Theory and Practice of Chunked Sequences

Umut Acar Arthur Charguéraud Mike Rainey

Inria & Carnegie Mellon University

ESA 2014/09/08

Goal

Ephemeral deques (double-ended queues) with:
— push and pop at the two ends, 1n O(1) amortized
— concat, and split at arbitrary indices, in O(log n)

N g
[eo0c0000000000]| I

Weighted split operation: (e.g. split at 13)

3 25 1 4 2 4 1
0000000

| §

3 2 5 1 4 2 4 1
o000 ® 000
(2+2)

I
(13) (9)

Motivation

Application to parallel BFS and parallel DFS
— each processor push/pop vertices from its frontier
— split 1s used for dynamically distributing the load
— concatenation 1s used to merge the new frontiers

3 2 5 1 4 2 4 1 5 2 4 3
©00600600606060 %999
O A A O)

Requirements:
— push and pop must be very efficient
— split and concatenation 1s sublinear time

Contribution

Amortized O(1) push/pop and O(log N) concat/split

Prior work:

— Kaplan and Tarjan (1996)
— Hinze and Parterson (2006)

Purely functional data structures (confluently persistent).
Yet, very large constant factors (even 1f made ephemeral).

This work: ephemeral catenable/splittable deques with
small constant factors (e.g., not far from C++ STL deques).

Overview

(1) Chunked sequences
— assume a potentially-slow deque data structure
— construct a fast deque data structure, using chunks

* amortize allocations 1n worst-case push-pop scenarios
* ensure space efficiency 1in worst-case concat scenarios

(2) Bootstrapped chunked sequences
— build a stand-alone, fast, catenable/splittable deque

— use structural decomposition and recursive slowdown
(Dietz 1982; Buchsbaum & Tarjan 1995; Kaplan & Tarjan 1996)

Challenges with chunks

A chunk = fixed-capacity ring buffer (repr. as an array)

A deque of chunks (e.g. C++ STL deques)

AL

'd N\
| eooeo| eocee occecee ee0ee |

Challenge: (iterated push/pop operations)

AL

'd N\
looooe| 0ocee occ0cee 0000 |

A
r Y

Our chunked sequence

Approach: place two special chunks on each side

A

' 4 N\
| eooe®| | | |eoocee 0c0cee 00eee (eeeee (e0e |

front front middle sequence back back
outer 1nner of chunks inner outer

Invariant: the inner chunks must be either empty or full.

Implementation of push and pop

push
push
push*
push
pop

(fix)

pop

pop*

A

'4 N\
| eooe@| | | looooe eecee e0000 looooe| 000
A
'4 N\
looooe®| | | loocee eceecee eccoo loeeee| 000
x A
'4 N\
| o 00000 loocoe eecee e0000 looooe| 000
A
'4 N\
looooe 00000 looooe eecee e0ee0 loeocee| 000
\ \ A
'd N\
| o [ecceo loeocoe eccoe 0cecee eceee (00000 (eee
AL
r Y
| | [e00@0] loeocoe eccee 0cecee ccecee (00000 (eee
x A
'd N\
ooo0@| | | locooe| 00000 00000 (00000 (00000 (000
AL
r Y
| eo00| | | locooe| 00000 00000 (00000 (00000 (000

A

'd N\
looee0@| | | loocee| eocee 0c0coo XXX

Amortization with chunked sequences

Theorem: the amortized cost of push (including pop) 1s

A+M

C + + 0O(1)

where:
C cost of push (including associated pop) 1n a chunk
A cost of allocation (including deallocation) of a chunk
M cost of push (including pop) in the middle sequence
K capacity of a chunk

Challenges with concatenation

Concatenation of deques of chunks (with merge)

A A
) '4

'e

| eoeoeo| occcee eceee (o0 | 4+ | o0 (eo0oc00 000 I‘

NS/

A
' N

Worst-case scenario:

oI .\;‘/‘..‘ 1 r--.\::r/. oK

~ .~

A

Implementation of concatenation

Invariant: any two consecutive chunks in the middle
sequence must store a total number of more than K items.

A
7 Y

Concatenation: (up to 4 chunks need to be merged)

ol | [eeee] [oo] | N w— | e] | o

Implementation of split

Case 1:

A

KXxs |r| o0 | (o000 | | 000 |‘| | le®
‘/'_L\ \ , . \
| e || | | | |+ | o | ||_ee | eeee || oo || | [e® |

Case 2:

. /\ .

XN | [_ee® || L+ oo || | [eoe || | (0@

Towards bootstrapping

Summary: given a potentially-slow catenable/splittable
deque, we built a catenable/splittable deque structure with
small constant factors, even 1n worst-case scenarios.

A

'4 N\
| eooe@| | | |eceee 00cee 0e0e0ee eceee (e0e |

front front middle sequence back back
outer 1nner of chunks inner outer

Next step: implement the middle sequence of our chunked
sequence using... our chunked sequence. Do so recursively.

Bootstraped chunked sequence

front front back back
outer Inner inner outer

depth 0 | I | |
[0000] (000 |

depth 1 | | |
— o]

depth 2 | |
: []]

e i

[null]

Efficiency analysis

Theorem: the depth is at most

llog([{‘i‘l)/zn‘ + 1
Remark: depth 1s bounded by 7 for all practical purposes.

Theorem: push/pop has cost O(1), with a small constant
Theorem: concat and split have cost

O(K * l0g(1<+1)/2(

min(nl,nZ)))
where n, and n, denote the size of the two parts involved.

— compare with: 0(1Og2(min(n1 n2)))

Space-usage analysis

Theorem: asymptotic space usage 1s

O(1)

2+ * n

Alternative: with concat twice slower, density 1s 3/4, thus

1.33+O<1)

*n

Alternative: for bag semantics (unordered items), usage 1s

O(1)

1+ * n

Implementation and benchmarks

Two implementations:
— OCaml (mechanized proof using CFML, in Coq)
— C++ (carefully optimized code)

Performance of C++ code:
— first layer with unweighted chunks of capacity 512
— deeper layers with weighted chunks of capacity 32

Experiment STL | Bootstr.
deque | chunked

LIFO (10° * 10°%) | 5.46 +28%
LIFO (10® *10%) | 9.15 +20%
LIFO (10° * 10%) | 12.07 +12%
FIFO (10° * 10°) | 5.51 +16%
FIFO (10° * 10%) | 9.16 +15%
FIFO (10° * 10%) | 12.32 +8%

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

