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What is PASL?

• PASL is our Parallel Algorithm Scheduling 
Library.

• It’s a test bed for new ideas relating to 
implicit parallelism.

• It’s written in C++.
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How do we raise the level 
of abstraction?

3

Generalize the implicit-threading model

Address performance

Primitives for creating and scheduling parallel 
computations

Dynamic load balancing by work stealing with 
private deques

Granularity control by Oracle Scheduling
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Primitives for creating and 
scheduling parallel 

computations
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The implicit-parallelism zoo

• spawn/sync

• futures

• parallel loops

• TBB flow graphs 

• reducers / hyperobjects
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• map-reduce

• clocks / phasers

• concurrent revisions

• etc.
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Computation DAGs
work span{
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Computation DAGs at 
runtime
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already executed

ready

suspendednot yet 
created
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Almost-complete 
programming interface
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node* create_node(closure*)

void add_node(node*)

void add_edge(node*, node*)

8Thursday, July 4, 13



Edge capture
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⇒n n

a

n calling a

k
k

(with continuation k)

transfer_outedges_to(a)

void transfer_outedges_to(node*)
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Encoding binary fork join
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void fork_join(closure* a, closure* b, closure* j) 
  node* na = create_node(a)
  node* nb = create_node(b)
  node* nj = create_node(j)
  transfer_outedges_to(nj)
  add_edge(na,nj)
  add_edge(nb,nj)
  add_node(na)
  add_node(nb)
  add_node(nj)

⇒fork_join
 as last 

instruction

branches

join node

n

k
a b

k

j

n
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Encoding graph 
traversal using a big join
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big join

processed
node

⇒

a.k.a. async/
finish 

parallelism
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Encoding futures
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⇒ ⇒
future (producer)

consumer 
demanding the 

future be forced
become ready

future executed
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Four key ingredients for 
efficiency

13

3. Number of incoming 
edges (a.k.a. join counter)

join counter = 8

4. Continuation (list of 
edges)

list of pointers

1. Granularity control 2. Dynamic load balancing 
(work stealing)
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Small-arity joins with 
atomic counters
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⇒ ⇒
join counter = 2 join counter = 1 join counter = 0

fetch_and_add(-1)
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Big-arity joins

15

owner = core #4 
counters =[ 23; -9; 97; 67; 20 ]

• use one counter per 
processor:

• # edges added - # edges 
removed

• periodic check by one 
particular processor to see 
if the sum is zero
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Representation of 
nodes and edges

• We use an instrategy for representing the 
number of incoming edges 

• and an outstrategy for representing the list 
of outgoing edges

16

node* create_node(closure*, instrategy*, outstrategy*)
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Summary

• distributed

• owner based

• optimistic
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node* create_node(closure*, instrategy*, outstrategy*)
void add_node(node*)
void add_edge(node*, node*)
void transfer_edges_to(node*)

Dynamic DAGs, with per-node specification of edge 
representation:

Find other examples of custom instrategies in paper, e.g.,
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Automatic granularity 
control by Oracle 

Scheduling

18Thursday, July 4, 13



Do we need to tame 
DAG-related overheads?
• Yes:

• Parallel fib in PASL is typically 100x 
slower than sequential fib.

• Parallel fib in PASL is no more than a few 
percent slower.

• It’s not that bad, because we can ensure the 
costs are well amoritzed by granularity 
control.

19
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Taming DAG overheads

20

fat 
sequentialized

leaves
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Oracle scheduling

21

void quicksort(int A[], int s , int e) {
  if (e - s < 2)
    return;
  int p = partition(A, s ,e);
  fork_join {
     quicksort (A, s , p );
     quicksort (A, p + 1, e );
  }
}

2. Make calls:
• parallel, if 

combined run 
time prediction 
> t

• sequential, 
otherwise

1. Pick a target leaf run time t.Idea: 
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Our theoretical 
contribution

• Suppose we have an oracle predicting run 
times with error always less than certain 
ratio.

• Then, the total cost of creating nodes is 
well amortized.

• See paper for precise formal bound.
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Complexity annotations

23

void quicksort(int A[], int s , int e) {
  cost { 
    int n = e - s; 
    return n * log(n) 
  }
  if (e - s < 2)
    return;
  int p = partition(A, s ,e);
  fork_join {
     quicksort(A, s , p );
     quicksort(A, p + 1, e );
  }
}

complexity annotation
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Runtime profiling

24

measure 
execution 

time e

Let r = e / n.

We use running average of past 
few measurements of r to make 
predictions.

Let n be asymptotic 
complexity of a call.
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Summary

• A few issues:

• Outlier measurements increase error.

• Our approach assumes that average case 
complexity matches worst case.

• Our approach works well for a wide range 
of computations.

• Please see our paper for performance study.
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Dynamic load balancing by 
work stealing with private 

deques
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Scheduling parallel tasks

27
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Scheduling parallel tasks

set of cores

27
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Scheduling parallel tasks
pool of tasks

27
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Scheduling parallel tasks

27

• Goal: dynamic load balancing

• A centralized approach: does not scale up

• Popular approach: work stealing

• Our work: study implementations of work stealing

27Thursday, July 4, 13



Work stealing

28
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Work stealing
deque

28
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Work stealing

28
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Work stealing

28

pushpop pushpop pushpop
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Work stealing

28
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Work stealing

28

steal
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Work stealing

28
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Concurrent deques
• Deques are shared.

• Two sources of race:

• between thieves

• between owner and thief

• Chase-Lev data structure resolves 
these races using atomic 
compare&swap and memory 
fences.

29

top

bot

pushpop

steals
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Concurrent deques

• Well studied: shown to perform well 
both in theory and in practice ...

• Runtime overhead: In a relaxed 
memory model, pop must use a memory 
fence.

• Lack of flexibility: Simple extensions 
(e.g., steal half) involve major challenges. 

30

however, researchers identified two main limitations
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Previous studies of 
private deques

31

Feeley 1992 Multilisp

Hendler & Shavit 2002 C

Umatani 2003 Java

Hirashi et al. 2009 C

Sanchez et al. 2010 C

Fluet et al. 2011 Parallel ML
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Private deques

• Each core has exclusive access 
to its own deque.

• An idle core obtains a task by 
making a steal request.

• A busy core regularly checks for 
incoming requests.

32

steal request

pop & 
send

pushpop
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Private deques

33

• no need for memory fence 

• flexible deques (any data structure can be used)

• new cost associated with regular polling

• additional delay associated with steals

but

Addresses the main limitations of concurrent deques: 
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Unknowns of private deques
• What is the best way to implement work 

stealing with private deques?

• How does it compare on state of art 
benchmarks with concurrent deques?

• Can establish tight bounds on the runtime?

34
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Unknowns of private deques
• What is the best way to implement work 

stealing with private deques?

• How does it compare on state of art 
benchmarks with concurrent deques?

• Can establish tight bounds on the runtime?

34

We give a receiver- and a sender-initiated algorithm.

We evaluate on a collection of benchmarks. 

We prove a theorem w.r.t. delay and polling overhead.
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Receiver initiated

1 3 4

35

-1 -1-1

22

-1
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Receiver initiated

1 3 4

35

-1 -1-1

22

-1
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Receiver initiated

1 3 4

35

-1 -1-1

CAS

22

-1
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Receiver initiated

1 3 4

35

-1 -1

CAS

2

2 -1
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Receiver initiated

1 3 4
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-1 -1

2

2 -1
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Receiver initiated

1 3 4
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-1 -1

2

2 -1
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Receiver initiated

1 3 4
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-1 -1

2

-1-1
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Receiver initiated

1 3 4

35

-1 -1

2

-1-1
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From receiver to 
sender initiated

• Receiver initiated: each idle core targets 
one busy core at random

• Sender initiated: each busy core targets one 
core at random

• Sender initiated idea is adapted from 
distributed computing.

• Sender initiated is simpler to implement.

36
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Sender initiated

1 3 4

37

... ... ...

2

...
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0

Sender initiated

1 3 4

37

... ... ...

2

37Thursday, July 4, 13



0

Sender initiated

1 3 4

37

... ... ...

CAS

2
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Sender initiated

1 3 4

37

... ... ...

CAS

2
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Sender initiated

1 3 4

37

... ... ...

2
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Sender initiated

1 3 4

37

... ... ...

2
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Sender initiated

1 3 4

37

... ... ...

2

...
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Analytical model

38

δ polling interval

F maximal number of forks in a path

P number of cores

T1 serial run time

T∞ minimal run time with infinite cores

TP parallel run time with P cores
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Our main analytical result
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Performance study

• We implemented in PASL:

• our receiver-initiated algorithm

• our sender-initiated algorithm

• our Chase-Lev implementation

• We compare all of those implementations 
against Cilk Plus.

40
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Benchmarks

• Classic Cilk benchmarks and Problem Based 
Benchmark Suite (Blelloch et al 2012)

• Problem areas: merge sort, sample sort, 
maximal independent set, maximal 
matching, convex hull, fibonacci, and dense 
matrix multiply.

41
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Performance results
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Summary

• We presented two new private-deque 
algorithms, evaluated them, and proved 
analytical results.

• In the paper, we demonstrated the 
flexibility of private deques by 
implementing the steal half policy.

43
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• Efficient primitives for creating and scheduling parallel 

computations
By U. Acar,  A. Charguéraud, and Mike Rainey
DAMP’12

• Oracle scheduling: controlling granularity in implicitly 
parallel languages
By U. Acar,  A. Charguéraud, and Mike Rainey
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• Scheduling parallel programs by work stealing with 
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PPoPP’13

44

44Thursday, July 4, 13

http://www.mpi-sws.org/~mrainey/papers/damp2012_primitives.pdf
http://www.mpi-sws.org/~mrainey/papers/damp2012_primitives.pdf
http://www.mpi-sws.org/~mrainey/papers/damp2012_primitives.pdf
http://www.mpi-sws.org/~mrainey/papers/damp2012_primitives.pdf
https://sites.google.com/site/umutacar/
https://sites.google.com/site/umutacar/
http://www.chargueraud.org/
http://www.chargueraud.org/
http://www.mpi-sws.org/~mrainey/oracle_scheduling.pdf
http://www.mpi-sws.org/~mrainey/oracle_scheduling.pdf
http://www.mpi-sws.org/~mrainey/oracle_scheduling.pdf
http://www.mpi-sws.org/~mrainey/oracle_scheduling.pdf
https://sites.google.com/site/umutacar/
https://sites.google.com/site/umutacar/
http://www.chargueraud.org/
http://www.chargueraud.org/
https://sites.google.com/site/umutacar/
https://sites.google.com/site/umutacar/
http://www.chargueraud.org/
http://www.chargueraud.org/

