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High-performance graph 
traversal

• In a graph traversal, computation proceeds from one vertex to the next through 
the edges in the graph. 

• Improved performance for graph traversal means improved performance for 
many other algorithms. 

• The main challenge is coping with irregularity in graphs. 

• In this work, we present a new algorithm  

• to perform fast traversal over large, in-memory directed graphs 

• using a (single, dedicated) multicore system 

• achieving: 

• analytical bounds showing work-efficiency and high-parallelism, and 

• an implementation that outperforms state-of-the-art codes (almost always)



Motivation
• Most of the recent attention in the research literature on graph traversal is paid to parallel 

BFS. 

• Why parallel BFS but not parallel DFS?  

• Parallel DFS with strict ordering is known to be P-complete (i.e., hard to parallelize). 

• However, loosely ordered, parallel DFS: 

• relaxes the strict DFS ordering slightly 

• achieves a high degree of parallelism 

• has many applications, e.g., 

• reachability analysis & graph search 

• parallel garbage collection (Jones et al 2011), etc… 

• KLA graph-processing framework (Harshvardhan et al 2014)  

• When feasible, Pseudo DFS is preferred because it is usually faster than the alternatives.



Pseudo DFS (PDFS)

• Input: 

• directed graph and ID of source vertex 

• Output: 

• the set of vertices connected by a path to the source 
vertex
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PDFS vs. PBFS

• PDFS is asynchronous: 

• Each core traverses 
independently from its frontier. 

• PBFS is level synchronous:  

• Cores traverse the graph level 
by level, in lock step, 
synchronizing between every 
two levels.

• DFS is preferred in 
parallel GC. 

• e.g., mark sweep 

• Why?  

• DFS visits heap objects 
in the order in which 
objects were allocated.

Synchronization Data locality



The granularity-control 
challenge

• The key tradeoff is between: 

• the cost to pay for migrating some chunk of work, and 

• the benefit of parallelizing the migrated work 

• Migrate too often, it’s too slow; too infrequently, it’s too 
slow. 

• Granularity control is a particular challenge for PDFS 
because, when you migrate a piece of frontier, you have 
little information about how much work you’re giving 
away.



Example in favor of 
aggressively sharing work

…



Example against sharing 
work
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Granularity control by 
batching vertices

• A batch is a small, fixed-capacity buffer that stores part of the 
frontier. 

• In batching, each work-stealing queue stores pointers to batches 
of vertices.  

• Idea: use batches to amortize the cost of migrating work. 

• Previous state of the art for PDFS: 

• Batching PDFS (Cong et al 2008) 

• Parallel mark-sweep GC (Endo 1997 and Seibert  2010) 

• No batching PDFS so far guarantees against worst-case behavior.



Our work

• We present a new PDFS algorithm. 

• In a realistic cost model: 

• We show that our PDFS is work efficient: 

• Running time on a single core is the same as that of serial DFS, up to constant factors. 

• We show that our PDFS is highly parallel. 

• In experiments on a machine with 40 cores, we show the following.  

• Our PDFS outperforms alternative algorithms across many of a varied set of input graphs. 

• Our PDFS can exploit data locality like sequential DFS.

Central question: 
Can we bring to PDFS the analytical and empirical 
rigor that has been applied to PBFS, but keep the 

benefits of a DFS-like traversal?



Our solution to granularity 
control

• Migration of work is realized by message passing. 

• Each core regularly polls the status of a cell (in RAM). 

• When core C1 requests work from C2, C1 writes its ID into the cell owned by 
C2. 

• Each core owns a private frontier. 

• Our granularity control technique: when receiving a query, a core shares its 
frontier only if one of the following two conditions is met: 

• The frontier is larger than some fixed constant, K. 

• The core has treated at least K edges already 

• The setting for K can be picked once based (solely) on the characteristics of 
the machine.



Why is our granularity-
control technique effective?

…

hfdbs
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…



Our PDFS algorithm
• K: positive integer controlling the eagerness 

of work sharing 

• D: positive integer controlling the frequency 
of polling

• if my frontier is empty 

• repeatedly query random cores until finding work 

• else 

• handle an incoming request for work 

• process up to D edges: 

•  for each edge ending at vertex v 

• if this core wins the race to claim v, push 
outgoing neighbors of v into the frontier 

• remove v from the frontier

Tuning parameters:

Each core does:

• if frontier contains at least K edges or has 
at least two edges and has treated at least 
K edges since previously sending work: 

• transfer half of the local frontier to the 
frontier of the hungry core 

• notify the hungry core

To handle a work 
request, a core does:



Analytical bounds
Theorem 1 
The number of migrations is 
3m/K.

Theorem 2 
The total amount of work 
performed is linear in the size of 
the input graph.

Theorem 3
Each work query is matched 
by a response in O(D + log n) 
time.

Shows that each work 
migration is amortized 
over at least K/3 edges.

Shows that all polling and 
communication costs are 
well amortized.

Shows that the algorithm 
can achieve almost every 
opportunity for parallelism.



Our frontier data structure
• It is based on our previous work on a chunked-

tree data structure. 

• It’s a sequence data structure storing weighted 
items. 

• It can 

• push/pop in constant time 

• split in half according to the weights of the 
items in logarithmic time. 

• In the PDFS frontier, a weight represents the 
outdegree of a vertex. 

• It enables: 

• rapidly migrating large chunks of frontier 
on the fly 

• efficiently parallelizing high-outdegree 
vertices
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Experimental results
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Related work
• PDFS 

• Batching PDFS (Cong et al 2008) 

• Parallel mark-sweep GC (Endo 1997 and Seibert  2010) 

• PBFS 

• Work-efficient Parallel BFS (Leiserson & Schardl 2010) 

• Direction-optimizing BFS (Beamer et al 2012) 

• Ligra (Shun & Blelloch 2013) 

• Hybrid PDFS/PBFS 

• KLA graph-processing framework (Harshvardhan et al 2014) 



Summary
• We presented a new PDFS algorithm. 

• Our results lift PDFS to a level of rigor similar to that of work-efficient 
PBFS. 

• In our paper: 

• We show that PDFS exploits data locality as effectively as serial 
DFS. 

• Our results show that PDFS performs well both in theory and 
practice. 

• The results suggest that our PDFS may be useful as a component 
of other algorithms and graph-processing systems.


