
ESA 2014/09/08

Umut Acar Arthur Charguéraud Mike Rainey

Theory and Practice of Chunked Sequences

Inria & Carnegie Mellon University

Goal

Ephemeral deques (double-ended queues) with:
 push and pop at the two ends, in O(1) amortized
 concat, and split at arbitrary indices, in O(log n)

3 2 5 1 4 2 4 1

3 2 5 1 4 2 4 1

(2+2)

(13) (9)

Weighted split operation: (e.g. split at 13)

Motivation

Application to parallel BFS and parallel DFS
 each processor push/pop vertices from its frontier

 split is used for dynamically distributing the load
 concatenation is used to merge the new frontiers

3 2 5 1 4 2 4 1 5 2 4 3

Requirements:
 push and pop must be very efficient

 split and concatenation is sublinear time

Contribution

Amortized O(1) push/pop and O(log N) concat/split

Prior work:
 Kaplan and Tarjan (1996)
 Hinze and Parterson (2006)

Purely functional data structures (confluently persistent).
Yet, very large constant factors (even if made ephemeral).

This work: ephemeral catenable/splittable deques with
small constant factors (e.g., not far from C++ STL deques).

Overview

(1) Chunked sequences
 assume a potentially-slow deque data structure
 construct a fast deque data structure, using chunks

● amortize allocations in worst-case push-pop scenarios
● ensure space efficiency in worst-case concat scenarios

(2) Bootstrapped chunked sequences
 build a stand-alone, fast, catenable/splittable deque
 use structural decomposition and recursive slowdown
 (Dietz 1982; Buchsbaum & Tarjan 1995; Kaplan & Tarjan 1996)

Challenges with chunks

A chunk = fixed-capacity ring buffer (repr. as an array)

Challenge: (iterated push/pop operations)

A deque of chunks (e.g. C++ STL deques)

Our chunked sequence

Approach: place two special chunks on each side

Invariant: the inner chunks must be either empty or full.

front
outer

front
inner

middle sequence
of chunks

back
inner

back
outer

Implementation of push and pop

push

push*

push

pop

(fix)

push

pop

pop*

Amortization with chunked sequences

where:
C cost of push (including associated pop) in a chunk
A cost of allocation (including deallocation) of a chunk
M cost of push (including pop) in the middle sequence
K capacity of a chunk

Theorem: the amortized cost of push (including pop) is

C +
A+M
K

+ O(1)

Challenges with concatenation

Concatenation of deques of chunks (with merge)

Worst-case scenario:

+

+ + +

+

Implementation of concatenation

Invariant: any two consecutive chunks in the middle
sequence must store a total number of more than K items.

Concatenation: (up to 4 chunks need to be merged)

+

Implementation of split

+

Case 2:

+

Case 1:

Towards bootstrapping

Summary: given a potentially-slow catenable/splittable
deque, we built a catenable/splittable deque structure with
small constant factors, even in worst-case scenarios.

Next step: implement the middle sequence of our chunked
sequence using... our chunked sequence. Do so recursively.

front
outer

front
inner

middle sequence
of chunks

back
inner

back
outer

Bootstraped chunked sequence

front
outer

front
inner

back
inner

back
outer

depth 0

depth 1

depth 2

[null]

Efficiency analysis

Theorem: the depth is at most

Theorem: push/pop has cost O(1), with a small constant

Theorem: concat and split have cost

where and denote the size of the two parts involved.

⌊ log
(K+1)/2n ⌋ + 1

n1 n2

O (K ∗ log
(K+1)/2 (min (n1 ,n2)))

Remark: depth is bounded by 7 for all practical purposes.

O (log2 (min (n1 ,n2))) compare with:

Space-usage analysis

Theorem: asymptotic space usage is

Alternative: with concat twice slower, density is 3/4, thus

Alternative: for bag semantics (unordered items), usage is

(1 +
O(1)

K) ∗ n

(2 +
O(1)

K)∗ n

(1.33 +
O(1)

K) ∗ n

Implementation and benchmarks

Two implementations:
OCaml (mechanized proof using CFML, in Coq)
 C++ (carefully optimized code)

Performance of C++ code:
 first layer with unweighted chunks of capacity 512
 deeper layers with weighted chunks of capacity 32

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

