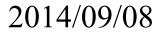
Theory and Practice of Chunked Sequences

Umut AcarArthur CharguéraudMike RaineyInria & Carnegie Mellon University

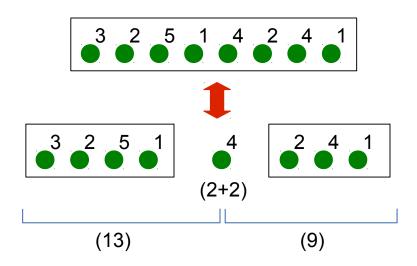


Goal

Ephemeral deques (double-ended queues) with:

 \rightarrow push and pop at the two ends, in O(1) amortized \rightarrow concat, and split at arbitrary indices, in O(log n)

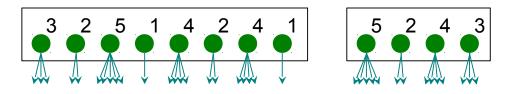
Weighted split operation: (e.g. split at 13)



Motivation

Application to parallel BFS and parallel DFS

- \rightarrow each processor push/pop vertices from its frontier
- \rightarrow split is used for dynamically distributing the load
- \rightarrow concatenation is used to merge the new frontiers



Requirements:

- \rightarrow push and pop must be very efficient
- \rightarrow split and concatenation is sublinear time

Contribution

Amortized O(1) push/pop and O(log N) concat/split

Prior work:

- \rightarrow Kaplan and Tarjan (1996)
- \rightarrow Hinze and Parterson (2006)

Purely functional data structures (confluently persistent). Yet, very large constant factors (even if made ephemeral).

This work: ephemeral catenable/splittable deques with small constant factors (e.g., not far from C++ STL deques).

Overview

(1) Chunked sequences

 \rightarrow assume a potentially-slow deque data structure \rightarrow construct a fast deque data structure, using chunks

- amortize allocations in worst-case push-pop scenarios
- ensure space efficiency in worst-case concat scenarios

(2) Bootstrapped chunked sequences

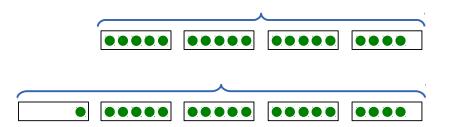
- \rightarrow build a stand-alone, fast, catenable/splittable deque
- → use structural decomposition and recursive slowdown (Dietz 1982; Buchsbaum & Tarjan 1995; Kaplan & Tarjan 1996)

Challenges with chunks

A chunk = fixed-capacity ring buffer (repr. as an array)

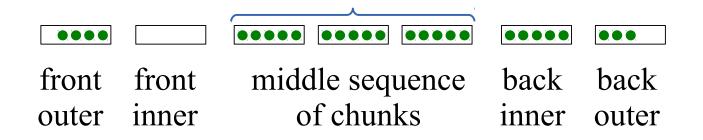
A deque of chunks (e.g. C++ STL deques)

Challenge: (iterated push/pop operations)



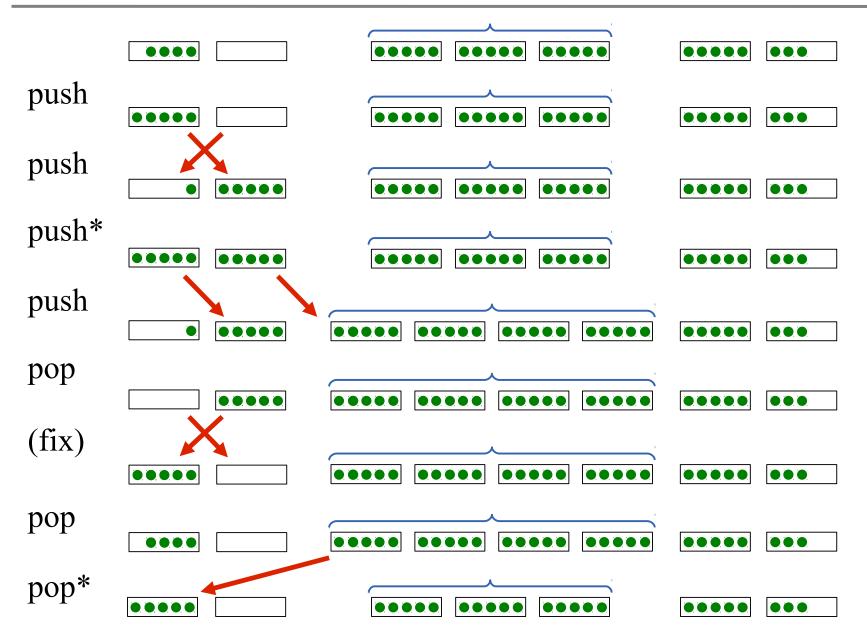
Our chunked sequence

Approach: place two special chunks on each side



Invariant: the inner chunks must be either empty or full.

Implementation of push and pop



Amortization with chunked sequences

Theorem: the amortized cost of push (including pop) is

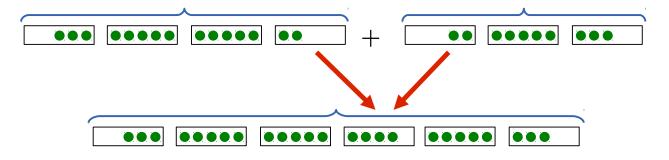
$$C + \frac{A+M}{K} + O(1)$$

where:

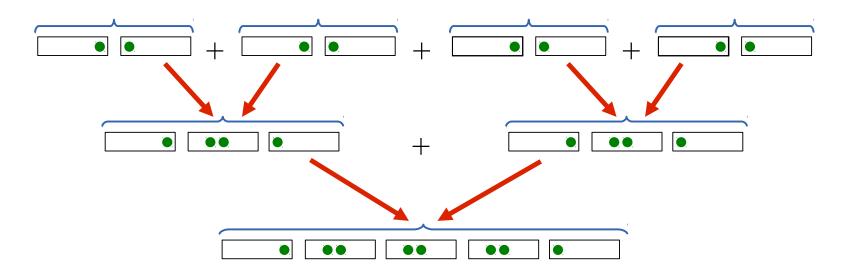
C cost of push (including associated pop) in a chunk
A cost of allocation (including deallocation) of a chunk
M cost of push (including pop) in the middle sequence
K capacity of a chunk

Challenges with concatenation

Concatenation of deques of chunks (with merge)

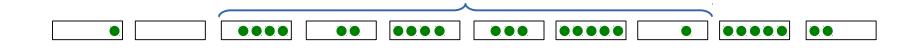


Worst-case scenario:

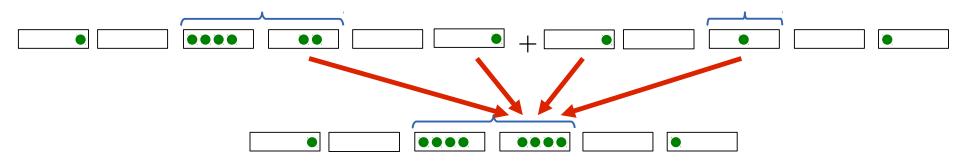


Implementation of concatenation

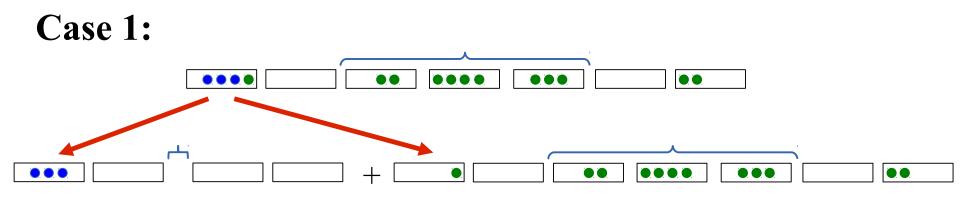
Invariant: any two consecutive chunks in the middle sequence must store a total number of more than K items.

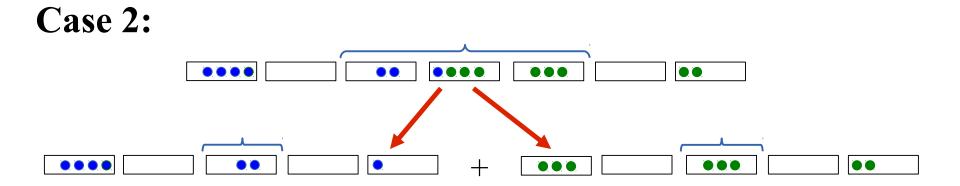


Concatenation: (up to 4 chunks need to be merged)



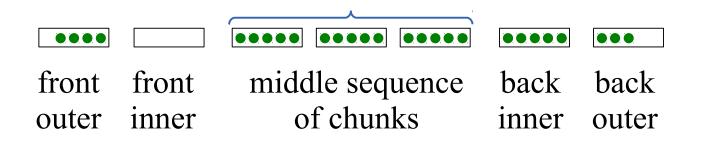
Implementation of split





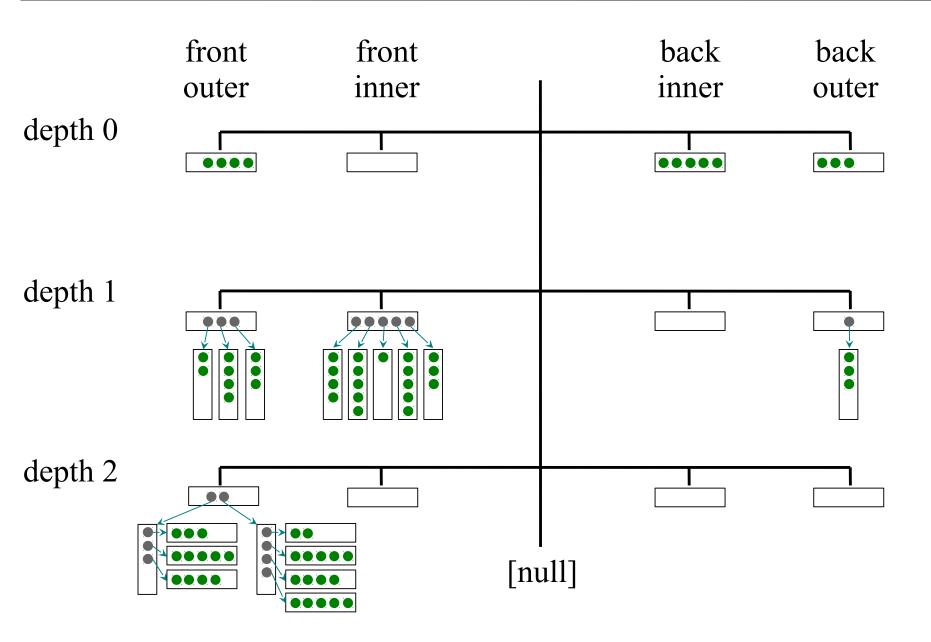
Towards bootstrapping

Summary: given a potentially-slow catenable/splittable deque, we built a catenable/splittable deque structure with small constant factors, even in worst-case scenarios.



Next step: implement the middle sequence of our chunked sequence using... our chunked sequence. Do so recursively.

Bootstraped chunked sequence



Efficiency analysis

Theorem: the depth is at most

$$\log_{(K+1)/2} n \Big] + 1$$

Remark: depth is bounded by 7 for all practical purposes.

Theorem: push/pop has cost O(1), with a small constant **Theorem:** concat and split have cost

$$O\left(K * \log_{(K+1)/2}\left(\min\left(n_1, n_2\right)\right)\right)$$

where n_1 and n_2 denote the size of the two parts involved.

 \rightarrow compare with: $O\left[\log_2\left(\min\left(n_1, n_2\right)\right)\right]$

Space-usage analysis

Theorem: asymptotic space usage is

$$\left(2 + \frac{\mathrm{O}(1)}{K}\right) * n$$

Alternative: with concat twice slower, density is 3/4, thus

$$\left|1.33 + \frac{\mathrm{O}(1)}{K}\right| * n$$

Alternative: for bag semantics (unordered items), usage is

$$\left|1 + \frac{\mathrm{O}(1)}{K}\right| * n$$

Implementation and benchmarks

Two implementations:

 \rightarrow OCaml (mechanized proof using CFML, in Coq) \rightarrow C++ (carefully optimized code)

Performance of C++ code:

 \rightarrow first layer with unweighted chunks of capacity 512

 \rightarrow deeper layers with weighted chunks of capacity 32

Experiment	STL	Bootstr.
	deque	chunked
LIFO $(10^6 * 10^3)$	5.46	+28%
LIFO $(10^3 * 10^6)$	9.15	+20%
LIFO $(10^0 * 10^9)$	12.07	+12%
FIFO $(10^6 * 10^3)$	5.51	+16%
FIFO $(10^3 * 10^6)$	9.16	+15%
FIFO $(10^0 * 10^9)$	12.32	+8%

Thanks!