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1 Introduction

This package provides a C++ template library that implements ordered, in-
memory containers that are based on a B-tree-like data structure.

Like STL deque, our chunkedseq data structure supports fast constant-time up-
date operations on the two ends of the sequence, and like balanced tree structures,
such as STL rope, our chunkedseq structure supports efficient logarithmic-time
split (at a specified position) and merge operations. However, unlike prior data
structures, ours provides all of these operations simultaneously. Our research
paper presents evidence to back these claims.

Key features of chunkedseq are:

Fast constant-time push and pop operations on the two ends of the sequence.
Logarithmic-time split at a specified position.

Logarithmic-time concatenation.

Familiar STL-style container interface.

A segment abstraction to expose to clients of the chunked sequence the
contiguous regions of memory that exist inside chunks.

Provided container types

Double-ended queue
Stack

Bag

Associative map
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1.2 Advanced features

o Parallel processing

o Weighted container

e STL-style iterator

e Segments

e Derived data structures by cached measurement

1.3 Compatibility

This codebase makes extensive use of C++11 features, such as lambda expressions.
Therefore, we recommend a recent version of GCC or Clang. We have tested
the code on GCC v4.9.

1.4 Credits

The chunkedseq package is maintained by the members of the Deepsea Project.
Primary authors include:

e Umut Acar
e Arthur Chargueraud
e Michael Rainey.

2 Double-ended queue

namespace pasl {
namespace data {
namespace chunkedseq {
namespace bootstrapped {

template <class Item>
class deque;

333

The deque class implements a double-ended queue that, in addition to fast access
to both ends, provides logarithmic-time operations for both weighted split and
concatenation.

The deque interface implements much of the interface of the STL deque. All oper-
ations for accessing the front and back of the container (e.g., front, push_front,
pop_front, etc.) are supported. Additionally, the deque supports splitting and
concatenation in logarithmic time and provides a random-access iterator.

2.1 Template parameters

namespace pasl {
namespace data {
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namespace chunkedseq {
namespace bootstrapped {

template <
class Item,
int Chunk_capacity = 512,
class Cache = cachedmeasure::trivial<Item, size_t>,
template <
class Chunk_item,
int Capacity,
class Chunk_item_alloc=std::allocator<Item>
>
class Chunk_struct = fixedcapacity::heap_allocated::ringbuffer_ptrx,
class Item_alloc = std::allocator<Item>
>
class deque;

333}

The signature above gives the complete list of the template parameters of the
deque class and the table below the meanings of each one.

Table 1: Template parameters for the deque class (short version).

Template parameter Description

Item Type of the objects to be stored in
the container

Chunk_capacity Specifies capacity of chunks.

Cache Specifies the policy by which to
cache measurements on interior
chunks.

Chunk_struct Specifies the type of the chunks.

Item_alloc Allocator to be used by the

container to construct and destruct
objects of type Item

2.1.1 Item type
class Item;

Type of the elements. Only if Item is guaranteed to not throw while moving,
implementations can optimize to move elements instead of copying them during
reallocations. Aliased as member type deque: :value_type.



2.1.2 Chunk capacity
int Chunk_capacity = 512;

The Chunk_capacity specifies the maximum number of items that can fit in
each chunk.

Although each chunk can store at most Chunk_capacity items, the container
can only guarantee that at most half of the cells of any given chunk are filled.

2.1.3 Cache type
class Cache = cachedmeasure::trivial<Item, size_t>;

The Cache type specifies the strategy to be used internally by the deque to main-
tain monoid-cached measurements of groups of items (see Cached measurement).

2.1.4 Chunk-struct type

template <
class Chunk_item,
int Capacity,
class Chunk_item_alloc=std::allocator<Item>
>
class Chunk_struct = fixedcapacity::heap_allocated::ringbuffer_ptrx;

The Chunk_struct type specifies the fixed-capacity ring-buffer representation
to be used for storing items (see Fixed-capacity buffers).

2.1.5 Allocator type

class Item_alloc = std::allocator<Item>;

Type of the allocator object used to define the storage allocation model.
By default, the allocator class template is used, which defines the simplest
memory allocation model and is value-independent. Aliased as member type
deque: :allocator_type.

2.2 Member types

Table 2: Member types of the deque class.

Type Description

self_type Alias for the type of this container
(e.g., deque, stack, bag)

value_type Alias for template parameter Item

reference Alias for value_type&

const_reference Alias for const value_type&

pointer Alias for value_type*



Type Description

const_pointer Alias for const value_type*
size_type Alias for size_t
segment_type Alias for

pasl::data: :segment<pointer>
cache_type Alias for template parameter Cache
measured_type Alias for

cache_type: :measured_type
algebra_type Alias for

cache_type: :algebra_type
measure_type Alias for

cache_type: :measure_type
iterator Iterator
const_iterator Const iterator

2.2.1 Iterator

The types iterator and const_iterator are instances of the random-access
iterator concept. In addition to providing standard methods, our iterator provides
the methods that are specified in the following table.

Table 3: Additional methods provided by the random-access itera-

tor.
Method Description
size Returns the number of preceding
items
search_by Search to some position guided by a
given predicate
get_segment Returns the current segment

2.2.1.1 Iterator size
size_type size() const;

Returns the number of items preceding and including the item pointed to by the
iterator.

Complexity. Constant time.

2.2.1.2 Search by predicate

template <class Predicate>
void search_by(const Predicate& p);
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Moves the iterator to the first position i in the sequence for which the call
p(m_i) returns true, where m_i denotes the accumulated cached measurement
at position i.

Complexity. Logarithmic time.
2.2.1.3 Get enclosing segment
segment_type get_segment() const;

Returns the segment that encloses the iterator.

Complexity. Constant time.

2.3 Constructors and destructors

Table 4: Constructors of the deque class.

Constructor Description

empty container constructor (default constructs an empty container with

constructor) no items

fill constructor constructs a container with a
specified number of copies of a given
item

copy constructor constructs a container with a copy of

each of the items in the given
container, in the same order

initializer list constructs a container with the items
specified in a given initializer list
move constructor constructs a container that acquires
the items of a given container
destructor destructs a container

2.3.1 Empty container constructor
deque () ;
Complexity. Constant time.

Constructs an empty container with no items;

2.3.2 Fill container
deque(long n, const value_type& val);
Constructs a container with n copies of val.

Complexity. Time is linear in the size of the resulting container.



2.3.3 Copy constructor
deque(const deque& other);

Constructs a container with a copy of each of the items in other, in the same
order.

Complexity. time is linear in the size of the resulting container.

2.3.4 Initializer-list constructor
deque(initializer_list<value_type> il);
Constructs a container with the items in il.

Complexity. Time is linear in the size of the resulting container.

2.3.5 Move constructor
deque (deque&& x);
Constructs a container that acquires the items of other.

Complexity. Constant time.

2.3.6 Destructor
~deque () ;
Destructs the container.

Complexity. Time is linear and logarithmic in the size of the container.

2.4 Item access

Table 5: Item accessors of the deque class.

Operation Description
front back Access item on end.
operator[] Access member item

2.4.1 Front and back

value_type front() const;
value_type back() const;

Returns a reference to the last item in the container.
Calling this method on an empty container causes undefined behavior.

Complexity. Constant time.



2.4.2 Indexing operator

reference operator[](size_type i);
const_reference operator[](size_type i) const;

Returns a reference at the specified location i. No bounds check is performed.
Complexity. Logarithmic time.
2.5 Capacity

Table 6: Capacity methods of the deque class.

Operation Description
empty Checks whether the container is empty.
size Returns the number of items.

2.5.1 Empty operator
bool empty() const;
Returns true if the container is empty, false otherwise.

Complexity. Constant time.

2.5.2 Size operator
size_type size() const;
Returns the size of the container.

Complexity. Constant time.

2.6 Iterators

Table 7: Iterators of the deque class.

Operation Description
begin cbegin Returns an iterator to the beginning
end cend Returns an iterator to the end

2.6.1 Iterator begin

iterator begin() const;
const_iterator cbegin() const;

Returns an iterator to the first item of the container.
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If the container is empty, the returned iterator will be equal to end().

Complexity. Constant time.

2.6.2 Iterator end

iterator end() const;
const_iterator cend() const;

Returns an iterator to the element following the last item of the container.

This element acts as a placeholder; attempting to access it results in undefined
behavior.

Complexity. Constant time.

2.7 Modifiers

Table 8: Modifiers of the deque class.

Operation Description

push_front push_back Adds items to the end

pop_front pop_back Removes items from the end

split Splits off part of the container
concat Merges contents of another container
clear Erases contents

resize Changes number of items stored
swap Swaps contents
2.7.1 Push

void push_front(const value_type& value);
void push_back(const value_type& value);

Prepends the given element value to the beginning of the container.

Iterator validity. All iterators, including the past-the-end iterator, are invali-
dated. No references are invalidated.

Complexity. Constant time.

2.7.2 Pop

value_type pop_back();
value_type pop_front();

Removes the last element of the container and returns the element.

Calling pop_back or pop_front on an empty container is undefined.

11



Returns the removed element.

Complexity. Constant time.

2.7.3 Split

void split(iterator position, self_type& other);
void split(size_type position, self_type& other);
template <class Predicate>
void split(const Predicate& p, self_type& other);
template <class Predicate>
void split(const Predicate& p,

reference middle_item,

self_type& other);

1. The container is erased after and including the item
position.

2. The container is erased after and including the item at (zero-based) index

position.

3. The container is erased after and including the item at the first position i
for which p(m_1i) returns true, where m_i denotes the accumulated cached

measurement at position i.

4. The container is erased after the item at the first position i for which
p(m_1i) returns true, where m_i denotes the accumulated cached measure-
ment at position i. The item at position i is also erased,

the item is copied into the reference middle_item.
The erased items are moved to the other container.
Precondition. The other container is empty.
Complexity. Time is logarithmic in the size of the container.

Iterator validity. Invalidates all iterators.

2.7.4 Concatenate

void concat(self_type other);

/7 (1)
/7 (2)

/7 (3)

/7 (4D

at the specified

but in this case,

Removes all items from other, effectively reducing its size to zero.

Adds items removed from other to the back of this container,
last item.

Complexity. Time is logarithmic in the size of the container.

Iterator validity. Invalidates all iterators.

12
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2.7.5 Clear

void clear();

Erases the contents of the container, which becomes an empty container.
Complexity. Time is linear in the size of the container.

Iterator validity. Invalidates all iterators, if the size before the operation
differs from the size after.

2.7.6 Resize

void resize(size_type n, const value_type& val); // (1)
void resize(size_type n) { /7 (2)
value_type val;
resize(n, val);

}
Resizes the container to contain n items.
If the current size is greater than n, the container is reduced to its first n elements.
If the current size is less than n,
1. additional copies of val are appended
2. additional default-inserted elements are appended

Complexity. Let m be the size of the container just before and n just after the
resize operation. Then, the time is linear in max(m,n).

Iterator validity. Invalidates all iterators, if the size before the operation
differs from the size after.

2.7.7 Exchange contents

void swap(deque& other);

Exchanges the contents of the container with those of other. Does not invoke
any move, copy, or swap operations on individual items.

Complexity. Constant time.

2.8 Example: push and pop

#include <iostream>
#include <string>
#include <assert.h>

#include "chunkedseq.hpp"

int main(int argc, const char * argv[]) {

13



using mydeque_type = pasl::data::chunkedseq::bootstrapped::deque<int>;
const int nb = 5;
mydeque_type mydeque;

for (int 1 = 0; i < nb; i++)
mydeque . push_back (i) ;

for (int i = 0; i < nb; i++)
mydeque . push_front (nb+i) ;

assert(mydeque.size() == 2*nb);

std::cout << "mydeque contains:";

for (int i = 0; i < 2%nb; i++) {
int v = (i % 2) 7 mydeque.pop_front() : mydeque.pop_back();
std::cout << " " << v;

}

std::cout << std::endl;
assert (mydeque.empty());

return 0;

}

source
Output
mydeque contains: 4 9 3 827 1605

2.9 Example: split and concat

#include <iostream>
#include <string>
#include <assert.h>

#include "chunkedseq.hpp"

using mydeque_type = pasl::data::chunkedseq::bootstrapped::deque<int>;
static

void myprint(mydeque_type& mydeque) {

auto it = mydeque.begin();
while (it != mydeque.end())

14
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std::cout << " " << *xjt++;
std::cout << std::endl;

}
int main(int argc, const char * argv[]) {

mydeque_type mydeque = { 0, 1, 2, 3, 4, 5 };
mydeque_type mydeque2;

mydeque.split(size_t(3), mydeque2);

mydeque . pop_back() ;
mydeque . push_back(8888) ;

mydeque2.pop_=front();
mydeque2.push_front (9999) ;

std::cout << "Just after split:" << std::endl;
std::cout << "contents of mydeque:";

myprint (mydeque) ;

std::cout << "contents of mydeque2:";

myprint (mydeque?2) ;

mydeque . concat (mydeque2) ;

std::cout << "Just after merge:" << std::endl;
std::cout << "contents of mydeque:";

myprint (mydeque) ;
std::cout << "contents of mydeque2:";
myprint (mydeque2) ;
return 0;
¥
source
Output

Just after split:

contents of mydeque: O 1 8888

contents of mydeque2: 9999 4 5

Just after merge:

contents of mydeque: O 1 8888 9999 4 5
contents of mydeque2:

15
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3 Stack

namespace pasl {
namespace data {
namespace chunkedseq {
namespace bootstrapped {

template <class Item>
class stack;

313

The stack is a container that supports the same set of operations as the deque,
but has two key differences:

e Thanks to using a simpler stack structure to represent the chunks, the
stack offers faster access to the back of the container and faster indexing
operations than deque.

o Unlike deque, the stack cannot guarantee fast updates to the front of the
container: each update operation performed on the front position can
require at most Chunk_capacity items to be shifted toward to back.

3.1 Template interface

The complete template interface of the stack constructor is the same as that of
the deque constructor, except that the chunk structure is not needed.

namespace pasl {
namespace data {
namespace chunkedseq {
namespace bootstrapped {

template <
class Item,
int Chunk_capacity = 512,
class Cache = cachedmeasure::trivial<Item, size_t>,
class Item_alloc = std::allocator<Item>
>
class stack;

333

3.2 Example

#include <iostream>
#include <string>
#include <assert.h>

16



#include "chunkedseq.hpp"

int main(int argc, const char * argv[]) {
using mystack_type = pasl::data::chunkedseq::bootstrapped::stack<int>;
mystack_type mystack = { 0, 1, 2, 3, 4 };

std::cout << "mystack contains:";
while (! mystack.empty())

std::cout << " " << mystack.pop_back();
std::cout << std::endl;

return 0;

}

source
Output

mystack contains: 4 3 2 1 0

4 Bag

namespace pasl {
namespace data {
namespace chunkedseq {
namespace bootstrapped {

template <class Item>
class bagopt;

333

Our bag container is a generic container that trades the guarantee of order
among its items for stronger guarantees on space usage and faster push and pop
operations than the corresponding properties of the stack structure. In particular,
the bag guarantees that there are no empty spaces in between consecutive items
of the sequence, whereas stack and deque can guarantee only that no more than
half of the cells of the chunks are empty.

Although our bag is unordered in general, in particular use cases, order among
items is guaranteed. Order of insertion and removal of the items is guaranteed
by the bag under any sequence of push or pop operations that affect the back of
the container. The split and concatenation operations typically reorder items.

The container supports front, push_front and pop_front operations for the

17


../examples/chunkedseq_3.cpp

sole purpose of interface compatibility. These operations simply perform the
corresponding actions on the back of the container.

4.1 Template interface
The complete template interface of the bag is similar to that of stack.

namespace pasl {
namespace data {
namespace chunkedseq {
namespace bootstrapped {

template <
class Item,
int Chunk_capacity = 512,
class Cache = cachedmeasure::trivial<Item, size_t>,
class Item_alloc = std::allocator<Item>
>

class bagopt;

333

4.2 Example

#include <iostream>
#include <string>

#include "chunkedbag.hpp"
int main(int argc, const char * argv[]) {

using mybag_type = pasl::data::chunkedseq: :bootstrapped: :bagopt<int>;

mybag_type mybag = { 0, 1, 2, 3, 4 };

std::cout << "mybag contains:";
while (! mybag.empty())

std::cout << " " << mybag.popQ);
std::cout << std::endl;

return O;

}

source

Output

18
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mybag contains: 4 3 21 0

5 Associative map

namespace pasl {
namespace data {
namespace map {

template <class Key,
class Item,
class Compare = std::less<Key>,
class Key_swap = std_swap<Key>,
class Alloc = std::allocator<std::pair<const Key, Item> >,
int chunk_capacity = 8
>
class map;

33

Using the cached-measurement feature of our chunked sequence structure, we
have implemented asymptotically efficient associative maps in the style of STL
map. Our implementation is, however, not designed to compete with highly
optimized implementations, such as that of STL. Rather, the main purpose of our
implementation is to provide an example of advanced use of cached measurement
so that others can apply similar techniques to build their own custom data
structures.

Our map interface implements only a subset of the STL interface. The operations
that we do implement have the same time and space complexity as do the
operations implemented by the STL container. However, the constant factors
imposed by our container may be significantly larger than those of the STL
container because our structure is not specifically optimized for this use case.

5.1 Example: insert

// accessing mapped values
#include <iostream>
#include <string>

#include "map.hpp"

int main O {
pasl::data::map::map<char,std::string> mymap;

mymap['a']="an element";
mymap['b']="another element";

19
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mymap['c']=mymap['b'];

std::cout
std: :cout
std: :cout

std::cout

std: :cout

return 0O;

}

source
Output

mymap['a']
mymap['b']
mymap['c']
mymap['d']

mymap now contains 4 elements.

<<

<<

<<

<<

<<

is
is
is
is

"mymap['a'] is
"mymap['b'] is
"mymap['c'] is

"mymap['d'] is

<<

<<

<<

<<

"mymap now contains

an element
another element
another element

5.2 Example: erase

// accessing mapped values
#include <iostream>
#include <string>

#include "map.hpp"

int main ()

{

mymap['a']
mymap['b']
mymap['c']

mymap['d']

" << mymap.

pasl::data: :map::map<char,int> mymap;

pasl::data::map::map<char,int>::iterator it;

// insert some walues:
mymap['a']=10;
mymap['b']=20;
mymap['c']=30;
mymap [ 'd']=40;
mymap['e']=50;
mymap['f']=60;

20
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it=mymap.find('b');
mymap.erase (it); // erasing by iterator

mymap.erase ('c'); // erasing by key

// show content:
for (it=mymap.begin(); it!=mymap.end(); ++it)

std::cout << (*it).first << " => " << (*it).second << '
return O;

}

source

Output

f => 60

e => 50

d => 40

a => 10

6 Parallel processing

The containers of the chunkedseq package are well suited to applications which
use fork-join parallelism: thanks to the logarithmic-time split operations, chun-
kedseq containers can be divided efficiently, and thanks to the logarithmic-time
concatenate operations, chunkedseq containers can be merged efficiently. More-
over, chunkedseq containers can be processed efficiently in a sequential fashion,
thereby enabling a liberal programming style in which sequential and parallel
processing styles are combined synergistically. The following example programs
deomonstrate this style.

Remark:

The data structures of the chunkedseq package are not concurrent
data structures, or, put differently, chunkedseq data structures admit
only single-threaded update operations.

Remark:

The following examples are evidence that this single-threading re-
striction does not necessarily limit parallelism.

6.1 Example: pkeep_if

To see how our deque can be used for parallel processing, let us consider the
following program, which constructs the subsequence of a given sequence, based
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on selections taken by a client-supplied predicate function. Assuming fork-join
parallel constructs, such as Cilk’s spawn and sync, the selection and build process
of the pkeep_if function can achieve a large (in fact, unbounded) amount of
parallelism thanks to the fact that the span of the computation is logarithmic in
the size of the input sequence. Moreover, pkeep_if is work efficient thanks to
the fact that the algorithm takes linear time in the size of the input sequence
(assuming, of course, that the client-supplied predicate takes constant time).

#include <iostream>
#include "chunkedseq.hpp"
using cbdeque = pasl::data::chunkedseq: :bootstrapped: :deque<long>;

// moves ttems which satisfy a given predicate p from src to dst

// preserving original order of items in src

template <class Predicate_function>

void pkeep_if (cbdeque& dst, cbdeque& src, const Predicate_function& p) {

const int cutoff = 8096;
long sz = src.size(Q);
if (sz <= cutoff) {

// compute result in a sequential fashion
while (sz-- > 0) {
long item = src.pop_back();
if (p(item))
dst.push_front (item);
3

} else {

cbdeque src2;
cbdeque dst2;

// divide the input evenly in two halves
size_t mid = sz / 2;
src.split(mid, src2);

// recurse on subproblems

// calls can ezecute in parallel
pkeep_if (dst, src, p);
pkeep_if (dst2, src2, p);
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// combine results (after parallel calls complete)
dst.concat(dst2);

}
}

int main(int argc, const char * argv[]) {

cbdeque src;
cbdeque dst;

const long n = 1000000;

// fill the source container with [1, ..., 2n]
for (long i = 1; i <= 2%n; i++)
src.push_back(i);

// leave src empty and dst = [1, 3, 5, ... n-1]
pkeep_if(dst, src, [l (long x) { return x%2 == 1; });

assert(src.empty());
assert(dst.size() == n);

// calculate the sum

long sum = O;

while (! dst.empty())
sum += dst.pop_front();

// the sum of n consecutive odd integers starting from 1 equals n°2
assert(sum == n*n);
std::cout << "sum = " << sum << std::endl;

return 0;

3

source
Output
sum = 1000000000000

6.2 Example: pcopy

This algorithm implements a parallel version of std::copy. Note, however, that the
two versions differ slightly: in our version, the type of the destination parameter
is a reference to the destination, whereas the corresponding type in std::copy is
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instead an iterator that points to the beginning of the destination container.

#include <iostream>
#include <string>
#include <assert.h>

#include "chunkedseq.hpp"

template <class Chunkedseqg>
void pcopy(typename Chunkedseq::iterator first,
typename Chunkedseq::iterator last,
Chunkedseq& destination) {
using iterator = typename Chunkedseq::iterator;
using ptr = typename Chunkedseq::const_pointer;

const long cutoff = 8192;
long sz = last.size() - first.size(Q);
if (sz <= cutoff) {
// compute result in a sequential fashion
Chunkedseq: :for_each_segment(first, last, [&] (ptr lo, ptr hi)
destination.pushn_back(lo, hi-1lo);
s

} else {

// select split position to be the median
iterator mid = first + (sz/2);

Chunkedseq destination2;

// recurse on subproblems

// calls can ezecute in parallel
pcopy(first, mid, destination);

pcopy (mid, last, destination2);

// combine results
destination.concat(destination?2);

}
}

int main(int argc, const char * argv[]) {
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const int chunk_size = 2;
using mydeque_type = pasl::data::chunkedseq::bootstrapped::deque<int, chunk_size>;

mydeque_type mydeque = { 0, 1, 2, 3, 4, 5 };
mydeque_type mydequeZ2;

pcopy (mydeque.begin(), mydeque.end(), mydeque2);

std::cout << "mydeque2 contains:";

auto p = mydeque2.begin();

while (p !'= mydeque2.end())
std::cout << " " << *p++;

std::cout << std::endl;

return O;

}

source
Output
mydeque2 contains: 0 1 2 3 4 5

6.3 Example: pcopy_if

This algorithm implements a parallel version of std::copy_if. Just as before, our
implementation uses a type for the third parameter that is different from the
corresponding third parameter of the STL version.

#include <iostream>
#include <string>
#include <assert.h>

#include "chunkedseq.hpp"

template <class Chunkedseq, class UnaryPredicate>
void pcopy_if (typename Chunkedseq::iterator first,
typename Chunkedseq::iterator last,
Chunkedseq& destination,
const UnaryPredicate& pred) {
using iterator = typename Chunkedseq::iterator;
using value_type = typename Chunkedseq::value_type;
using ptr = typename Chunkedseq::const_pointer;

const long cutoff = 8192;

long sz = last.size() - first.size(Q);
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if (sz <= cutoff) {

// compute result in a sequential fashion
Chunkedseq: :for_each_segment(first, last, [&] (ptr lo, ptr hi) {
for (ptr p = lo; p < hi; p++) {
value_type v = *p;
if (pred(v))
destination.push_back(v);
}
s

} else {

// select split position to be the median
iterator mid = first + (sz/2);

Chunkedseq destination2;

// recurse on subproblems

// calls can ezecute in parallel

pcopy_if (first, mid, destination, pred);

pcopy_if (mid, last, destination2, pred);

destination.concat(destination2);

int main(int argc, const char * argv[]) {

const int chunk_size = 2;
using mydeque_type = pasl::data::chunkedseq::bootstrapped::deque<int, chunk_size>;

mydeque_type mydeque = { 0, 1, 2, 3, 4, 5 };
mydeque_type mydeque2;

pcopy_if (mydeque.begin(), mydeque.end(), mydeque2, [] (int i) { return i%2==0; });
std::cout << "mydeque2 contains:";
auto p = mydeque2.begin();
while (p != mydeque2.end())
std::cout << " " << xp++;

std::cout << std::endl;

return 0;
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}

source
Output

mydeque2 contains: 0 2 4

7 Weighted container

The chunkedseq containers can easily generalize to weighted containers. A
weighted container is a container that assigns to each item in the container
an integral weight value. The weight value is typically expressed as a weight
function that is defined by the client and passed to the container via template
argument.

The purpose of the weight is to enable the client to use the weighted-split
operation, which divides the container into two pieces by a specified weight. The
split operation takes only logarithmic time.

7.1 Example: split sequence of strings by length

The following example program demonstrates how one can use weighted split to
split a sequence of string values based on the number of even-length strings. In
this case, our split divides the sequence into two pieces so that the first piece
goes into d and the second to f£. The split function specifies that d is to receive
the first half of the original sequence of strings that together contain half of the
total number of even-length strings in the original sequence; f is to receive the
remaining strings. Because the lengths of the strings are cached internally by
the weighted container, the split operation takes logarithmic time in the number
of strings.

#include <iostream>
#include <string>

#include "chunkedseq.hpp"

namespace cachedmeasure = pasl::data::cachedmeasure;
namespace chunkedseq = pasl::data::chunkedseq::bootstrapped;

const int chunk_capacity = 512;
int main(int argc, const char * argv[]) {

using value_type = std::string;
using weight_type = int;

class my_weight_fct {
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3

public:
// returns 1 if the length of the string is an even number; 0 otherwise
weight_type operator() (const value_type& str) const {
return (str.size() % 2 == 0) ? 1 : 0O;
}
+;

using my_cachedmeasure_type =
cachedmeasure: :weight<value_type, weight_type, size_t, my_weight_fct>;

using my_weighted_deque_type =
chunkedseq: :deque<value_type, chunk_capacity, my_cachedmeasure_type>;

my_weighted_deque_type d = { "Let's", "divide", "this", "sequence", "of",
"strings", "into", "two", "pieces" };

weight_type nb_even_length_strings = d.get_cached();
std::cout << "nb even-length strings: " << nb_even_length_strings << std::endl;

my_weighted_deque_type f;

d.split([=] (weight_type v) { return v >= nb_even_length_strings/2; }, f);
std::cout << "d = " << std::endl;

d.for_each([] (value_type& s) { std::cout << s << " "; });

std::cout << std::endl;

std::cout << std::endl;

std::cout << "f = " << std::endl;

f.for_each([] (value_type& s) { std::cout << s << " "; });

std::cout << std::endl;

return O;

source

Output

nb even strings: 6

d

Let's divide this

f

sequence of strings into two pieces
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8 STL-style iterator

Our deque, stack and bag containers implement the random-access iterators in
the style of STL’s random-access iterators.

8.1 Example

#include <iostream>
#include <string>
#include <assert.h>

#include "chunkedseq.hpp"
int main(int argc, const char * argv[]) {

using mydeque_type = pasl::data::chunkedseq::bootstrapped::deque<int>;
using iterator = typename mydeque_type::iterator;
mydeque_type mydeque = { 0, 1, 2, 3, 4 };

std::cout << "mydeque contains:';

iterator it = mydeque.begin();
while (it != mydeque.end())
std::cout << " " << kit++;

std::cout << std::endl;

return O;

}
source
Output

mydeque contains: 0 1 2 3 4

9 Segments

In this package, we use the term segment to refer to pointer values which reference
a range in memory. We define two particular forms of segments:

e A basic segment is a value which consists of two pointers, namely begin
and end, that define the right-open interval, (begin, end].

e An enriched segment is a value which consists of a basic segment, along
with a pointer, namely middle, which points at some location in between
begin and end, such that begin <= middle < end.
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The following class defines a representation for enriched segments.

template <class Pointer>
class segment {
public:

using pointer_type = Pointer;

// points to the first cell of the interval

pointer_type begin;

// points to a cell contained in the interval

pointer_type middle;

// points to the cell that is one cell past the last cell of interval
pointer_type end;

segment ()
: begin(nullptr), middle(nullptr), end(nullptr) { }

segment (pointer_type begin, pointer_type middle, pointer_type end)
: begin(begin), middle(middle), end(end) { }
3

source

9.1 Example

#include <iostream>
#include <string>
#include <assert.h>

#include "chunkedseq.hpp"
int main(int argc, const char * argv[]) {

const int chunk_size = 2;
using mydeque_type = pasl::data::chunkedseq::bootstrapped::deque<int, chunk_size>;

mydeque_type mydeque = { 0, 1, 2, 3, 4, 5 };

std::cout << "mydeque contains:';

// iterate over the segments in mydeque
mydeque.for_each_segment ([&] (int* begin, int* end) {
// iterate over the items in the current segment

int* p = begin;
while (p != end)
std::cout << " " << xp++;
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B;
std::cout << std::endl;

using iterator = typename mydeque_type::iterator;
using segment_type = typename mydeque_type::segment_type;

// iterate over the titems in the segment which contains the item at position 3
iterator it = mydeque.begin() + 3;
segment_type seg = it.get_segment();

std::cout << "the segment which contains mydeque[3] contains:";
int* p = seg.begin;
while (p != seg.end)
std::cout << " " << xp++;
std::cout << std::endl;

std::cout << "mydeque[3]=" << *seg.middle << std::endl;
return O;

}

source
Output

mydeque contains: 0 1 2 3 4 5
the segment which contains mydeque[3] contains: 2 3
mydeque [3]=3

10 Cached measurement

This documentation covers essential concepts that are needed to implement
custom data structures out of various instantiations of the chunkedseq struc-
ture. Just like the Finger Tree of Hinze and Patterson, the chunkedseq can be
instantiated in certain ways to yield asymptotically efficient data structures,
such as associative maps, priority queues, weighted sequences, interval trees, etc.
A summary of these ideas that is presented in greater detail can be find in the
original publication on finger trees and in a blog post.

In this tutorial, we present the key mechanism for building derived data structures:
monoid-cached measurement. We show how to use monoid-cached measurements
to implement a powerful form of split operation that affects chunkedseq containers.
Using this split operation, we then show how to apply our cached measurement
scheme to build two new data structures:

o weighted containers with weighted splits
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o asymptotically efficient associative map containers in the style of std::map

10.1 Taking measurements

Let S denote the type of the items contained by the chunkedseq container
and T the type of the cached measurements. For example, suppose that we
want to define a weighted chunkedseq container of std::strings for which
the weights have type weight_type. Then we have: S = std :: string and
T = weight_type. How exactly are cached measurements obtained? The
following two methods are the ones that are used by our C++ package.

10.1.1 Measuring items individually

A measure function is a function m that is provided by the client; the function
takes a single item and returns a single measure value: m(s) : S — T.

10.1.2 Example: the “size” measure

Suppose we want to use our measurement to represent the number of items that
are stored in the container. We call this measure the size measure. The measure
of any individual item always equals one: size(s): S — long = 1.

10.1.3 Example: the “string-size” measure

The string-size measurement assigns to each item the weight equal to the num-
ber of characters in the given string: string size(str) : string — long =
str.size().

10.1.4 Measuring items in contiguous regions of memory

Sometimes it is convenient to have the ability to compute, all at once, the
combined measure of a group of items that is referenced by a given “basic’
segment. For this reason, we require that, in addition to m, each measurement
scheme provides a segment-wise measure operation, namely >, which takes the
pair of pointer arguments begin and end which correspond to a basic segment,
and returns a single measured value: >(begin,end) : (S*,5%) — T.

M

The first and second arguments correspond to the range in memory defined by
the segment (begin, end]. The value returned by >(begin, end) should equal the
sum of the values m(xp) for each pointer p in the range (begin, end].

10.1.4.1 Example: segmented version of our size measurement This

operation is simply >(begin, end) = |end — begin|, where our segment is defined
by the sequence of items represented by the range of pointers (begin, end).
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10.1.5 The measure descriptor

The measure descriptor is the name that we give to the C++ class that describes
a given measurement scheme. This interface exports deinitions of the following

types:

Type Description

value_type type S of items stored in the container
measured_type type T of item-measure values

And this interface exports definitions of the following methods:

Members Description
measured_type operator() (const returns m(v)
value_type& v)

measured_type operator() (const returns >(begin, end)
value_type* begin, const value_typex*

end)

10.1.5.1 Example: trivial measurement Our first kind of measurement
is one that does nothing except make fresh values whose type is the same as the
type of the second template argument of the class.

template <class Item, class Measured>
class trivial {
public:

using value_type = Item;
using measured_type = Measured;

measured_type operator() (const value_type& v) const {
return measured_type();

}

measured_type operator() (const value_type* lo, const value_typex hi) const {
return measured_type();

}

};
source

The trivial measurement is useful in situations where cached measurements are
not needed by the client of the chunkedseq. Trivial measurements have the
advantage of being (almost) zero overhead annotations.
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10.1.6 Example: weight-one (uniformly sized) items

This kind of measurement is useful for maintaining fast access to the count of
the number of items stored in the container.

template <class Item, class Measured, int Item_weight=1>
class uniform {
public:

using value_type = Item;
using measured_type = Measured;
const int item_weight = Item_weight;

measured_type operator() (const value_type& v) const {
return measured_type(item_weight) ;

}

measured_type operator() (const value_type* lo, const value_typex hi) const {
return measured_type(hi - lo);

}
};

source
10.1.6.1 Example: dynamically weighted items This technique allows
the client to supply to the internals of the chunkedseq container an arbitrary

weight function. This client-supplied weight function is passed to the following
class by the third template argument.

template <class Item, class Weight, class Client_weight_fct>
class weight {
public:
using value_type = Item;
using measured_type = Weight;
using client_weight_fct_type = Client_weight_fct;
private:

client_weight_fct_type client_weight_fct;

// for debugging purposes
bool initialized;

public:

weight() : initialized(false) { }
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weight (const client_weight_fct_type& env)
client_weight_fct(env), initialized(true) { }

measured_type operator() (const value_type& v) const {
return client_weight_fct(v);

}

measured_type operator() (const value_type* lo, const value_typex hi) const {
measured_type m = 0;
for (auto p = lo; p < hi; p++)
m += operator () (*p);
return m;

}

client_weight_fct_type get_env() const {
assert(initialized);
return client_weight_fct;

}

void set_env(client_weight_fct_type wf) {
client_weight_fct = wf;
initialized = true;

}

};

source

10.1.6.2 Example: combining cached measurements Often it is useful
to combine meaurements in various configurations. For this purpose, we define
the measured pair, which is just a structure that has space for two values of two
given measured types, namely Measuredl and Measured?2.

template <class Measuredl, class Measured2>
class measured_pair {
public:
Measuredl valuel;
Measured2 value2;
measured_pair() { }
measured_pair(const Measuredl& valuel, const Measured2& value2)
: valuel(valuel), value2(value2) { }

};

template <class Measuredl, class Measured2>
measured_pair<Measuredl,Measured2> make_measured_pair (Measuredl ml, Measured2 m2) {
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measured_pair<Measuredl,Measured2> m(ml, m2);
return m;

}
source

The combiner measurement just combines the measurement strategies of two
given measures by pairing measured values.

template <class Item, class Measurel, class Measure2>
class combiner {
public:

using measurel_type = Measurel;
using measure2_type = Measure2;

using value_type = Item;
using measured_type = measured_pair<measurel_type, measure2_type>;

measurel_type measl;
measure2_type meas?2;

combiner() { }

combiner(const measurel_type measl)
: measl(measl) { }

combiner (const measure2_type meas2)
: meas2(meas2) { }

combiner(const measurel_type measl, const measure2_type meas2)
: measl(measl), meas2(meas2) { }

measured_type operator() (const value_type& v) const {
return make_measured_pair(measl(v), meas2(v));

}
measured_type operator() (const value_type* lo, const value_typex hi) const {
return make_measured_pair(measl(lo, hi), meas2(lo, hi));

}

};

source
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10.2 Using algebras to combine measurements

Recall that a monoid is an algebraic structure that consists of a set T, an
associative binary operation @ and an identity element I. That is, (T,®,I) is a
monoid if:

o @ is associative: for every z, yand zin T, 2® (y® 2) = (z D y) ® 2.
e Iis the identity for @: for every x in T, 2 I =16 z.

Examples of monoids include the following:

e T = the set of all integers; @ = addition; I = 0
o T = the set of 32-bit unsigned integers; @ = addition modulo 23?; I = 0
e T = the set of all strings; ® = concatenation; I = the empty string

A group is a closely related algebraic structure. Any monoid is also a group if
the monoid has an inverse operation ©:

e & is inverse for @: for every x in T, there is an item y = &z in T, such
that oy =1.
10.2.1 The algebra descriptor

We require that the descriptor export a binding to the type of the measured
values that are related by the algebra.

Type Description

value_type type of measured values T to be related by the algebra

We require that the descriptor export the following members. If has_inverse is
false, then it should be safe to assume that the inverse (x) operation is never
called.

Static members Description

const bool has_inverse true, iff the algebra is a group
value_type identity() returns I

value_type combine(value_type x, value_type y) returnsx @y

value_type inverse(value_type x) returns © x

10.2.1.1 Example: trivial algebra The trivial algebra does nothing except
construct new identity elements.

class trivial {
public:

using value_type = struct { };
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static constexpr bool has_inverse = true;

static value_type identity() {
return value_type();

}

static value_type combine(value_type, value_type) {
return identity();

}

static value_type inverse(value_type) {
return identity();

}
};
source
10.2.1.2 Example: algebra for integers The algebra that we use for

integers is a group in which the identity element is zero, the plus operator is
integer addition, and the minus operator is integer negation.

template <class Int>
class int_group_under_addition_and_negation {
public:

using value_type = Int;

static constexpr bool has_inverse = true;

static value_type identity() {
return value_type(0);

}

static value_type combine(value_type x, value_type y) {
return x + y;

}

static value_type inverse(value_type x) {
return value_type(-1) * x;

}

};

source
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10.2.2 Example: combining algebras

Just like with the measurement descriptor, an algebra descriptor can be created
by combining two given algebra descriptors pairwise.

template <class Algebral, class Algebra2>
class combiner {

public:
using algebral_type = Algebral;
using algebra2_type = Algebra2;

using valuel_type
using value2_type

typename Algebral::value_type;
typename Algebra2::value_type;

using value_type = measure::measured_pair<valuel_type, value2_type>;

static constexpr bool has_inverse =
algebral_type::has_inverse
&& algebra2_type::has_inverse;

static value_type identity() {
return measure: :make_measured_pair(algebral_type::identity(),
algebra2_type::identity());

static value_type combine(value_type x, value_type y) {
return measure: :make_measured_pair(algebral_type::combine(x.valuel, y.valuel),
algebra2_type::combine(x.value2, y.value2));

static value_type inverse(value_type x) {
return measure: :make_measured_pair(algebral_type::inverse(x.valuel),
algebra2_type::inverse(x.value2));

};

source

10.2.3 Scans

A scan is an iterated reduction that maps to each item v; in a given sequences
of items S = [v1, va, ..., vy,] a single measured value ¢; = I ® m(vy) ® m(vy)
... ®m(v;), where m(v) is a given measure function. For example, consider
the “size” (i.e., weight-one) scan, which is specified by the use of a particular
measure function: m(v) = 1. Observe that the size scan gives the positions of
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the items in the sequence, thereby enabling us later on to index and to split the
chunkedseq at a given position.

For convenience, we define scan formally as follows. The operator returns the
combined measured values of the items in the range of positions [i,7) in the
given sequence s.

M; ; : Sequence(S) = T
M; j(s) = m(s;)) ®m(sit1) © ... @ m(s;)ifi <j

10.2.4 'Why associativity is necessary

The cached value of an internal tree node k in the chunkedseq structure is
computed by M; ;(s), where s = [v;, ..., v;] represents a subsequence of values
contained in the chunks of the subtree below node k. When this reduction
is performed by the internal operations of the chunkedseq, this expression is
broken up into a set of subexpressions, for example: ((m(v;) ® m(viy1)) @
(m(vig2) ® m(vigs) ® (M(viga) ® M(viys)))... ® m(v;)). The partitioning into
subexpressions and the order in which the subexpressions are combined depends
on the particular shape of the underlying chunkedseq. Moreover, the particular
shape is determined uniquely by the history of update operations that created
the finger tree. As such, we could build two chunkedsegs by, for example, using
different sequences of push and pop operations and end up with two different
chunkedseq structures that represent the same sequence of items. Even though
the two chunkedseqs represent the same sequence, the cached measurements
of the two chunkedseqs are combined up to the root of the chunkedseq by two
different partitionings of combining operations. However, if & is associative, it
does not matter: regardless of how the expression are broken up, the cached
measurement at the root of the chunkedseq is guaranteed to be the same for
any two chunkedseqs that represent the same sequence of items. Commutativity
is not necessary, however, because the ordering of the items of the sequence is
respected by the combining operations performed by the chunkedseq.

10.2.5 Why the inverse operation can improve performance

Suppose we have a cached measurement C' = M, ;(s) , where s = [v;,...,v;]
represents a subsequence of values contained in the same chunk somewhere
inside our chunkedseq structure. Now, suppose that we wish to remove the
first item from our sequence of measurements, namely v;. On the one hand,
without an inverse operation, and assuming that we have not cached partial
sums of C, the only way to compute the new cached value is to recompute
(m(vig1) ® ... ® m(v;)). On the other hand, if the inverse operation is cheap, it
may be much more efficient to instead compute &m(v;) @ C.

Therefore, it should be clear that using the inverse operation can greatly improve
efficiency in situations where the combined cached measurement of a group
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of items needs to be recomputed on a regular basis. For example, the same
situation is triggered by the pop operations of the chunks stored inside the
chunkedseq structure. On the one hand, by using inverse, each pop operation
requires only a few additional operations to reset the cached measured value of
the chunk. On the other, if inverse is not available, each pop operation requires
recomputing the combined measure of the chunk, which although constant time,
takes time proportion with the chunk size, which can be a fairly large fixed
constant, such as 512 items. As such, internally, the chunkedseq operations use
inverse operations whenever permitted by the algebra (i.e., when the algebra is
identified as a group) but otherwise fall back to the most general strategy when
the algebra is just a monoid.

10.3 Defining custom cached-measurement policies

The cached-measurement policy binds both the measurement scheme and the
algebra for a given instantiation of chunkedseq. For example, the following are
cached-measurement policies:

o nullary cached measurement: m(s) = 0; >(v) = §; Ar = (P(0),U,0,©),
where 60 = ()

o size cached measurement: m(s) =1; >(v) = |[v|; A7 = (long,+,0,6)

o pairing policies (monoid): for any two cached-measurement policies my;
>p; Ap, = (Th,®1,11) and mg; >g; Ap, = (Tz,@z,lz) m(si,s2) =

(ma(s1),ma(s2)); >(v1,v2) = (e (v1), >p(v2)); A= (T1 x T3, ®, (I1, I2))
is also a cached-measurement policy, where (z1,z2) @ (y1,¥2) = (1 &
Y1, 72 D Ya)

o pairing policies (group): for any two cached-measurement policies
mu; > A = (T1,@1,11,01) and mo; > A, = (T2, @2, 1, 62),
m(s1,s2) = (ma(s1),ma(s2)); >(vi,v2) = (Bp(v1), >x(v2)); A =
(T x Tp,®,(I1,12),0) is also a cached-measurement policy, where
(r1,22) ® (y1,92) = (21 © Y1,72 D y2) and S(z1,72) = (S171, O272)

« pairing policies (mixed): if only one of two given cached-measurement
policies is a group, we demote the group to a monoid and apply the pairing
policy for two monoids

Remark:

To save space, the chunkedseq structure can be instantiated with the
nullary cached measurement alone. No space is taken by the cached
measurements in this configuration because the nullary measurement
takes zero bytes. However, the only operations supported in this
configuration are push, pop, and concatenate. The size cached
measurement is required by the indexing and split operations. The
various instantiations of chunkedseq, namely deque, stack and bag
all use the size measure for exactly this reason.
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10.3.1 The cached-measurement descriptor

The interface exports four key components: the type of the items in the container,
the type of the measured values, the measure function to gather the measurements,
and the algebra to combine measured values.

Type Description

measure_type  type of the measure descriptor
algebra_type  type of the algebra descriptor

value_type type S of items to be stored in the container
measured_type type T of measured values
size_type size_t

The only additional function that is required by the policy is a swap operation.

Static members Description

void swap(measured_type& x, exchanges the values of x and y
measured_type& y)

10.3.2 Example: trivial cached measurement

This trivial cached measurement is, by itself, completely inert: no computation
is required to maintain cached values and only a minimum of space is required
to store cached measurements on internal tree nodes of the chunkedseq.

template <class Item, class Size>
class trivial {
public:

using size_type = Size;

using value_type = Item;

using algebra_type = algebra::trivial;

using measured_type = typename algebra_type::value_type;

using measure_type = measure::trivial<value_type, measured_type>;

static void swap(measured_type& x, measured_type& y) {
// nothing to do
}

};

source
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10.3.3 Example: weight-one (uniformly sized) items

In our implementation, we use this cached measurement policy to maintain
the size information of the container. The size() methods of the different
chunkedseq containers obtain the size information by referencing values cached
inside the tree by this policy.

template <class Item, class Size>
class size {
public:

using size_type = Size;

using value_type = Item;

using algebra_type = algebra::int_group_under_addition_and_negation<size_type>;
using measured_type = typename algebra_type::value_type;

using measure_type = measure::uniform<value_type, measured_type>;

static void swap(measured_type& x, measured_type& y) {
std: :swap(x, y);
}

};

source

10.3.4 Example: weighted items

Arbitrary weights can be maintained using a slight generalization of the size
measurement above.

template <class Item, class Weight, class Size, class Measure_environment>
class weight {
public:

using size_type = Size;

using value_type = Item;

using algebra_type = algebra::int_group_under_addition_and_negation<Weight>;

using measured_type = typename algebra_type::value_type; // = Weight

using measure_env_type = Measure_environment;

using measure_type = measure::weight<value_type, measured_type, measure_env_type>;

static void swap(measured_type& x, measured_type& y) {
std: :swap(x, y);
}

};

source
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10.3.5 Example: combining cached measurements

Using the same combiner pattern we alredy presented for measures and algebras,
we can use the following template class to build combinations of any two given
cached-measurement policies.

template <class Cachel, class Cache2>
class combiner {
public:

using algebral_type = typename Cachel::algebra_type;
using algebra2_type = typename Cache2::algebra_type;
using measurel_type = typename Cachel::measure_type;
using measure2_type = typename Cache2::measure_type;

using size_type = typename Cachel::size_type;

using value_type = typename Cachel::value_type;

using algebra_type = algebra::combiner<algebral_type, algebra2_type>;

using measured_type = typename algebra_type::value_type;

using measure_type = measure::combiner<value_type, measurel_type, measure2_type>;

static void swap(measured_type& x, measured_type& y) {
Cachel::swap(x.valuel, y.valuel);
Cache2::swap(x.value2, y.value2);

}

};

source

10.4 Splitting by predicate functions

Logically, the split operation on a chunkedseq container divides the underlying
sequence into two pieces, leaving the first piece in the container targeted by the
split and moving the other piece to another given container. The position at
which the split occurs is determined by a search process that is guided by a
predicate function. What carries out the search process? That job is the job of
the internals of the chunkedseq class; the client is responsible only to provide
the predicate function that is used by the search process. Formally, a predicate
function is simply a function p which takes a measured value and returns either
true or false: p(m): T — bool.

The search process guarantees that the position at which the split occurs is

the position 4 in the target sequence, s = [v1,...,v;,...v,], at which the value
returned by p(Mo,;(s)) first switches from false to true. The first part of the
split equals [v1,...,v;—1] and the second [v;,. .., v,].
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10.4.1 The predicate function descriptor

In our C++ package, we represent predicate functions as classes which export
the following public method.

Members Description

bool operator() (measured_type m) returns p(m)

10.4.2 Example: weighted splits

Let us first consider the small example which is given already for the weighted
container. The action performed by the example program is to divide a given
sequence of strings so that the first piece of the split contains approximately half
of the even-length strings and the second piece the second half. In our example
code (see the page linked above), we assign to each item a certain weight as
follows: if the length of the given string is an even number, return a 1; else,
return a 0.

m(str) : string — int = 1if str.size() is an even number and 0 otherwise

Let n denote the number of even-length strings in our source sequence. Then,
the following predicate function delivers the exact split that we want: p(m) :
int — bool = m > n/2. Let s denote the sequence of strings (i.e., ["Let's",
"divide", "this", "string", "into", "two", "pieces"] that we want to
split. The following table shows the logical states of the split process.

i 0 1 2 3 4 5 6

v; Let's divide this string into two pieces
m(v;) 0 1 1 1 1 0 1
p(Moi(s)) false false false true true true true
Remark:

Even though the search process might look like a linear search, the
process in fact takes just logarithmic time in the number of items in
the sequence. The logarithmic time bound is possible thanks to the
fact that internal nodes of the chunkedseq tree (which is itself a tree
whose height is logarithmic in the number of items) are annotated
by partial sums of weights.
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10.5 Example: using cached measurement to implement
associative maps

Our final example combines all of the elements of cached measurement to yield
an asymptotically efficient implementation of associative maps. The idea behind
the implementation is to represent the map internally by a chunkedseq container
of key-value pairs. The key to efficiency is that the items in the chunkedseq
are stored in descending order. When key-value pairs are logically added to
the map, the key-value pair is physically added to a position in the underlying
sequence so that the descending order is maintained. The insertion and removal
of key-value pairs is achieved by splitting by a certain predicate function which
we will see later. At a high level, what is happening is a kind of binary search
that navigates the underlying chunkedseq structure, guided by carefully chosen
cached key values that annotate the interior nodes of the chunkedseq.

Remark:

We could have just as well maintain keys in ascending order.

10.5.1 Optional values

Our implementation uses optional values, which are values that logically either
contain a value of a given type or contain nothing at all. The concept is similar
to that of the null pointer, except that the optional value applies to any given
type, not just pointers.

template <class Item, class Item_swap>
class option {
public:

using self_type = option<Item, Item_swap>;

Item item;
bool no_item;

option()
item(), no_item(true) { }

option(const Item& item)
item(item), no_item(false) { }

option(const option& other)
item(other.item), no_item(other.no_item) { }

void swap(option& other) {
Item_swap: :swap(item, other.item);
std: :swap(no_item, other.no_item);

}
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bool operator<(const self_type& y) const {
if (no_item && y.no_item)
return false;
if (no_item)
return true;
if (y.no_item)
return false;
return item < y.item;

}

bool operator>=(const self_type& y) const {
return ! (xthis < y);

}

};
source

Observe that our class implements the “less-than” operator: <. Our implementa-
tion of this operator lifts any implementation of the same operator at the type
Item to the space of our option<Item>: that is, our operator treats the empty
(i.e., nullary) optional value as the smallest optional value. Otherwise, our the
comparison used by our operator is the implementation already defined for the
given type, Item, if such an implementation is available.

10.5.2 The measure descriptor

The type of value returned by the measure function (i.e., measured_type) is the
optional key value, that is, a value of type option<key_type>. The measure
function simply extracts the smallest key value from the key-value pairs that it
has at hand and packages them as an optional key value.

template <class Item, class Measured>
class get_key_of_last_item {
public:

using value_type = Item;
using key_type = typename value_type::first_type;
using measured_type = Measured;

measured_type operator() (const value_type& v) const {
key_type key = v.first;
return measured_type (key) ;

}
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measured_type operator() (const value_type* lo, const value_typex hi) const {

if (hi - lo == 0)
return measured_type();

const value_typex last = hi - 1;
key_type key = last->first;
return measured_type (key) ;

}

I

source

10.5.3 The monoid descriptor

The monoid uses for its identity element the nullary optional key. The combining
operator takes two optional key values and of the two returns either the smallest
one or the nullary optional key value.

template <class Option>
class take_right_if_nonempty {
public:

using value_type = Option;
static constexpr bool has_inverse = false;

static value_type identity() {
return value_type();

}

static value_type combine(value_type left, value_type right) {
if (right.no_item)
return left;
return right;

}

static value_type inverse(value_type x) {
// cannot happen
return identity(Q);

}

};

source

10.5.4 The descriptor of the cached measurement policy

The cache measurement policy combines the measurement and monoid descriptors
in a straightforward fashion.

48


../examples/map.hpp
../examples/map.hpp

template <class Item, class Size, class Key_swap>
class map_cache {
public:

using size_type = Size;

using value_type = Item;

using key_type = typename value_type::first_type;

using option_type = option<key_type, Key_swap>;

using algebra_type = take_right_if nonempty<option_type>;

using measured_type = typename algebra_type::value_type; // = option_type
using measure_type = get_key_of_last_item<value_type, measured_type>;

static void swap(measured_type& x, measured_type& y) {
x.swap(y);
}

};

source

10.5.5 The associative map

The associative map class maintains the underlying sorted sequence of key-value
pairs in the field called seq. The method called upper is the method that is
employed by the class to maintain the invariant on the descending order of the
keys. This method returns either the position of the first key that is greater
than the given key, or the position of one past the end of the sequence if the
given key is the greatest key.

As is typical of STL style, the indexing operator is used by the structure to
handle both insertions and lookups. The operator works by first searching
in its underlying sequence for the key referenced by its parameter; if found,
the operator updates the value component of the corresponding key-value pair.
Otherwise, the operator creates a new position in the sequence to put the given
key by calling the insert method of seq at the appropriate position.

template <class Item>
class std_swap {
public:

static void swap(Item& x, Item& y) {
std: :swap(x, y);
}

};

source
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template <class Key,
class Item,
class Compare = std::less<Key>,
class Key_swap = std_swap<Key>,
class Alloc = std::allocator<std::pair<const Key, Item> >,
int chunk_capacity = 8
>
class map {
public:

using key_type = Key;

using mapped_type = Item;

using value_type = std::pair<key_type, mapped_type>;
using key_compare = Compare;

using allocator_type = Alloc;

using reference = value_typeé&;

using const_reference = const value_type&;
using pointer = value_typex*;

using const_pointer = const value_typex;
using difference_type = ptrdiff_t;

using size_type = size_t;

using key_swap_type = Key_swap;

private:

using cache_type = map_cache<value_type, size_type, key_swap_type>;
using container_type = chunkedseq::bootstrapped::deque<value_type, chunk_capacity, cache_:
using option_type = typename cache_type: :measured_type;

public:
using iterator = typename container_type::iterator;
private:

// invariant: items in seq are sorted in ascending order by their key values
mutable container_type seq;
mutable iterator it;

iterator upper(const key_type& k) const {
option_type target (k) ;
it.search_by([target] (const option_type& key) {
return target >= key;
s
return it;

}
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public:

map() {
it = seq.begin();
}

map(const map& other)
: seq(other.seq) {

it = seq.begin();
}

size_type size() const {
return seq.size();

}

bool empty() const {
return size() == 0;

}

iterator find(const key_type& k) const {
iterator it = upper(k);
return ((*it).first == k) ? it : seq.end();
}

mapped_type& operator[] (const key_type& k) const {
it = upper(k);
if (it == seq.end()) {
// key k is larger than any key current in seq
value_type val;
val.first = k;
seq.push_back(val);
it = seq.end()-1;
} else if ((xit).first != k) {
// tterator it points to the first key that is less than k
value_type val;
val.first = k;
it = seq.insert(it, val);
}
return (*it).second;

}

void erase(iterator it) {
if (it == seq.end())
return;
if (it == seq.end()-1) {

o1



seq.pop_£front();
return;

}

seq.erase(it, it+1);

}

size_type erase(const key_type& k) {
size_type nb = seq.size();
erase(find(k));
return nb - seq.size();

}

std::ostream& stream(std::ostream& out) const {
out << "[";
size_type sz = size();
seq.for_each([&] (value_type v) {

out << "(" << v.first << "," << v.second << ")";
if (sz—- '= 1)
out << ",";
19K

return out << "]";

}

iterator begin() const {
return seq.begin();

}

iterator end() const {
return seq.end();

}

void check() const {
seq.check();

}

};

source

92


../examples/map.hpp

	Introduction
	Provided container types
	Advanced features
	Compatibility
	Credits

	Double-ended queue
	Template parameters
	Item type
	Chunk capacity
	Cache type
	Chunk-struct type
	Allocator type

	Member types
	Iterator

	Constructors and destructors
	Empty container constructor
	Fill container
	Copy constructor
	Initializer-list constructor
	Move constructor
	Destructor

	Item access
	Front and back
	Indexing operator

	Capacity
	Empty operator
	Size operator

	Iterators
	Iterator begin
	Iterator end

	Modifiers
	Push
	Pop
	Split
	Concatenate
	Clear
	Resize
	Exchange contents

	Example: push and pop
	Example: split and concat

	Stack
	Template interface
	Example

	Bag
	Template interface
	Example

	Associative map
	Example: insert
	Example: erase

	Parallel processing
	Example: pkeep_if
	Example: pcopy
	Example: pcopy_if

	Weighted container
	Example: split sequence of strings by length

	STL-style iterator
	Example

	Segments
	Example

	Cached measurement
	Taking measurements
	Measuring items individually
	Example: the ``size'' measure
	Example: the ``string-size'' measure
	Measuring items in contiguous regions of memory
	The measure descriptor
	Example: weight-one (uniformly sized) items

	Using algebras to combine measurements
	The algebra descriptor
	Example: combining algebras
	Scans
	Why associativity is necessary
	Why the inverse operation can improve performance

	Defining custom cached-measurement policies
	The cached-measurement descriptor
	Example: trivial cached measurement
	Example: weight-one (uniformly sized) items
	Example: weighted items
	Example: combining cached measurements

	Splitting by predicate functions
	The predicate function descriptor
	Example: weighted splits

	Example: using cached measurement to implement associative maps
	Optional values
	The measure descriptor
	The monoid descriptor
	The descriptor of the cached measurement policy
	The associative map



