schemes among market

designers.
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A Proofs

Proof of Lemma 1

Proof. Consider a partition of the set of sellers into sets S1, ..., SN . Suppose there are two sets Sk,

Sk+1 that are not totally ordered in quality with means Mk ≤ Mk+1 and mass Gk and Gk+1. By

reordering elements of these two sets, one can substitute Sk and Sk+1 with two new disjoint sets

S ′k and S ′k+1 of equal measures to the original ones, where Sk ∪ Sk+1 = S ′k ∪ S ′k+1 and S ′k <

S ′k+1, element-wise. By construction, M ′
k ≤ Mk ≤ Mk+1 ≤ M ′

k+1 and G′kM
′
k + G′k+1M

′
k+1 =

GkMk + Gk+1Mk+1. This corresponds to a mean preserving spread of the original distribution of

means. Using Proposition 1 in Hopenhayn and Saeedi (Forthcoming), this results in higher total

surplus.

Proof of Lemma 2

To totally di�erentiate equation (3) with respect to zk, �rst note that by the envelope condition,

we can ignore the e�ect on the output choices q1, ..., qN . In particular, this implies that ∂Q/∂zk =

f (zk) (qk − qk+1) . Since Mk =
∫ zk
zk−1

zdF (z) / (F (zk)− F (zk−1)) , it follows that

∂ (F (zk)− F (zk−1))Mk

∂zk
= f (zk) zk,

∂ (F (zk+1)− F (zk))Mk+1

∂zk
= −f (zk) zk.

The result now follows by totally di�erentiating (3) and setting it equal to zero.

Proof of Proposition 1

To prove this proposition, we need an intermediate step, which is proven using the following

lemma.

Lemma 4. The optimal thresholds satisfy the following condition:

zk −Mk

Mk+1 −Mk

S (pk) +
Mk+1 − zk
Mk+1 −Mk

S (pk+1) =

∫ pk+1

pk
S (p) dp

pk+1 − pk
, (15)
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whereMk andMk+1 are the conditional mean qualities for the two groups, and pk and pk+1 are the

equilibrium prices.

Proof. First note that

(P (Q) + zk) (qk+1 − qk) = (P (Q) +Mk+1 −Mk+1 + zk) qk+1

− (P (Q) +Mk −Mk + zk) qk

= pk+1qk+1 − pkqk − (Mk+1 − zk) qk+1 − (zk −Mk) qk.

Substituting in (5) and rearranging gives

(Mk+1 − zk) qk+1 + (zk −Mk) qk = πk+1 − πk.

Equation (15) follows by substituting πk+1 − πk =
∫ pk+1

pk
S (p) dp, using qk+1 = S (pk+1) and qk =

S (pk), and dividing the left hand side by (Mk+1 −Mk) and the right hand side by the equivalent

value pk+1 − pk.

We use the expression found in Lemma 4. Equation (15) equates the expected value of S (p)

under two lotteries. The left hand side lottery has weights α = (zk −Mk) / (Mk+1 −Mk) on price

pk and (1− α) on price pk+1. The second lottery is uniform between these two extreme prices.

When S is linear, it must be the case that α = 1/2, and this implies that

zk −Mk = Mk+1 − zk. (16)

When S is convex, α > 1/2 so zk −Mk > Mk+1 − zk, so the optimal threshold is above the one

de�ned by equation (16), while the reverse occurs when s is concave. This concludes the proof.
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Proof of Proposition 2

Without loss of generality, let S (p) = p, so the cost function c (q) = 1
2
q2. Consider now the

objective function (3) for this case:

W (z) =

∫ Q

0

P (x) dx+
N∑
k=1

[F (zk)− F (zk−1)]

[
Mk (P +Mk)−

1

2

(
(P +Mk)

2)]
(17)

=

∫ Q

0

P (x) dx+
N∑
k=1

[F (zk)− F (zk−1)]

[
1

2
M2

k −
1

2
P 2

]
. (18)

After suppressing the terms that are una�ected by the partition, maximizing this expression is

equivalent to maximizing

N∑
k=1

[F (zk)− F (zk−1)] (Mk − z̄)2 , (19)

where z̄ =
∑N

k=1 [F (zk)− F (zk−1)]Mk is the mean seller quality, which is independent of the

partition. The above expression is the variance between partitions. Since total variance is �xed,

maximizing (19) is equivalent to minimizing (6). Uniqueness of the thresholds is guaranteed when

the distribution has log-concave density, as shown in Mease and Nair (2006).

Proof of Proposition 3

We use the following properties of distributions with log-concave densities (see Lemma 1 in Mease

and Nair (2006)):

E (z|s ≤ z ≤ s+ d)− s is decreasing in s for d > 0 and (20)

s− E (z|s− d ≤ z ≤ s) is increasing in s for d > 0, (21)

and these properties are preserved when conditioning on intervals.

Lemma5. SupposeF is a distributionwith log-concave density, and letm (a, b) = EF (z|a ≤ z ≤ b) .

Suppose the vector of thresholds {lk}N−1
k=1 satis�es
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lk −m (lk−1, lk) = m (lk, lk+1)− lk, (22)

and let z1, ..., zN−1 be a vector such that

zk −m (zk−1, zk) > m (zk, zk+1)− zk. (23)

Then zk > lk for all k.

To prove Lemma 5, we �rst use the following:

Claim. Under the assumptions of Lemma 5, suppose that for some k, zk < lk and zk+1 − zk ≥

lk+1 − lk. Then zk−1 < lk−1 and zk − zk−1 ≥ lk − lk−1.

Proof. Note that

zk −m (zk−1, zk) > m (zk, zk+1)− zk (24)

≥ m (zk, zk + lk+1 − lk)− zk

≥ m (lk, lk+1)− lk

= lk −m (lk−1, lk) .

The �rst inequality follows from (23), the second one, from the monotonicity of m, the third, from

(20), and the last, from (22). Now consider k − 1. We will show that zk − zk−1 ≥ lk − lk−1.

Suppose, by way of contradiction, that zk − zk−1 < lk − lk−1. Then

zk −m (zk−1, zk) ≤ lk −m (lk − (zk − zk−1) , lk)

≤ lk −m (lk−1, lk)

where the �rst inequality follows from condition (21), and the second one, from the monotonicity

of m. This inequality contradicts (24), proving that zk − zk−1 ≥ lk − lk−1. Given that zk < lk, this

also guarantees that zk−1 < lk−1.
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We now prove Lemma 5. Let h denote the highest k for which zk < lk. By the de�nition of h,

zh+1 − zh > lh+1 − lh. Using inductively the previous claim, it follows that the same is true for all

k = 1, ..., h. For k = 1, the claim would imply that z0 < l0, which cannot be true if the distribution

had a lower bound, since in that case both z0 and l0 should equal this lower bound. For unbounded

support, an argument similar to the one used in the claim can be used to generate a contradiction.

This completes the proof.

Proof of Proposition 3.

Let {lk} denote the optimal thresholds for the linear supply function, and {zk}, those for the convex

supply function. Lemma 1 and equations (22) and (24) hold, so Lemma 5 proves the proposition.

Proof of Proposition 4.

Proof. Let M̄1 and M̄2 be the conditional mean of z below and above the mean z̄, respectively. By

the variance decomposition,

∫
(z − z̄)2 dF (z) =

∫ z̄ (
z − M̄1

)2
dF (z) +

∫
z̄

(
z − M̄2

)2
dF (z)

+F (z̄)
(
M̄1 − z̄

)2
+ (1− F (z̄))

(
M̄2 − z̄

)2

= F (z̄)
(
cv2

1 + 1
) (
M̄1 − z̄

)2
+ (1− F (z̄))

(
cv2

2 + 1
) (
M̄2 − z̄

)2

≤
(
max

{
cv2

1, cv
2
2

}
+ 1
) (
F (z̄)

(
M̄1 − z̄

)2
+ (1− F (z̄))

(
M̄2 − z̄

)2
)
,

where the second equality follows from

cv1 =

∫ z̄ (
(z − z̄)−

(
M̄1 − z̄

))2
dF (z)

F (z̄)
(
M̄1 − z̄

)2

,and similarly for cv2. From the above inequality,

F (z̄)
(
M̄1 − z̄

)2
+ (1− F (z̄))

(
M̄2 − z̄

)∫
(z − z̄)2 dF (z)

≥ 1

1 + max {cv2
1, cv

2
2}
.
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This gain corresponds to setting z∗ = z̄, so it is a lower bound to the gains under the optimal

threshold.

Proof of Proposition 5

To prove this proposition, we �rst need to show the following lemma.

Lemma 6. Let g (z1) , ..., g (zN−1) be the optimal thresholds for F̃ . Let Mk = m (zk−1, zk) =

EF (zk−1 ≤ z ≤ zk). Then zk −Mk > Mk+1 − zk.

Proof. Let M̃k = EF̃ (g (z̃k−1) ≤ z ≤ g (z̃k)). Note that by strict convexity of g, M̃k > g (Mk) . It

follows that

z −Mk > zk − g−1
(
M̃k

)
= g−1 (g (zk))− g−1

(
M̃k

)
= g−1

(
M̃k+1

)
− g−1 (g (zk))

> Mk+1 − zk.

To prove the proposition, let the vector {lk} be the optimal thresholds for F, and {zk}, the op-

timal thresholds for F̃ . Equation (22) follows from the necessary condition for optimal thresholds,

and (24) follows from the previous lemma.

Proof of Proposition 6

To prove this proposition, we need to show the following lemma �rst:

Lemma 7. The term dQ (z) /dzk has the same sign as

zk −Mk

Mk+1 −Mk

S ′ (pk) +
Mk+1 − zk
Mk+1 −Mk

S ′ (pk+1)−
∫ pk+1

pk
S ′ (p) dp

pk+1 − pk
. (25)
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Proof. Total output is

Q =
N∑
k=1

(F (zk)− F (zk−1))S (pk) ,

where pk = P (Q) +Mk. Di�erentiating with respect to zk and using

(F (zk)− F (zk−1))
∂Mk

∂zk
= f (zk) (zk −Mk)

(F (zk+1)− F (zk))
∂Mk+1

∂zk
= f (zk) (Mk+1 − zk)

∂Q

∂zk
= f (zk) (S (pk)− S (pk+1))

+ f (zk) [S ′ (pk) (Mk − zk) + S ′ (pk+1) (Mk+1 − zk)]

+
N∑
k=1

(F (zk)− F (zk−1))S ′ (pk)P
′ (Q)

∂Q

∂zk
,

we get

∂Q

∂zk
=
f (zk) [S (pk)− S (pk+1) + S ′ (pk) (Mk − zk) + S ′ (pk+1) (Mk+1 − zk)]

1−
∑N

k=1 (F (zk)− F (zk−1))S ′ (pk)P ′ (Q)
.

The denominator is positive, since S ′ (pk) > 0 and P ′ (Q) < 0, so ∂Q/∂zk has the same sign as

S (pk)− S (pk+1) + S ′ (pk) (Mk − zk) + S ′ (pk+1) (Mk+1 − zk) ,

and since S (pk) − S (pk+1) = −
∫ pk+1

pk
S ′ (p) dp and pk+1 − pk = Mk+1 − Mk, equation (25)

follows.

Proof of Proposition 6

Letting α (zk) = Mk+1−zk
Mk+1−Mk

, we can rewrite equation (15) as

S (pk) + α (zk) (S (pk+1)− S (pk)) = S (pk) +

∫ pk+1

pk
S (p)− S (pk) dp

pk+1 − pk
,
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so

α (zk) =

∫ pk+1

pk

S(p)−S(pk)
S(pk+1)−S(pk)

dp

pk+1 − pk
. (26)

To evaluate dQ/dzk at the optimal thresholds z1, ..., zk, we rewrite equation (25) in a similar

fashion using the expression for α (zk) given by equation (26).

dQ

dzk
= α (zk) (S ′ (pk+1)− S ′ (pk))−

∫ pk+1

pk
(S ′ (p)− S ′ (pk)) dp
pk+1 − pk

=

∫ pk+1

pk

S(p)−S(pk)(S′(pk+1)−S′(pk))

S(pk+1)−S(pk)
dp−

∫ pk+1

pk
(S ′ (p)− S ′ (pk)) dp

pk+1 − pk
,

so a su�cient condition for dQ/dzk to be positive (resp., negative) is that

(S (p)− S (pk)) (S ′ (pk+1)− S ′ (pk))
S (pk+1)− S (pk)

− (S ′ (p)− S ′ (pk)) > 0 (resp., < 0) ,

or, equivalently,

S ′ (pk+1)− S ′ (pk)
S (pk+1)− S (pk)

− S ′ (p)− S ′ (pk)
S (p)− S (pk)

> 0 (resp., < 0) . (27)

A su�cient condition for this equation to hold is that

S ′ (p)− S ′ (pk)
S (p)− S (pk)

(28)

increasing (resp., decreasing) in p (for all p > pk). The derivative of (28) with respect to p has the

sign of

S ′′ (p) (S (p)− S (pk))− S ′ (p) (S ′ (p)− S ′ (pk))

=S ′′ (p)

∫ p

pk

S ′ (x) dx− S ′ (p)
∫ p

pk

(S ′′ (x)) dx,
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which in turn has the sign of

S ′′ (p)

S ′ (p)
−
∫ p
pk

(S′′(x))
S′(x)

S ′ (x) dx∫ p
pk
S ′ (x) dx

.

The second term is a weighted average of the coe�cient of absolute risk aversion of S for values

between pk and p. So, if S ′′ (x) /S ′ (x) is increasing (resp., decreasing) in x, then this di�erence

will be positive (resp., negative).
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