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High-performance graph
traversal

In a graph traversal, computation proceeds from one vertex to the next through
the edges in the graph.

Improved performance for graph traversal means improved performance for
many other algorithms.

The main challenge is coping with irregularity in graphs.
In this work, we present a new algorithm
e to perform fast traversal over large, in-memory directed graphs
e using a (single, dedicated) multicore system
e achieving:
« analytical bounds showing work-efficiency and high-parallelism, and

e an implementation that outperforms state-of-the-art codes (almost always)



Motivation

* Most of the recent attention in the research literature on graph traversal is paid to parallel
BFS.

 Why parallel BFS but not parallel DFS?
« Parallel DFS with strict ordering is known to be P-complete (i.e., hard to parallelize).
 However, loosely ordered, parallel DFS:
* relaxes the strict DFS ordering slightly
e achieves a high degree of parallelism
* has many applications, e.g.,
e reachability analysis & graph search
e parallel garbage collection (Jones et al 2011), etc...
« KLA graph-processing framework (Harshvardhan et al 2014)

 When feasible, Pseudo DFS is preferred because it is usually faster than the alternatives.



Pseudo DFS (PDFS)

* |nput:

e directed graph and ID of source vertex

* Output:

* the set of vertices connected by a path to the source
vertex



PDFS

frontier

popﬁ push popﬁ push



PDFS vs. PBFS

Synchronization Data locality
 PDFS is asynchronous:  DFS is preferred in
parallel GC.
* Each core traverses
independently from its frontier. * e.g., mark sweep
 PBFS is level synchronous: e Why?
* Cores traverse the graph level e DFS visits heap objects
by level, in lock step, IN the order in which
synchronizing between every objects were allocated.

two levels.



I'he granularity-control
challenge

* The key tradeotf is between:

* the cost to pay for migrating some chunk of work, and

* the benefit of parallelizing the migrated work

* Migrate too often, it's too slow; too infrequently, it's too
slow.

* GGranularity control is a particular challenge for PDFS
because, when you migrate a piece of frontier, you have
little information about how much work you're giving
away.



Example in favor of
aggressively sharing work



Example against sharing
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Granularity control by
patching vertices

A batch is a small, fixed-capacity buffer that stores part of the
frontier.

In batching, each work-stealing queue stores pointers to batches
of vertices.

|dea: use batches to amortize the cost of migrating work.
Previous state of the art for PDFS:

* Batching PDFS (Cong et al 2008)

* Parallel mark-sweep GC (Endo 1997 and Seibert 2010)

No batching PDFES so far guarantees against worst-case behavior.



Our work

Central question:
Can we bring to PDFS the analytical and empirical
rigor that has been applied to PBFS, but keep the
benetits of a DFS-like traversal?

* We present a new PDFS algorithm.

 |n a realistic cost model:

* We show that our PDFS is work efficient:

* Running time on a single core is the same as that of serial DFS, up to constant factors.
* We show that our PDFS is highly parallel.
* In experiments on a machine with 40 cores, we show the following.

* Qur PDFS outperforms alternative algorithms across many of a varied set of input graphs.

* Our PDFS can exploit data locality like sequential DFS.



Our solution to granularity
control

« Migration of work is realized by message passing.
» Each core regularly polls the status of a cell (in RAM).

 When core C, requests work from C,, C; writes its ID into the cell owned by
Co.

« Each core owns a private frontier.

o Qur granularity control technique: when receiving a query, a core shares its
frontier only if one of the following two conditions is met:

* The frontier is larger than some fixed constant, K.
 The core has treated at least K edges already

* The setting for K can be picked once based (solely) on the characteristics of
the machine.



Why Is our granularity-
control technigque effective”?



Our PDFS algorithm

Tuning parameters:

e K. positive integer controlling the eagerness
of work sharing

» [D: positive integer controlling the frequency
of polling

Each core does:
e if my frontier is empty

« repeatedly query random cores until finding work To handle a work
request, a core does:

« handle an incomina reauest for work * if frontier contains at least K edges or has
greg at least two edges and has treated at least

K edges since previously sending work:

e ¢glse

e process up to D edges:

|  transfer half of the local frontier to the
» for each edge ending at vertex v frontier of the hungry core

* if this core wins the race to claim v, push  notify the hungry core
outgoing neighbors of v into the frontier

e remove v from the frontier



Analytical bounds

Theorem 1
he number of migrations is
3m/K.

Theorem 2

The total amount of work
performed is linear in the size of
the input graph.

Theorem 3

Each work query is matched
by a response in O(D + log n)
time.

Shows that each work
migration is amortized
over at least K/3 edges.

Shows that all polling and
communication costs are
well amortized.

Shows that the algorithm
can achieve almost every
opportunity for parallelism.



Our frontier data structure

It is based on our previous work on a chunked- FrQ ﬂtier F

tree data structure. PP )
It's a sequence data structure storing weighted Q

items. -
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e push/pop in constant time

e split in half according to the weights of the

items in logarithmic time. edge baléﬂced Spllt

In the PDFS frontier, a weight represents the ., 47 7™
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It enables:
* rapidly migrating large chunks of frontier
on the fly

« efficiently parallelizing high-outdegree Q e e @
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Experimental results

e 40 Xeon cores
@ 2.4Ghz

higher = better
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Related work

 PDFS
» Batching PDFS (Cong et al 2008)
o Parallel mark-sweep GC (Endo 1997 and Seibert 2010)
* PBFS
o Work-efficient Parallel BFS (Leiserson & Schardl 2010)
* Direction-optimizing BFS (Beamer et al 2012)
e Ligra (Shun & Blelloch 2013)
* Hybrid PDFS/PBFS

 KLA graph-processing framework (Harshvardhan et al 2014)



summary

We presented a new PDFS algorithm.

Our results litt PDFES to a level of rigor similar to that of work-efficient
PBFS.

In our paper:

* We show that PDFS exploits data locality as effectively as serial
DFS.

Our results show that PDFS performs well both in theory and
practice.

The results suggest that our PDFS may be useful as a component
of other algorithms and graph-processing systems.



