
The best multicore-parallelization refactoring you’ve
never heard of∗

Mike Rainey
Carnegie Mellon University

Pittsburgh, PA, USA
me@mike-rainey.site

Abstract
In this short paper, we explore a newway to refactor a simple
but tricky-to-parallelize tree-traversal algorithm to harness
multicore parallelism. Crucially, the refactoring draws from
some classic techniques from programming-languages re-
search, such as the continuation-passing-style transform and
defunctionalization. The algorithm we consider faces a par-
ticularly acute granularity-control challenge, owing to the
wide range of inputs it has to deal with. Our solution achieves
efficiency from heartbeat scheduling, a recent approach to
automatic granularity control. We present our solution in a
series of individually simple refactoring steps, starting from
a high-level, recursive specification of the algorithm. As such,
our approach may prove useful as a teaching tool, and per-
haps be used for one-off parallelizations, as the technique
requires no special compiler support.

1 Challenge: traverse a pointer-based tree
We are to write a program that traverses a given binary tree
and returns the sum of the numbers stored in the nodes, as
exemplified by the following reference code, taking care to
utilize parallelism when the input permits and to perform
well in any case, even when parallelism is limited.
type node = {v : int, bs : node*[2]}

sum(node* n) → int { if (n == null) return 0

return sum(n.bs[0]) + sum(n.bs[1]) + n.v }

We may use fork join to parallelize on nonempty input trees:
s = new int[2]

fork2join(_ () ⇒ {s[i] = sum(n.bs[i])}, ...) i ∈ {0, 1}
return s[0] + s[1] + n.v

There are mature implementations of fork join (e.g. [7, 12])
based on work stealing [4–6], an algorithm well suited for
irregular, input-dependent workloads like ours.
However, suppose our program can assume nothing of

its input: it can range from balanced and large, where par-
allelism is abundant, to, e.g., a chain or a small tree, where
traversal is mostly serial. As such, possible workloads may be
fine grain and irregular, making granularity control acute [1,
3, 13]. Also, inputs, e.g., long chains, may cause callstack over-
flow [9].We address both problems by combining two known
techniques: (1) heartbeat scheduling [2, 10] for granularity
∗Our title is a riff on “The Best Refactoring You’ve Never Heard Of” [8],
from the popular blog post and Compose 2019 talk.

control and (2) defunctionalization of continuation-passing
style [11] to replace recursion by iteration, for efficient, serial
traversal. The latter is inspired by Koppel’s presentation [8],
adding to his list a new refactoring application: multicore
parallelization. We proceed via a series of refactorings, using
conventional features of C++.

2 Refactoring for parallel traversal
First, we replace the direct-style treatment that allocates
function-activation records on the C callstackwith a continuation-
passing-style (CPS) one that allocates on the heap. To sup-
port CPS, we use a lower-level interface with task scheduling:
new_task(𝑓) takes a thunk 𝑓 and returns a pointer to a new,
heap-allocated task that, when executed by the scheduler
will run 𝑓 () to completion; fork(𝑐, 𝑘) takes a child task 𝑐 ,
its continuation task 𝑘 , registers a dependency edge from 𝑐

to 𝑘 , and marks 𝑐 ready to run; join(𝑗) marks an incoming
dependency edge on the task 𝑗 as resolved, and, when all of
its dependencies are resolved, schedules 𝑗 .

Step 1: CPS convert the parallel algorithm. We intro-
duce a continuation parameter k and a join task tj, which
receives the results of the recursive calls and passes the re-
sults to the return continuation.

sum(node* n, k : int → void) → void {

if (n == null) { k(0); return }; s = new int[2]

tj = new_task(_ () ⇒ k(s[0] + s[1] + n.v))

{ ti = new_task(_ () ⇒
sum(n.bs[i], _ si ⇒ {s[i] = si; join(tj)})

fork(ti, tj) } i ∈ {0, 1} }

Step 2: defunctionalization of CPS. We introduce one
activation record to handle the final result, and another for
completion of branch i ∈ {0, 1} (full code in appendix).

type kont = | KTerm of int* // final result
| KPBranch of {i : int, s : int*, tj : task*}

This refactoring delivers a highly parallel algorithm, but one
with poor work efficiency, given that it performs little useful
work per task.

3 Refactoring for serial traversal
Now, we obtain a work-efficient version by replacing recur-
sion with iteration.

Mike Rainey

Step 3: CPS convert & defunctionalization of CPS. We
CPS convert our reference algorithm, first by introducing two
new continuations, and then defunctionalize them, giving us
two new activation records, such that the first represents an
in-flight recursive call for the first branch of a node, and the
second for the second branch, with s0 storing result obtained
for the first branch.

type kont = . . . | KSBranch0 of {n : node*, k : kont*}

| KSBranch1 of {s0 : int, n : node*, k : kont*}

Step 4: refactor for iterative, stack-based traversal.
We eliminate recursion by applying to the apply function
(introduced in Step 3) both tail-call elimination and inlining,
and tail-call elimination to our defunctionalized sum function.

4 Merging parallel and serial refactorings
The conceptual glue for merging our serial and parallel al-
gorithms is in heartbeat scheduling. With it, we make it so
that our serial and parallel traversals alternate on a regular
basis. Starting out, our program spends a certain amount
of its time in serial traversal, specified by a heartbeat-rate
parameter𝐻 , after which it switches momentarily to parallel
traversal. It then switches back to serial, and the alternation
repeats until the traversal completes.
By ensuring 𝐻 serial traversal steps happen for each in-

vocation of our parallel traversal, we amortize task-creation
costs, and therefore, achieve granularity control for all inputs.
On our test machine, we observed that, by experimenting
with different settings of𝐻 , we can bound task-creation costs
such that the total amount of work is increased by a desired
amount, e.g., 10%, compared to the serial refactoring.

Step 5: give the serial traversal a heartbeat. To track the
number of steps, we introduce a helper function heartbeat

that returns true every 𝐻 times it is called, and we insert
calls to heartbeat in each of the two main loops of the se-
rial traversal. When it returns true, we inspect the current
continuation to see if it is holding onto any latent paral-
lelism. If so, we promote that latent parallelism into an actual
task, which may realize actual parallelism (if, e.g., the task is
stolen).

Step 6: implement promotion. Promotion is initiated by
calling try_promote(𝑘), which looks for latent parallelism in
𝑘 and, if present, spawns from it a task and returns a modified
continuation 𝑘 ′. There is latent parallelism in 𝑘 if there is
an instance of KSBranch0 in 𝑘 . The reason is that such an
instance represents a recursive call to the first branch of some
tree node (the only opportunity parallelism in a traversal).

However, there may be multiple instances of latent paral-
lelism in a given 𝑘 , and, for performance reasons, heartbeat
scheduling requires that the outermost instance is the one
that should be targeted for promotion. Heartbeat scheduling
targets outermost parallelism because doing so turns out

input serial (s) ours cilk cilk+granctrl
perfect 0.7 28.4x 15.4x 34.5x
random 0.8 31.8x 15.3x 33.7x
chains 2.5 11.5x n/a n/a
chain 1.2 0.4x n/a n/a

Table 1. Performance results from an Intel Xeon system,
using all 64 cores, showing speedup over the iterative, serial
algorithm, with four inputs: (1) perfect is a perfect binary
tree of height 27 (2) random is a tree built from a series of
path-copying insertions targeting random leaves (3) chains
is a small initial tree of height 20 extended with 30 paths of
length 1 million (4) chain is a long chain.

to be crucial for achieving worst-case bounds on the loss
of parallelism [2]. Implementing this behavior efficiently
requires some care, as a naïve implementation could repeat-
edly traverse the whole stack, leading to quadratic blowup.
Fortunately, the blowup can be remedied by extending the
continuation structure with a double-ended list, whichmarks
promotion potentials [2, 10].
When it finds a KSBranch0{n, k=𝑘′} activation record in

𝑘 , our promotion handler modifies 𝑘 so that, thereafter, it is
as if our (defunctionalized) parallel algorithm was invoked
at that point instead of the serial version. This behavior
is achieved by (1) allocating storage for the results of the
branches, s = new int[2] (2) replacing our KSBranch0 activa-
tion record with KPBranch{i=0, s=s, tj=tj}, a task-parallel
one (3) spawning a new task corresponding to the second
branch, i.e., n.bs[1], and giving that task the return contin-
uation KPBranch{i=1, s=s, tj=tj}, and (4) creating a join
task tj for this new fork point, which is seeded with the
continuation of our promotion point, 𝑘 ′. The pseudocode
below gives sketch of the main loops.
sum(node* n, k : kont*) → void {

while (true)

k = try_promote(k) if heartbeat() else k

if (n == null) { sa = 0 // sum accumulator
while (true)

k = try_promote(k) if heartbeat() else k

match *k with // all activation records in kont
| KSBranch0{n=n1, k=k1} ⇒ { . . . } | . . . | . . .

else { k = KSBranch0{n=n, k=k}; n = n.bs[0] } }

5 Performance study
Table 1 summarizes our performance study, for which we
used a C++ implementation. From the perfect tree, we see that
our algorithm can achieve a speedup comparable to that of
OpenCilk [12] with manually tuned granularity control, and
a speedup almost twice faster than that of OpenCilk without
granularity control. For random, our algorithm outperforms
vanilla OpenCilk, but not the granularity-controlled version.

The best multicore-parallelization refactoring you’ve never heard of

The reason relates to the data structure we used in our C++
implementation to store the activation records, an STL deque,
which uses heap-allocated chunks internally, whereas Open-
Cilk uses the callstack, which is more efficient. However, our
algorithm supports long chains, whereas OpenCilk crashes
with stack overflow (indicated by cells with n/a). From chains,
we see that our algorithm can obtain speedup even when
parallelism is somewhat scarce. On chain, our algorithm is
about 2.5x slower serial.

References
[1] U. A. Acar, V. Aksenov, A. Charguéraud, and M. Rainey. Provably

and practically efficient granularity control. In Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, PPoPP
’19, pages 214–228, New York, NY, USA, 2019. ACM.

[2] U. A. Acar, A. Charguéraud, A. Guatto, M. Rainey, and F. Sieczkowski.
Heartbeat scheduling: Provable efficiency for nested parallelism. In
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’18. ACM, 2018.

[3] U. A. Acar, A. Chargueraud, and M. Rainey. A work-efficient algorithm
for parallel unordered depth-first search. In ACM/IEEE Conference on
High Performance Computing (SC), pages 67:1–67:12, New York, NY,
USA, 2015. ACM.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. J. ACM, 46:720–748, Sept. 1999.

[5] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In SPAA
’05, pages 21–28, 2005.

[6] R. H. Halstead, Jr. Implementation of Multilisp: Lisp on a Multiproces-
sor. In Proceedings of the 1984 ACM Symposium on LISP and functional
programming, LFP ’84, pages 9–17. ACM, 1984.

[7] Intel. Intel threading building blocks, 2011. https://www.
threadingbuildingblocks.org/.

[8] J. Koppel. The best refactoring you’ve never heard of,
2019. https://www.pathsensitive.com/2019/07/the-best-refactoring-
youve-never-heard.html.

[9] I.-T. A. Lee, S. Boyd-Wickizer, Z. Huang, and C. E. Leiserson. Using
memory mapping to support cactus stacks in work-stealing runtime
systems. In Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’10, pages 411–420,
New York, NY, USA, 2010. ACM.

[10] M. Rainey, K. Hale, R. R. Newton, N. Hardavellas, S. Campanoni,
P. Dinda, and U. A. Acar. Task parallel assembly language for un-
compromising parallelism. In Proceedings of the 42nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’21, New York, NY, USA, June 2021. ACM.

[11] J. C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proceedings of the ACM Annual Conference - Volume 2,
ACM ’72, page 717–740, New York, NY, USA, 1972. Association for
Computing Machinery.

[12] T. B. Schardl, W. S. Moses, and C. E. Leiserson. Tapir: Embedding fork-
join parallelism into llvm’s intermediate representation. In Proceedings
of the 22nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 249–265, 2017.

[13] A. Tzannes, G. C. Caragea, R. Barua, and U. Vishkin. Lazy binary-
splitting: a run-time adaptive work-stealing scheduler. In Symposium
on Principles & Practice of Parallel Programming, pages 179–190, 2010.

https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://www.pathsensitive.com/2019/07/the-best-refactoring-youve-never-heard.html
https://www.pathsensitive.com/2019/07/the-best-refactoring-youve-never-heard.html

Mike Rainey

sum(node* n, k : kont*) → void {

if (n == null) { apply(k, 0); return }

s = new int[2]

tj = new_task(_ () ⇒
apply(k, s[0] + s[1] + n.v))

{ ti = new_task(_ () ⇒
sum(n.bs[i], KPBranch{i=i, s=s, tj=tj))

fork(ti, tj) } i ∈ {0, 1} }

apply(kont* k, sa : int) → void {

match *k with

| KPBranch{i, s, tj} ⇒ {s[i] = sa; join(tj)}

| KTerm ans ⇒ {*ans = sa} }

Figure 1. Step 2: defunctionalize the continuation

sum(node* n, k : int → void) → void {

if (n == null) { k(0); return }

sum(n.bs[0], _ s0 ⇒
sum(n.bs[1], _ s1 ⇒
k(s0 + s1 + n.v))) }

Figure 2. Step 3(a): CPS convert

A Reference code
In this section, we present the pseudocode omitted from the
main body of the paper, starting with the parallel algorithm,
then the serial one, and finally the heartbeat algorithm.

A.1 The parallel traversal
Step 2: defunctionalization of CPS. In Figure 1, we show

the code resulting from taking the CPS converted version of
our parallel algorithm and defunctionalization.

A.2 The serial traversal
Step 3(a): CPS convert. Starting back from our our ref-

erence algorithm, we now begin the process of turning that
code into a iterative, stack-based one. The algorithm shown
in Figure 2 is the result of converting our original recursive
algorithm to continuation-passing style.

Step 3(b): defunctionalization of CPS. In this step, we
defunctionalize the three continuations we introduced in
the previous step, giving us the code shown in Figure 3.
The first such continuation is the final continuation, KTerm,
the continuation that receives the final result of our sum

function. The second, namely KSBranch0, is the continuation
that receives the result of the first recursive call, and the
third, namely KSBranch1, is the continuation that receives
the final result of the sum call, that is, s0 + s1 + n.v.

Step 4(a): tail-call eliminate apply. In this step, we get
rid of the recursion in the apply function from our previous

sum(node* n, k : kont*) → void {

if (n == null) { apply(k, 0); return }

sum(n.bs[0], KSBranch0{n=n, k=k})

apply(kont* k, sa : int) → void {

match *k with

| KSBranch0{n, k=k1} ⇒ {

sum(n.bs[1], KSBranch1{s0=sa, n=n, k=k1}) }

| KSBranch1{s0, n, k=k1} ⇒ {

apply(k1, s0 + sa + n.v) }

| KTerm ans ⇒ {*ans = sa} }

Figure 3. Step 3(b): defunctionalization of CPS

apply(kont* k, sa : int) → void {

while (true)

match *k with

| KSBranch0{n, k=k1} ⇒ {

sum(n.bs[1], KSBranch1{s0=sa, n=n, k=k1})

return }

| KSBranch1{s0, n, k=k1} ⇒ {

sa = s0 + sa + n.v; k = k1 }

| KTerm ans ⇒ {*ans = sa; return } }

Figure 4. Step 4(a): tail-call eliminate apply

sum(node* n, k : kont*) → void {

if (n == null)

while (true)

sa = 0

match *k with

| KSBranch0{n, k=k1} ⇒ {

sum(n.bs[1], KSBranch1{s0=sa, n=n, k=k1})

return }

| KSBranch1{s0, n, k=k1} ⇒ {

sa = s0 + sa + n.v; k = k1 }

| KTerm ans ⇒ {*ans = sa; return }

return

sum(n.bs[0], KSBranch0{n=n, k=k})

Figure 5. Step 4(b): inline apply

step by turning it into a loop. We do so by applying tail-call
elimination, giving us the code shown in Figure 4.

Step 4(b): inline apply. Now, we inline the apply func-
tion from the previous step into the body of our sum function,
giving us the code in Figure 5.

Step 4(c): tail-call eliminate sum. Here, we get rid of the
recursion in the sum function from our previous step. To this

The best multicore-parallelization refactoring you’ve never heard of

sum(node* n, k : kont*) → void {

while (true)

if (n == null)

while (true)

sa = 0

match *k with

| KSBranch0{n=n1, k=k1} ⇒ {

n = n1.bs[1]

k = KSBranch1{s0=sa, n=n1, k=k1}

break }

| KSBranch1{s0, n, k=k1} ⇒ {

sa = s0 + sa + n.v; k = k1 }

| KTerm ans ⇒ {*ans = sa; return }

else

k = KSBranch0{n=n, k=k}

n = n.bs[0] }

Figure 6. Step 4(c): tail-call eliminate sum

end, we apply tail-call elimination, giving us the code shown
in Figure 6.

A.3 The heartbeat traversal
Step 5: give the traversal a heartbeat. Now, we are go-

ing to merge the final versions of the parallel and serial
algorithms we obtained in the previous steps. The result of
our merging is shown in Figure 7. In particular, it is the merg-
ing of our defunctionalized parallel algorithm from Figure
1 and the serial algorithm in Figure 6. For our merging, we
introduce two calls to try_promote, which have the effect of
controlling the switching between serial and parallel traver-
sals. The switching is enabled by simply merging the match

expressions of the serial and parallel versions.

Step 6: implement promotion. All that remains of our
implementation is the code that handles promotions, which
we show in Figure 8. In this function, we search in our in-
put continuation k for an instance of the activation record
KSBranch0, which represents the continuation waiting for the
result of the first branch. If this search fails, then it returns
a null pointer value in kt, and we exit early by returning
the original continuation k. Otherwise, a sucessful search
means that we have captured an instant in our serial traver-
sal when it is in the middle of traversing the first branch of
a tree node. For such a case, we can parallelize the in-flight
traversal of that first branch with the yet-to-start traversal
of the corresponding right branch.
The rest of this function spawns a new task for the right

branch following the pattern in the code shown in Figure 1.
It uses the replace function to rewrite the input continuation
in place such that the KSBranch0 activation record is replaced
by a KPBranch activation record. The effect of this step is to
change the behavior of the in-flight traversal of the affected

sum(node* n, k : kont*) → void {

while (true)

k = try_promote(k) if heartbeat() else k

if (n == null)

sa = 0

while (true)

k = try_promote(k) if heartbeat() else k

match *k with

| KSBranch0{n=n1, k=k1} ⇒ {

n = n1.bs[1]

k = KSBranch1{s0=sa, n=n1, k=k1}

break }

| KSBranch1{s0, n=n1, k=k1} ⇒ {

s += s0 + n1.v; k = k1 }

| KPBranch {i, s, tj} ⇒ {

s[i] = sa; join(tj); return }

| KTerm ans ⇒ { *ans = sa }

else { k = KSBranch0 {n=n, k=k}; n = n.bs[0] } }

Figure 7. Step 5: give the traversal a heartbeat.

try_promote(k : kont*) → kont* {

kt = find_outermost(k, _ k ⇒ {

match *k with

| KSBranch0 _ ⇒ true

| _ ⇒ false })

if (kt == null) { return k }

match *kt with

| KSBranch0{n, k=kj} ⇒ {

s = new int[2]

tj = new_task(_ () ⇒ {

k0 = KSBranch1{s0=s[0] + s[1], n=n, k=kj}

sum(null, k0) })

tc = new_task(_ () ⇒ {

sum(n.bs[1], KPBranch {i=1, s=s, tj=tj})})

fork(tj, tc)

k1 = KPBranch {i=0, s=s, tj=tj}

return replace(k, kt, k1) } }

// returns a pointer value k1 to the outermost activation record in k

// s.t. f(k1), or null if there is no such k1 in k

find_outermost(k : kont*, f : kont* → bool) → kont*

// returns a pointer value k1 s.t. any frame kt in
// k is replaced by k1
replace(k : kont*, kt : kont*, k1 : kont*)

→ kont*

Figure 8. Step 6: implement promotion

Mike Rainey

𝐸 [fork2join (𝑓0, 𝑓1)]𝑘
def
= {
tj = new_task (𝑘)
t0 = new_task(𝐸 [𝑓0 ()]_ () . join(tj))
t1 = new_task(𝐸 [𝑓1 ()]_ () . join(tj))
fork (t0, tj) ; fork (t1, tj) }

Figure 9. CPS conversion rule for fork2join

branch so that it synchronizes with its sibling task once its
part of the traversal finishes.

Optimizing the layout of continuation records. One
final optimization needed for work efficiency relates to the

representation of the continuation. As it is currently, con-
tinuation records are laid out in different heap objects, and
are linked by explicit kont* pointers. This representation
can be improved by simply laying out these records in a
linear fashion, which we do by packing the records in a STL
deque container. This way, our final implementation is more
compact, as it allows us to do without explicit tail-pointer
values.

B CPS conversion of fork2join
Originally, we introduced two ways of achieving fork-join
parallelism: the direct style as in our fork2join primitive
and the CPS-friendly library interface. Here, we show the
direct connection between the two versions in terms of a
CPS transformation, as shown in Figure 9.

	Abstract
	1 Challenge: traverse a pointer-based tree
	2 Refactoring for parallel traversal
	3 Refactoring for serial traversal
	4 Merging parallel and serial refactorings
	5 Performance study
	References
	A Reference code
	A.1 The parallel traversal
	A.2 The serial traversal
	A.3 The heartbeat traversal

	B CPS conversion of fork2join

