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Goal

Ephemeral deques (double-ended queues) with:
— push and pop at the two ends, 1n O(1) amortized
— concat, and split at arbitrary indices, in O(log n)
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Weighted split operation: (e.g. split at 13)
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Motivation

Application to parallel BFS and parallel DFS
— each processor push/pop vertices from its frontier
— split 1s used for dynamically distributing the load
— concatenation 1s used to merge the new frontiers
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Requirements:
— push and pop must be very efficient
— split and concatenation 1s sublinear time



Contribution

Amortized O(1) push/pop and O(log N) concat/split

Prior work:

— Kaplan and Tarjan (1996)
— Hinze and Parterson (2006)

Purely functional data structures (confluently persistent).
Yet, very large constant factors (even 1f made ephemeral).

This work: ephemeral catenable/splittable deques with
small constant factors (e.g., not far from C++ STL deques).



Overview

(1) Chunked sequences
— assume a potentially-slow deque data structure
— construct a fast deque data structure, using chunks

* amortize allocations 1n worst-case push-pop scenarios
* ensure space efficiency 1in worst-case concat scenarios

(2) Bootstrapped chunked sequences
— build a stand-alone, fast, catenable/splittable deque

— use structural decomposition and recursive slowdown
(Dietz 1982; Buchsbaum & Tarjan 1995; Kaplan & Tarjan 1996)



Challenges with chunks

A chunk = fixed-capacity ring buffer (repr. as an array)

A deque of chunks (e.g. C++ STL deques)
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Challenge: (iterated push/pop operations)
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Our chunked sequence

Approach: place two special chunks on each side
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front front  middle sequence back back
outer 1nner of chunks inner outer

Invariant: the inner chunks must be either empty or full.



Implementation of push and pop
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Amortization with chunked sequences

Theorem: the amortized cost of push (including pop) 1s
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where:
C cost of push (including associated pop) 1n a chunk
A cost of allocation (including deallocation) of a chunk
M cost of push (including pop) in the middle sequence
K capacity of a chunk



Challenges with concatenation

Concatenation of deques of chunks (with merge)
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Worst-case scenario:
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Implementation of concatenation

Invariant: any two consecutive chunks in the middle
sequence must store a total number of more than K items.
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Concatenation: (up to 4 chunks need to be merged)
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Implementation of split

Case 1:
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Towards bootstrapping

Summary: given a potentially-slow catenable/splittable
deque, we built a catenable/splittable deque structure with
small constant factors, even 1n worst-case scenarios.
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Next step: implement the middle sequence of our chunked
sequence using... our chunked sequence. Do so recursively.



Bootstraped chunked sequence

front front back back
outer Inner inner outer
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Efficiency analysis

Theorem: the depth is at most

llog([{‘i‘l)/zn‘ + 1
Remark: depth 1s bounded by 7 for all practical purposes.

Theorem: push/pop has cost O(1), with a small constant
Theorem: concat and split have cost

O(K * l0g(1<+1)/2(

min(nl,nZ)) )
where n, and n, denote the size of the two parts involved.

— compare with: 0( 1Og2(min(n1 n2)) )



Space-usage analysis

Theorem: asymptotic space usage 1s

O(1)

2+ * n

Alternative: with concat twice slower, density 1s 3/4, thus

1.33+O<1)

*n

Alternative: for bag semantics (unordered items), usage 1s

O(1)
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Implementation and benchmarks

Two implementations:
— OCaml (mechanized proof using CFML, in Coq)
— C++ (carefully optimized code)

Performance of C++ code:
— first layer with unweighted chunks of capacity 512
— deeper layers with weighted chunks of capacity 32

Experiment STL | Bootstr.
deque | chunked

LIFO (10° * 10°%) | 5.46 +28%
LIFO (10® *10%) | 9.15 +20%
LIFO (10° * 10%) | 12.07 +12%
FIFO (10° * 10°) | 5.51 +16%
FIFO (10° * 10%) | 9.16 +15%
FIFO (10° * 10%) | 12.32 +8%




Thanks!
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