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Goal

Ephemeral deques (double-ended queues) with:
 push and pop at the two ends, in O(1) amortized
 concat, and split at arbitrary indices, in O(log n)
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Weighted split operation: (e.g. split at 13)



Motivation

Application to parallel BFS and parallel DFS 
  each processor push/pop vertices from its frontier

 split is used for dynamically distributing the load 
 concatenation is used to merge the new frontiers
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Requirements:
  push and pop must be very efficient

 split and concatenation is sublinear time



Contribution

Amortized O(1) push/pop and O(log N) concat/split

Prior work:
 Kaplan and Tarjan (1996)
 Hinze and Parterson (2006)

Purely functional data structures (confluently persistent).
Yet, very large constant factors (even if made ephemeral).

This work: ephemeral catenable/splittable deques with 
small constant factors (e.g., not far from C++ STL deques).



Overview

(1) Chunked sequences
 assume a potentially-slow deque data structure 
 construct a fast deque data structure, using chunks

●  amortize allocations in worst-case push-pop scenarios
●  ensure space efficiency in worst-case concat scenarios

(2) Bootstrapped chunked sequences
 build a stand-alone, fast, catenable/splittable deque 
 use structural decomposition and recursive slowdown
       (Dietz 1982; Buchsbaum & Tarjan 1995; Kaplan & Tarjan 1996)



Challenges with chunks

A chunk = fixed-capacity ring buffer (repr. as an array)

Challenge: (iterated push/pop operations)

A deque of chunks (e.g. C++ STL deques)



Our chunked sequence

Approach: place two special chunks on each side

Invariant: the inner chunks must be either empty or full.
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Implementation of push and pop
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Amortization with chunked sequences

where: 
C cost of push (including associated pop) in a chunk
A cost of allocation (including deallocation) of a chunk
M cost of push (including pop) in the middle sequence
K capacity of a chunk 

Theorem: the amortized cost of push (including pop) is

C +
A+M
K

+ O(1)



Challenges with concatenation

Concatenation of deques of chunks (with merge)

Worst-case scenario:
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Implementation of concatenation

Invariant: any two consecutive chunks in the middle 
sequence must store a total number of more than K items.

Concatenation: (up to 4 chunks need to be merged)

+



Implementation of split
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Towards bootstrapping

Summary: given a potentially-slow catenable/splittable 
deque, we built a catenable/splittable deque structure with 
small constant factors, even in worst-case scenarios.

Next step: implement the middle sequence of our chunked 
sequence using... our chunked sequence. Do so recursively.
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Bootstraped chunked sequence
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Efficiency analysis

Theorem: the depth is at most

Theorem: push/pop has cost O(1), with a small constant

Theorem: concat and split have cost

where     and     denote the size of the two parts involved.

⌊ log
(K+1 )/2n ⌋ + 1

n1 n2

O ( K ∗ log
(K+1 )/2 (min (n1 ,n2 ) ) )

Remark: depth is bounded by 7 for all practical purposes.

O ( log2 (min (n1 ,n2 ) ) ) compare with: 



Space-usage analysis

Theorem: asymptotic space usage is 

Alternative: with concat twice slower, density is 3/4, thus

Alternative: for bag semantics (unordered items), usage is

(1 +
O(1)

K ) ∗ n

(2 +
O(1)

K )∗ n

(1.33 +
O(1)

K ) ∗ n



Implementation and benchmarks

Two implementations: 
OCaml (mechanized proof using CFML, in Coq)
 C++ (carefully optimized code)

Performance of C++ code:
 first layer with unweighted chunks of capacity 512 
 deeper layers with weighted chunks of capacity 32



Thanks!
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