
A Work-Efficient Algorithm for
Parallel Unordered Depth-First

Search

Mike RaineyUmut Acar Arthur Charguéraud
Carnegie Mellon

University
Inria & LRI Université

Paris Sud, CNRS Inria

Supercomputing 2015

High-performance graph
traversal

• In a graph traversal, computation proceeds from one vertex to the next through
the edges in the graph.

• Improved performance for graph traversal means improved performance for
many other algorithms.

• The main challenge is coping with irregularity in graphs.

• In this work, we present a new algorithm

• to perform fast traversal over large, in-memory directed graphs

• using a (single, dedicated) multicore system

• achieving:

• analytical bounds showing work-efficiency and high-parallelism, and

• an implementation that outperforms state-of-the-art codes (almost always)

Motivation
• Most of the recent attention in the research literature on graph traversal is paid to parallel

BFS.

• Why parallel BFS but not parallel DFS?

• Parallel DFS with strict ordering is known to be P-complete (i.e., hard to parallelize).

• However, loosely ordered, parallel DFS:

• relaxes the strict DFS ordering slightly

• achieves a high degree of parallelism

• has many applications, e.g.,

• reachability analysis & graph search

• parallel garbage collection (Jones et al 2011), etc…

• KLA graph-processing framework (Harshvardhan et al 2014)

• When feasible, Pseudo DFS is preferred because it is usually faster than the alternatives.

Pseudo DFS (PDFS)

• Input:

• directed graph and ID of source vertex

• Output:

• the set of vertices connected by a path to the source
vertex

PDFS

pushpop pushpop pushpop
migrate

t f fffft visited
frontier

vertex ids

PDFS vs. PBFS

• PDFS is asynchronous:

• Each core traverses
independently from its frontier.

• PBFS is level synchronous:

• Cores traverse the graph level
by level, in lock step,
synchronizing between every
two levels.

• DFS is preferred in
parallel GC.

• e.g., mark sweep

• Why?

• DFS visits heap objects
in the order in which
objects were allocated.

Synchronization Data locality

The granularity-control
challenge

• The key tradeoff is between:

• the cost to pay for migrating some chunk of work, and

• the benefit of parallelizing the migrated work

• Migrate too often, it’s too slow; too infrequently, it’s too
slow.

• Granularity control is a particular challenge for PDFS
because, when you migrate a piece of frontier, you have
little information about how much work you’re giving
away.

Example in favor of
aggressively sharing work

…

Example against sharing
work

hfdbs

geca

…

C1 C2

s b

a

d

c

Granularity control by
batching vertices

• A batch is a small, fixed-capacity buffer that stores part of the
frontier.

• In batching, each work-stealing queue stores pointers to batches
of vertices.

• Idea: use batches to amortize the cost of migrating work.

• Previous state of the art for PDFS:

• Batching PDFS (Cong et al 2008)

• Parallel mark-sweep GC (Endo 1997 and Seibert 2010)

• No batching PDFS so far guarantees against worst-case behavior.

Our work

• We present a new PDFS algorithm.

• In a realistic cost model:

• We show that our PDFS is work efficient:

• Running time on a single core is the same as that of serial DFS, up to constant factors.

• We show that our PDFS is highly parallel.

• In experiments on a machine with 40 cores, we show the following.

• Our PDFS outperforms alternative algorithms across many of a varied set of input graphs.

• Our PDFS can exploit data locality like sequential DFS.

Central question:
Can we bring to PDFS the analytical and empirical
rigor that has been applied to PBFS, but keep the

benefits of a DFS-like traversal?

Our solution to granularity
control

• Migration of work is realized by message passing.

• Each core regularly polls the status of a cell (in RAM).

• When core C1 requests work from C2, C1 writes its ID into the cell owned by
C2.

• Each core owns a private frontier.

• Our granularity control technique: when receiving a query, a core shares its
frontier only if one of the following two conditions is met:

• The frontier is larger than some fixed constant, K.

• The core has treated at least K edges already

• The setting for K can be picked once based (solely) on the characteristics of
the machine.

Why is our granularity-
control technique effective?

…

hfdbs

geca

…

Our PDFS algorithm
• K: positive integer controlling the eagerness

of work sharing

• D: positive integer controlling the frequency
of polling

• if my frontier is empty

• repeatedly query random cores until finding work

• else

• handle an incoming request for work

• process up to D edges:

• for each edge ending at vertex v

• if this core wins the race to claim v, push
outgoing neighbors of v into the frontier

• remove v from the frontier

Tuning parameters:

Each core does:

• if frontier contains at least K edges or has
at least two edges and has treated at least
K edges since previously sending work:

• transfer half of the local frontier to the
frontier of the hungry core

• notify the hungry core

To handle a work
request, a core does:

Analytical bounds
Theorem 1
The number of migrations is
3m/K.

Theorem 2
The total amount of work
performed is linear in the size of
the input graph.

Theorem 3
Each work query is matched
by a response in O(D + log n)
time.

Shows that each work
migration is amortized
over at least K/3 edges.

Shows that all polling and
communication costs are
well amortized.

Shows that the algorithm
can achieve almost every
opportunity for parallelism.

Our frontier data structure
• It is based on our previous work on a chunked-

tree data structure.

• It’s a sequence data structure storing weighted
items.

• It can

• push/pop in constant time

• split in half according to the weights of the
items in logarithmic time.

• In the PDFS frontier, a weight represents the
outdegree of a vertex.

• It enables:

• rapidly migrating large chunks of frontier
on the fly

• efficiently parallelizing high-outdegree
vertices

e f g hc

a b

d

e f g hc

a b

d

b

Frontier F

Frontier G Frontier H

edge-balanced split

Experimental results
or

ku
t (

D
=7

)

liv
ej

ou
rn

al
 (D

=1
4)

tw
itt

er
 (D

=1
5)

fri
en

ds
te

r (
D

=2
8)

ca
ge

15
 (D

=4
9)

Fr
ee

sc
al

e1
 (D

=1
22

)

w
ik

ip
ed

ia
−2

00
7

(D
=4

59
)

rg
g

(D
=1

.5
k)

de
la

un
ay

 (D
=1

.6
k)

us
a

(D
=6

.3
k)

eu
ro

pe
 (D

=1
7k

)

tre
es

_1
0k

_1
0k

 (D
=2

)

ra
nd

om
_a

rit
y_

10
0

(D
=4

)

rm
at

27
 (D

=6
)

ph
as

es
_1

0_
d_

2
(D

=1
0)

rm
at

24
 (D

=1
3)

ph
as

es
_2

0_
d_

10
0

(D
=2

0)

co
m

pl
et

e_
bi

n_
tre

e
(D

=2
6)

cu
be

_g
rid

 (D
=9

60
)

tre
es

_5
24

k
(D

=3
81

)

sq
ua

re
_g

rid
 (D

=1
4k

)

pa
r_

ch
ai

ns
_1

00
 (D

=5
00

k)

tru
nk

_f
irs

t (
D

=1
0.

0m
)

pa
r_

ch
ai

ns
_2

 (D
=2

5m
)

ch
ai

n
(D

=5
0m

)

Our PDFS
Cong PDFS
PBFS
Ligra

Sp
ee

du
p

w
.r.

t.
se

qu
en

tia
l D

FS

0

10

20

30

40 52x 48x

0.1x
0.1x
0.4x
0.8x

0.04x
0.04x
0.8x
1.6x

0.1x
0.1x
0.5x
0.8x

higher = better

real world synthetic

diameter D diameter D

• 40 Xeon cores
@ 2.4Ghz

• 1 TB RAM

Related work
• PDFS

• Batching PDFS (Cong et al 2008)

• Parallel mark-sweep GC (Endo 1997 and Seibert 2010)

• PBFS

• Work-efficient Parallel BFS (Leiserson & Schardl 2010)

• Direction-optimizing BFS (Beamer et al 2012)

• Ligra (Shun & Blelloch 2013)

• Hybrid PDFS/PBFS

• KLA graph-processing framework (Harshvardhan et al 2014)

Summary
• We presented a new PDFS algorithm.

• Our results lift PDFS to a level of rigor similar to that of work-efficient
PBFS.

• In our paper:

• We show that PDFS exploits data locality as effectively as serial
DFS.

• Our results show that PDFS performs well both in theory and
practice.

• The results suggest that our PDFS may be useful as a component
of other algorithms and graph-processing systems.

