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Abstract
Achieving parallel performance and scalability involves mak-

ing compromises between parallel and sequential compu-

tation. If not contained, the overheads of parallelism can

easily outweigh its benefits, sometimes by orders of mag-

nitude. Today, we expect programmers to implement this

compromise by optimizing their code manually. This process

is labor intensive, requires deep expertise, and reduces code

quality. Recent work on heartbeat scheduling shows a promis-

ing approach that manifests the potentially vast amounts of

available, latent parallelism, at a regular rate, based on even

beats in time. The idea is to amortize the overheads of par-

allelism over the useful work performed between the beats.

Heartbeat scheduling is promising in theory, but the reality

is complicated: it has no known practical implementation.

In this paper, we propose a practical approach to heartbeat

scheduling that involves equipping the assembly language

with a small set of primitives. These primitives leverage ex-

isting kernel and hardware support for interrupts to allow

parallelism to remain latent, until a heartbeat, when it can

be manifested with low cost. Our Task Parallel Assembly

Language (TPAL) is a compact, RISC-like assembly language.
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1 Introduction
A classic problem in parallel computing is to take a high-

level parallel program, written in nested-parallel style, with

fork-join constructs, and derive from it an executable that is

efficient on real machines. Traditionally, solutions involve

optimizing the program to control the amount of parallelism

exposed, thereby limiting the overheads of task creation and

scheduling [3, 7, 30, 60]. Left unchecked, task overheads can

reach two orders of magnitude or more, effectively wiping

out the benefits of parallelism. But when task overheads are

addressed, the associated optimizations involve changing

the code so that the program switches from parallel to se-

quential code, typically at “small” problem sizes. This is a
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process called granularity control [3, 7]. In addition to labor-

intensive changes, granularity control requires tuning the

program so that it switches from parallel to serial at appropri-

ate points at run time. Such tuning may cause the program

to lose its performance portability, because the process of

tuning usually overfits to the idiosyncrasies of a particular

machine. In particular, the notion of “small” depends on the

machine architecture and software environment and varies

significantly from one machine to another [60].

Motivated by the limitations of manual code optimizations

and granularity control, recent work proposed an alternative

approach that can, in principle, be completely automated.

This approach, called heartbeat scheduling [5], provably con-

trols the overheads of parallelism without requiring manual

changes to the code. In heartbeat scheduling, a regular heart-

beat event interrupts the program periodically to promote

latent opportunities for parallelism into actual tasks that

can be executed in parallel, e.g., by migrating across cores.

Therefore, rather than making granularity decisions in the

source code of the program, the program exposes the maxi-
mum amount of parallelism, and the heartbeat mechanism

decides how and when to promote latent parallelism into ac-

tual parallelism. Intuitively speaking, because the heartbeat

only fires at certain points in time, the cost of creating and

managing parallelism can be amortized over the useful work

done between heartbeats.

Although the idea of the heartbeat scheduling may appear

quite simple, its realization is far from it. Perhaps themost im-

portant challenge is determining, at each heartbeat, a unit of

work that must be reified as a task, so that it can be executed

in parallel, just like any other task that is created by care-

fully hand-optimized codes. Prior work evaluates heartbeat

scheduling by using a C++ interpreter that runs programs

hand-rolled in a custom format, representing programs as

abstract syntax trees. This structure allows the interpreter

to create tasks by manipulating the abstract syntax tree at a

heartbeat event. But runtime interpretive overhead is imprac-

tical, especially for high-performance parallel programming,

and the interpreter provides only approximate timing of

heartbeats.

In this paper, we propose an execution model for heart-

beat scheduling, formalized by our Task Parallel Assembly

Language (TPAL), and a runtime system that is backed by a

practical heartbeat mechanism, which is implemented on top

of hardware-based interrupts. The core of TPAL resembles a

conventional, RISC assembly language. But unconvention-

ally, TPAL features native support for task parallelism, con-

sisting of a small collection of primitives and annotations on

basic blocks. Because its task parallelism is native, TPAL can

express parallel loops naturally and execute them efficiently.

TPAL can achieve task parallelism as a nearly zero-cost ab-
straction, even with programs involving irregular, and nested

parallel loops.

Because it is specified as an abstract machine, TPAL’s exe-

cution model is low-level and detailed enough to be thought

of as a model for an implementation. To evaluate this exe-

cution model, we present an implementation of TPAL along

with a runtime system supporting the operations needed

for implementing heartbeat events and parallel evaluation.

The runtime system is written in C++, and is optimized to

achieve practical efficiency by using state-of-the-art sched-

uling techniques. To implement the heartbeat events, the

runtime system relies on hardware interrupts, which can

be controlled at greater precision and lower cost than by

using software-based approximations. Because the heartbeat

events are hardware-driven, the runtime system is reason-

ably decoupled from the specific implementations of heart-

beat events, and is quite portable, allowing it to be used on

different hardware and software platforms.

To evaluate the effectiveness of proposed techniques based

on TPAL coupled with hardware interrupts, we consider a

Linux-based system and an experimental kernel framework,

called Nautilus [34]. Nautilus is specifically designed to sup-

port parallel runtime systems, and thus allows tight control

over hardware resources and elides many of the overheads

and abstraction layers that arise from supporting general-

purpose workloads.

For our evaluation, we consider a number of parallel bench-

marks, including those that exhibit high degrees of irreg-

ular parallelism. Our results indicate that TPAL, driven by

hardware-based interrupts, achieves excellentwork-efficiency,

incurring small overheads for uniprocessor executions, with-

out sacrificing parallelism, and scaling well as the number

of cores increases. Compared to Cilk, a state-of-the-art task-

parallel system, TPAL is comparable or better, even as it

manages all parallelism automatically, driven by hardware

interrupts. Our results from experimenting with Nautilus

show that there is room for improvement in the efficiency

of Linux-based, software signaling mechanisms.

This paper makes the following contributions:

• TPAL: a Task-Parallel Assembly Language for task-parallel

programming;

• An execution model for TPAL as an abstract machine that

controls creation of parallel tasks automatically using hard-

ware driven interrupts;

• A portable runtime system for TPAL, written in C++, that

can be used to run TPAL programs on modern multicore

hardware;

• An evaluation both on Linux and Nautilus, an experimen-

tal kernel framework for parallel runtimes.

2 Task Parallel Assembly Language
For heartbeat scheduling, we need the ability to interrupt a

running program and examine its runtime state efficiently.

To see how, consider the following simple loop, written in C,
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as a running example. It calculates the product of numbers

passed in a and b (using addition), and leaves the result in c.

int a,b,c; int r = 0;
for (; a != 0; a--) { r += b; }
c = r;

To parallelize this loop with minimal cost, we ideally do

not want to change anything about how the sequential ver-

sion is compiled and executed. To this end, we propose to

extend the assembly language with instructions that will

allow executing the sequential code without any overheads,

while, at the same time, making it possible to manifest la-

tent parallelism. For example, the loop’s index variable a is
likely kept in a register rather than on the stack, and if we

wish to take a heartbeat at runtime and split the remaining

iterations (for parallelism), then we must find the current

iteration in the appropriate register, rather than relying on

finding that index in memory. This constraint bears resem-

blance to the one faced by a debugger, that is, in terms of

interpreting runtime program state. But we cannot tolerate

anything nearly as expensive as a debugger implementation

(e.g., Linux ptrace).

Figure 2 shows the code for our running example in TPAL.

In this code, if we assign the empty block annotations,★𝑒𝑥𝑖𝑡 =

★𝑙𝑜𝑜𝑝 = ·, the first three blocks of the resulting code are iden-
tical to ones produced by a sequential C compiler. Apart

from using jump statements, this code is similar to the C

source code. Once this code executes, it is irrevocably se-

quential. But the unique ability of TPAL, among assembly

languages
1
, is that we can add parallelism without changing

the sequential behavior, and in fact without changing the

code, except by adding annotations. We mark promotable
program points, where it is possible to switch from the se-

quential loop to a parallel variant, and then join again af-

terwards. More precisely, we derive the parallel version by

assigning ★𝑒𝑥𝑖𝑡 = jtppt assoc-comm; {r ↦→ r2}; comb and

★𝑙𝑜𝑜𝑝 = prppt loop-try-promote.
TPAL captures exactly the essential property of interrupt-

ability, and provides the compiler with building blocks to

construct semantically equivalent parallel and sequential

variants of a function, with the ability to redirect between

them at runtime. Because TPAL is a general-purpose, ab-

stract assembly language, it can be targeted by a wide range

of parallel source languages and can in turn be lowered to

existing ISAs or low-level intermediate representations. (We

target x86-64 in our evaluation, Section 4.)

2.1 Syntax and Execution Model

The syntax of TPAL is presented in Figure 1. It is based on

a subset of the MIPS assembly language, using a familiar

1
The ability to elide parallelism annotations and have a semantically equiv-

alent program is a goal shared by spawn/sync annotations in Cilk, or paral-

lelism combinators in Haskell, but at the assembly level it is quite a different

thing.

𝑟 ∈ registers, 𝑙 ∈ labels,

𝑛 ∈ integer literals, 𝑗 ∈ join-record identifiers

𝑣 ::= 𝑟 | 𝑙 | 𝑛 | 𝑗

𝑜𝑝 ::= + | - | . . .
𝚤 ::= 𝑟 := 𝑣 | 𝑟 := 𝑜𝑝 𝑟, 𝑣 | if-jump 𝑟, 𝑣

| 𝑟 := jralloc 𝑣 | fork 𝑟, 𝑣

𝐼 ::= jump 𝑣 | 𝚤; 𝐼 | halt | join 𝑣

𝐵 ::= [ ★ ] 𝐼
★ ::= · | prppt 𝑙 | jtppt 𝑗𝑝;Δ𝑅; 𝑙

𝑗𝑝 ::= assoc | assoc-comm
Δ𝑅 ::= { 𝑟1 ↦→ 𝑟 ′

1
, . . . , 𝑟𝑛 ↦→ 𝑟 ′𝑛 }

Figure 1. Grammar of TPAL. Highlighted syntax is specific

to our parallel extensions, whereas the rest represents a

conventional RISC instruction set.

1 prod: [ ·] // computes c = a * b

2 r := 0; jump loop

3 exit: [★𝑒𝑥𝑖𝑡]

4 c := r; ha l t
5 loop: [★𝑙𝑜𝑜𝑝]

6 i f - jump a, exit;

7 r := r + b; a := a - 1;

8 jump loop

9 loop -try-promote: [ ·]
10 t := a < 2; i f - jump t, loop;

11 jr := j r a l l o c exit;

12 jump loop -promote

13 loop -par-try-promote: [ ·]
14 t := a < 2; i f - jump t, loop -par;

15 jump loop -promote

16 loop -promote: [ ·]
17 m := a / 2; n := a % 2; a := m;

18 tr := r; r := 0;

19 fork jr, loop -par;

20 a := m + n; r := tr;

21 jump loop -par

22 loop -par: [prppt loop -par-try-promote]

23 i f - jump a, exit -par;

24 r := r + b; a := a - 1;

25 jump loop -par

26 comb : [ ·]
27 r := r + r2; j o i n jr

28 exit -par: [ ·]
29 j o i n jr

Figure 2. The prod program in TPAL. Applying the empty

block annotations, ★𝑒𝑥𝑖𝑡 = ★𝑙𝑜𝑜𝑝 = ·, yields a serial program.

Applying ★𝑒𝑥𝑖𝑡 = jtppt assoc-comm; {r ↦→ r2}; comb and

★𝑙𝑜𝑜𝑝 = prppt loop-try-promote, yields a parallel program.
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notation for instructions for readability. In TPAL, the exe-

cution of a program consists of a set of concurrent tasks,

such that each task has its own private register file and call

stack. Heap memory can be shared. How the tasks them-

selves are scheduled, that is, the order in which tasks run

(up to dependency constraints) and on which core they run,

is up to the load-balancing algorithm. TPAL is agnostic to

load-balancing algorithm: it is compatible with e.g., variants

of work stealing [6, 16, 19] or parallel depth first [46].

We start with the subset of the language that supports

register-based memory, and later address the stack and heap.

Our assembly language assumes a set of registers, 𝑟 , labels

𝑙 , integer literals 𝑛, and a special set of values that we call

join records. A join record 𝑗 is memory that is used by TPAL

programs to synchronize multiple tasks at a join point. An

operand 𝑣 is either a register, a label, an integer literal, or

a join record. A primitive operation 𝑜𝑝 is one of a number

of primitive operations that can be found on a conventional

RISC machine, such as arithmetic operations for integers.

An instruction 𝚤 is either a move-to-register operation, a

primitive operation, a conditional jump, a join-record alloca-

tion, or a fork instruction. A join-record allocation instruc-

tion allocates (on the heap) and initializes a new join record.

Its argument is a label that is to be the continuation block
of the join point. A fork instruction spawns a new task, in

a fashion resembling that of the UNIX fork() system call.

It takes two arguments: first, a join record, and, second, a

label from which the spawned task is to start executing. We

call the spawned task the child task and the calling task the

parent task. When it executes, the first action of the fork

instruction is to register the dependency edge between the

parent and child task in the join record. After the dependency

is registered, the child task is added to the set of executing

tasks, from which point it starts executing with a copy of the

register file of its parent. The child task starts by executing

the block at the label passed for the second argument of

the fork instruction. After it issues the fork instruction, the

parent task proceeds to issue its next instruction.

An instruction sequence 𝐼 is a list-based representation

of a sequence of assembly instructions: it is either a jump

instruction, a sequencing operator (semicolon), a halt instruc-

tion, or a join instruction. A jump instruction is an uncon-

ditional jump operation. A semicolon operator specifies a

sequential order between an instruction and an instruction

sequence. A halt instruction terminates the whole machine.

A join instruction initiates synchronization between a parent

and one of its child tasks. Its first argument is a join record.

When it executes this instruction, a task participates in a

join-resolution policy. A join-resolution policy specifies the

manner in which to combine the results held in the memories

of the parent and child tasks. Upon completion of a join, that

is, after all tasks registered in the join record issue their join

instructions, the program then jumps to the label originally

passed in the allocation of the join record.

A program is represented by a set of (labeled) code blocks.

Each code block consists of an instruction sequence, along

with an annotation. Such annotations, denoted by ★, are ei-

ther an empty annotation, a promotion-ready program point,

or a join-target program point. A promotion-ready program
point is the entry point of a block for which there is a special

behavior: when control targets the block, either control can

flow, as usual, into the first instruction of the block, or con-

trol can flow, instead, to the label attached to the annotation.

A join-target program point is the entry point of a code block

that is assigned to be the continuation of the join point of

parallel tasks. The join-target annotation specifies the join-

resolution policy, i.e., the instruction sequence to be executed

upon parent and child tasks meeting at their common join

points. Its first component 𝑗𝑝 specifies whether the com-

bining operation is only associative or both associative and

commutative. Its second component Δ𝑅 specifies the way

in which joining tasks combine their register files into one

register file, which is to be used by the combining block. Its

third component specifies the label of the combining block.

2.2 Dynamics

We designed TPAL to make it natural and efficient to imple-

ment heartbeat scheduling: parallelism is introduced on a

regular basis, in a two-stage process. The first stage involves

the triggering of an interrupt and the second involves the

manifestation of latent parallelism by the interrupt handler,

which may fork a new task. The triggering of an interrupt is

supported in TPAL by assigning each task a cycle counter,

which increments every time a task issues an instruction.

When the cycle counter of a task exceeds a certain threshold,

that task is ready to trigger an interrupt. The threshold is a

global parameter, written ♥, and is determined by a one-time,

per-machine tuning process, which is required by heartbeat

scheduling [5]. The setting of the parameter is picked by

the heartbeat tuner application to be just large enough to

amortize the creation of a new task, but small enough to

avoid pruning away useful amounts of parallelism.

Adding Parallelism. We return to our running example

program, prod. By using the parallel block annotations, the

program will ultimately allow the loop to be parallelized on

demand. The serial-by-default structure in the program is its

main strength: it is the reason we can achieve near zero-cost

abstraction.

Heartbeat interrupts. When the heartbeat threshold is

exceeded by a task, an interrupt is ready to be serviced the

next time the program enters a promotion-ready program

point. In our example, every time a task enters the loop
block and its heartbeat threshold has passed, the task jumps

to its handler block, namely loop-try-promote, instead of

the first instruction of the loop block. The handler block

checks on line 10 if there is any parallelism available in

the remaining iterations of the loop. If there is no latent
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parallelism, then our running task jumps back to the loop
block, where it left off, but if there is, the task manifests the

parallelism.

Promotion. To manifest the parallelism from the loop,

our task performs a promotion, wherein a task creates a

join point and forks a new, child task. Promotion begins in

our running example on line 11, where our task allocates a

join point. By passing to the join-allocation instruction the

exit label, we are instructing our newly parallelized loop

to terminate, with the final result, by jumping to the exit
block. The handler next jumps to the loop-promote block,
where our task creates parallelism from the loop induction

variable a. The parallelism is created by dividing up the

remaining iterations into two parts, with half going to the

child task, and half to its parent. From this point, both parent

and child tasks proceed to work on their respective parts of

the remaining iterations, but now start from a new block,

namely loop-par.

Parallel tasks. Now that they are running in parallel, our

parent and child tasks have to complete their own local com-

putations, and then combine their local parts of the overall

result. To perform their local computations, our parallel tasks

execute the loop-par block, which performs the same steps

as the loop block (except for line 23). While our parallel

tasks execute, additional heartbeat interrupts may trigger

additional promotions, thereby recursively manifesting la-

tent parallelism from the tasks. All heartbeat interrupts from

hereon jump to the loop-par-try-promote handler block,
thereby ensuring that all future tasks share the join record

in jr. After any one of our parallel tasks completes its local

work, the task exits (on line 23) by branching to the exit-par
block. In this block, the task enters the join-resolution pro-

tocol, where all parent and child tasks eventually meet with

their partners to combine their local results (in the register

r).

Join resolution. While the program is executing, the TPAL

runtime keeps a record of the tree induced by the fork in-

structions issued by tasks. This bookkeeping tree is used by

the join instruction to match each task with its parent or

child. When a task issues the join instruction, it stashes its

register file in the join record and removes the dependency

edge on the join point it shares with its partner in the tree.

The first task to complete this step terminates and removes

itself from the set of running tasks, and the second performs

the next step of join resolution. In this step, the runtime sys-

tem seeds the task with a new register file. The new register

file is obtained by taking the register file of the parent task

and extending it with some entries from the register file of

the child task. In our prod example, this merging process

enables the child task to share with its parent the value in

its accumulator register r. The annotation on the exit block

specifies that the contents of register r from the child task

be copied to register r2 in the new register file.

After merging register files, the runtime schedules the

parent task with this new register file, starting from the

combining block, which is specified as comb in the annotation

in our example program. Our combining block takes the

sum of the accumulator variables from the parent and child

tasks, puts the result in register r, and exits by issuing the

join instruction again. This time, the join instruction either

repeats the process one level up in the tree of tasks, or it

reaches the root. If at the root, the join instruction jumps to

the original target of the join record, which in our example

is the exit block. At this point, the parallel program has

completed its work.

2.3 Nested Parallelism

TPAL can express in a natural way various forms of nested

parallelism, for example, in the form of nested loops and

recursive functions or their combination. For example, we

can implement a “power” function by nesting our running

example, prod, inside an outer for loop. We parallelize the

for loops by using the outer-loop first policy, a policy that

requires that parallelism is created where it is most benefi-

cial first, that is, from the least recent parallel context. This

policy is a necessary condition for any implementation to

be backed by the formal efficiency guarantees proved for

heartbeat scheduling [5]. As we describe in our evaluation

section, TPAL shines in its ability to efficiently execute nested

loops, even when their workloads are irregular. The reason is

that TPAL can always amortize the cost of parallelism, even

across loop boundaries. We present full details of how such a

nested parallel programs (including both loops and recursive

functions) may be expressed in TPAL in the Appendix.

3 Implementation
This section describes the compiler and runtime/OS support

needed to translate and execute high-level programs (e.g.,

Cilk Plus) down to assembly (e.g., x64).

3.1 Compiling from C++ to TPAL

To compile a high-level, parallelized loop down to the level

of our TPAL assembly, we need to generate the sequential

and parallel versions of a loop body, and represent them in

the compiler so that the former can be promoted to the latter

on-demand. We present our technique by returning to our

running prod example, this time starting from a Cilk Plus

version.

void prod_cilk(int a, int b, int* c) {
reducer_opadd<int> r(0);
cilk_for (; a != 0; a--) { r += b; }
*c = r; }

The program uses the syntactic parallel-loop extension pro-

vided by Cilk Plus to compute the result. Its loop body uses

Cilk’s idiomatic pattern for accumulating results, namely
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reducer variables [29]. There are similar mechanisms in

OpenMP [53] and TBB [41]. The reducer variable enables

tasks to work independently on their own local view of r.
When tasks join their results, they sum their local views to

compute the final result.

In any such linguistic parallelism, there is necessarily

some representation of high-level parallel constructs, e.g.,

cilk_for, reducer, that stays intact for some subset of the

early stages of the compilation pipeline. Then, at some later

stage, the high-level parallel constructs are lowered by that

stage into simpler forms. However, the code resulting from

lowering pass can easily block optimizations in subsequent

passes, such as loop-invariant code motion, loop vectoriza-

tion, etc. As such, there is motivation to keep the high-level

structure and make optimization passes aware of it. This ap-

proach is exemplified by recent work on Tapir, an effort to ex-

tend LLVM’s IR with support for Cilk-style parallelism [56].

Tapir carefully extends LLVM to allow high-level parallel

constructs to propagate late into the compilation pipeline,

thereby unlocking compiler optimizations that were other-

wise inaccessible. Although our TPAL does not yet have

compiler support, we believe that a new implementation

combining Tapir and TPAL is feasible, and can benefit from

the best of both worlds: (1) traditional compiler optimiza-

tion of high-level parallel code for early stages, thanks to

Tapir, and (2) efficient, granularity control, a la TPAL, for

later stages. The idea is to implement a new pass that lowers

high-level parallel constructs into TPAL instructions. We

summarize the lowering steps below.

Code versioning. We show in Figure 4 the fragments

needed for our prod example. The first piece of code is the

prod function, which represents the initial serial-by-default

part of the loop. It corresponds to the first three assembly

blocks shown in Figure 2.

The parallel fragment needs to make use of the TPAL run-

time system. We show its interface in Figure 3. The interface

exports definitions for join-record objects, and fork and join

functions, corresponding to the linguistic forms our TPAL

formalism.

The next code fragment, namely prod_par, corresponds
to the parallel blocks of assembly. It represents one chunk

of work, executing sequentially on one processor, but in the

context of a parallel execution. After finishing its local work,

the function enters the join protocol by calling the join func-

tion. The final fragments of prod are its heartbeat handlers.

For convenience, we changed the conventions relating to the

fork instruction slightly compared to its counterpart in the

formalism. Our fork instruction takes, in addition to the join

record, closures corresponding to the child and parent tasks,

and the combine block. Implicit in this convention is that the

parent task is rematerialized by the handler function (and

correspondingly, the interrupted task exits early to avoid

duplicating work).

class joinrec { ... };
template <class Child, class Parent, class Comb>
void fork(joinrec* jr, Child c, Parent p,Comb m);
void join(joinrec* jr);

Figure 3. Scheduling interface used by application code

scheduled by TPAL runtime.

1 void prod(int a, int b, int* c) {
2 int r = 0;
3 for (; a != 0; a--) { r += b; }
4 *c = r; }
5 void prod_par(int a, int b, int* c, joinrec* jr) {
6 int r = *c;
7 for (; a != 0; a--) { r += b; }
8 *c = r;
9 join(jr); }
10 bool loop_try_promote(int a, int b, int* c) {
11 if (a < 2)
12 return false;
13 joinrec* jr = new joinrec;
14 loop_promote(a, b, c, jr);
15 return true; }
16 void loop_promote(int a, int b, int* c,
17 joinrec* jr) {
18 int m = a / 2; int n = a % 2;
19 int* rs = new int[2];
20 fork(jr,
21 [=] { // child
22 rs[1] = 0; prod_par(m, b, &rs[1], jr);
23 }, [=] { // parent
24 rs[0] = *c; prod_par(m + n, b, &rs[0], jr);
25 }, [=] { // combine
26 *c = rs[0] + rs[1];
27 delete [] rs; join(jr)
28 }); }

Figure 4. Code fragments of our prod program.

3.2 Safe & Efficient Heartbeat Triggering

Next, we describe the compiler, runtime, and OS support to

enable the serial version of a loop body to be promoted to

our parallel version for the next chunk of iterations.

Rollforward compilation In our formal model of TPAL,

we assume that heartbeat handlers are triggered every time

a task meets two conditions: (1) at least ♥ cycles passed since

the previous handler invocation and (2) the control flow en-

ters a promotion-ready program point. Although we cannot

rely on any ready-made mechanism from the OS, we can

build one on top of OS signaling. There is a challenge, how-

ever: given that an interrupt triggered by an OS signal may

arrive at any step of execution of a task, we somehow need to

satisfy the second condition above. In other words, we need

a mechanism that triggers a heartbeat interrupt downstream

from wherever the interrupted task might currently be exe-

cuting, given just the current program context. Fortunately,

there is a ready-made solution for this problem: we can use
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the classic technique of rollforward compilation [49]. Roll-

forward compilation is a general technique for protecting

sections of code from being interrupted by OS signals. The

idea is to compile a sequence of instructions so that, when

preempted by a signal, the sequence executes to its end, and

then invokes the signal handler. Our insight is that we can

employ rollforward for parallel loops by treating as critical

sections the control paths that exist between promotion-

ready program points.

We implemented a small rollforward compiler for x64 as-

sembly. The output of this compiler consists of two versions

of the input program: original and the rollforward versions.

The original version is a copy of the input assembly, modified

only so that each line is labeled, e.g., o0, o1, and so on. As

such, there is negligible runtime overhead cost the original

program. The rollforward version differs from the original in

two respects. First, it has different line labels, e.g., r0, r1, and
so on. Second, any instruction in the rollforward version that

jumps to a promotion-ready program point jumps instead to

the corresponding handler function. The overall effect is that

the original and rollforward instructions align perfectly up

to instruction labels, the original version behaves such that

it never triggers a heartbeat interrupt, and the rollforward

version such that it always triggers a heartbeat interrupt at

the next promotion-ready program point.

Enabling promotions To enable rollforward at runtime,

we need to assign the TPAL worker threads a (Linux) signal

handler. When it initializes, the TPAL runtime configures

an alarm to invoke this interrupt handler every ♥ microsec-

onds. When it is invoked, the handler uses a table that maps

from labels in the source program to labels in its rollforward

version. e.g., for x64 prod blocks, {o0 → r0, . . . , o7 → r7}.
This table is generated by the compiler, and is loaded once, by

the binary load routine, before the TPAL runtime initializes.

When it receives a signal, the handler inspects the program

counter of the OS thread that was interrupted by the signal. If

the program counter matches a key in the table, the handler

replaces that program counter by the corresponding rollfor-

ward entry. As a consequence, the program will continue

executing until it enters the next promotion-ready program

point, at which time it will invoke a handler function.

In general, to make it safe to invoke a handler function,

we need support from the compiler to generate compensa-
tion code. Compensation code is needed because compiler

optimization passes may create drift between the program

variables and the arguments expected by the handler func-

tion. The compensation code materializes the live variables

from the registers and stack at the promotion-ready program

point, and calls the handler function. For example, suppose

we compile a program that iterates over an array, using a pair

of integer indices to point to the next cell of the array and

the length of the array, respectively. A compiler optimization

may change the types of integer indices used in an array tra-

versal to be direct pointers on the array, thereby creating an

incompatibility with a handler function, which may expect

as arguments the integer representation of the indices. This

problem exists in many other contexts, such as debugging

and JIT compilation, and fortunately, there is a general ap-

proach for solving it, namely on-stack replacement (OSR) [23].
Prior work shows that OSR does not significantly degrade

code quality when there are a small number of points in the

code that require replacing the stack [27, 39]. This is our case

where we only have one promotion-ready program point

per parallelized loop.

3.3 Taming Code Bloat

Our compilation technique causes an increase in the size of

the program binary. Overall, the increase is in linear pro-

portion to the size of the parallel regions of code in the

program, i.e., blocks of code containing spawn/sync calls

and parallel-for loops. This increase in code size can increase

instruction-cache misses, but the misses remain under con-

trol, because transfers to the rollforward code are amortized

by the heartbeat.

The potential blowup in code size due to the introduction

of serial, parallel, and handler blocks can be controlled by

compiler support. The handler blocks are likely to impose

only marginal cost, whereas the issue of emitting different

serial and parallel blocks is a bit more subtle, but nevertheless

introduces only a modest tradeoff between the advantage

of having different blocks for serial and parallel loop bodies,

e.g., loop and loop-par, versus using one block that is the

merging of loop and loop-par.

3.4 Benchmark Implementation

For our benchmark implementations, we used a manual ver-

sion of on-stack replacement.We use existing compiler mech-

anisms to generate the compensation code required for each

of our benchmark programs. In Figure 5, we demonstrate

this technique with our prod program. The first step is to

declare a flag, namely heartbeat, to stand in for an inter-

rupt delivery. If the conditional branch at line 5 sees true,
then the program invokes the handler function. However,

we intervene so that this conditional branch is eliminated

and therefore never executes at runtime (so we never need to

allocate memory for the heartbeat global). We simply com-

pile this C++ code to assembly, pass the assembly through

our rollforward compiler, and complete the process by man-

ually editing the assembly code generated by rollforward.

The edits consist of eliminating from the final assembly all

of the conditional branches for the heartbeat global. We

replace each such conditional in the non-rollforward blocks

with nop instructions, and we replace each such conditional

in the rollforward blocks with an unconditional jump to the

handler function. These changes together achieve the desired

behavior: the non-rollforward part of the program skips over
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1 extern volatile bool heartbeat;
2 void prod(int a, int b, int* c) {
3 int r = 0;
4 for (; a != 0; a--) { r += b;
5 if (heartbeat &&
6 (*c = r; loop_try_promote(a, b, c)))
7 return; }
8 *c = r; }

Figure 5. The instrumented version of our prod program,

using our semi-manual rollfoward compilation technique.

the conditional, whereas the rollforward version jumps to a

certain, compensation block. The compensation block ma-

terializes all the program state from the running program,

e.g., prod, and calls the corresponding handler function, e.g.,
loop_try_promote. This instrumentation has close to zero

cost in the common case, excluding any indirect costs asso-

ciated with the nop instructions, which can be avoided with

compiler support.

Signaling in Linux. In Linux, there are at least two off-

the-shelf mechanisms we can leverage for heartbeat signals.

The first one we call the ping thread because it employs a

dedicated OS thread to send heartbeat signals to the worker

threads. While the approach is simple, the linear signaling

does not scale with large core counts, and unfortunately

the pthreads library does not offer a broadcast/multicast in-

terface. Some modern architectures expose programmable

interrupts based on hardware performance counters. For ex-

ample, the PAPI library [50] allows for interrupts to be raised

on a per-core basis when the cycle counter on the appro-

priate core exceeds some programmer-specified threshold.

Our implementation of TPAL can be configured to use the

simple ping-thread approach or the Linux-based PAPI ap-

proach. Neither of these interfaces is a natural fit for our

needs and neither is particularly optimized for low-latency

delivery. Both software and hardware overheads in signal

delivery have tangible effects on the achievable heartbeat fre-

quency. In Section 4, we mitigate these effects using custom

OS support.

4 Evaluation
We compared our TPAL-based Heartbeat Scheduling imple-

mentation with the state-of-the-art Cilk Plus system using a

common set of benchmarks on a 16 core machine. This com-

parison is complex because, while Cilk’s execution model

performs an initial decomposition when latent parallelism is

encountered, TPAL’s execution model involves recurrent de-

composition on each beat. It is also important to understand

that, beyond the additional overheads incurred by TPAL, the

amount of latent parallelism and whether it makes sense to

manifest it, varies from benchmark to benchmark. Our goal

is to effectively leverage the latent parallelism when it exists

and is useful, while paying no cost when it does not exist or

is not useful.

Our results show that TPAL creates tasks with consider-

ably lower overhead than Cilk (geomean 13.8× lower), and

hence can manage the finer granularity tasks that necessar-

ily result from recurrent decomposition. At the maximum

available scale, TPAL achieves significant speedups over Cilk

(geomean 53%) for benchmarks that are amenable to recur-

rent decomposition, while the others (that do not lend well

to our technique) incur minimal slowdown (geomean 9.8%).

Of course, if TPAL’s overheads were zero, no slowdown

would ever occur, and speedups could be enhanced. We next

consider TPAL’s overheads in detail. TPAL’s compile-time

transformations do not create significant overhead in the

transformed code compared to original sequential code. The

primary sources of overhead are due to the promotion pro-

cess, and the heartbeat interrupt mechanism that triggers

it. This section uses Linux signals as the mechanism. In the

next section, we consider other mechanisms in pursuit of

lower-overhead and finer-granularity heartbeat interrupts.

4.1 Benchmarks

Iterative (loop-based) benchmarks. We ported the kme-
ans and srad benchmarks from the Rodinia benchmark su-

ite [21]. For kmeans, we use an input of 1 million objects, and

for srad an 4k × 4k input matrix. The spmv benchmark is the

classic sparse-matrix by dense-vector product algorithm. Its

sparse-matrix input is represented in the compressed sparse

row (CSR) format, with non-zero elements represented by

double-precision floats. The randommatrix is a sparse matrix

with 273 million non-zero elements (and non-empty), and

a maximum column size of 100. The powerlaw matrix is a

random matrix with 186 million non-zero elements, with a

power law characteristic [52]. Its largest column contains 5

million non-zero elements, which is 3% of the total number

of non-zero elements in the matrix. The arrowhead matrix

is a structure that is noted for being particularly challenging

for task scheduling [59]: its diagonal, first column, and first

row are filled with non-zero elements. The floyd-warshall
benchmark is a purely loop-based implementation of the

classic algorithm for finding the shortest path in a weighted

graph. The mandelbrot benchmark computes a square image

representation of the mandelbrot set [22].

Recursive benchmarks. We ported the knapsack and

mergesort benchmarks from the Cilk benchmark suite [44].

The knapsack benchmark is the only one of our benchmarks

that is non-deterministic: the amount of work it performs

depends on the schedule. Themergesort algorithm is the only

benchmark that uses both parallel loops and parallel recur-

sive calls. In particular, the outer sort function and the inner

merge function expose parallelism in a recursive, divide-and-

conquer fashion, but there is also a parallel copy operation

that moves items to and from a temporary buffer, which ex-

poses parallelism via a parallel loop. The inputs of mergesort
are generated from uniform and exponential distributions.
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Figure 6. Task creation overheads for Cilk Plus and TPAL.

In contrast to Cilk Plus, TPAL’s overheads are minimal.

4.2 Experimental Setup

Our primary test bench is a Dell PowerEdge R6415, with a

single-socket, 16-core AMD EPYC 7281 (Naples) processor

running at 2.7GHz with 64KBL1i, 32KBL1d and 512KB L2 per

core, and 32MB of shared L3 cache. It has one NUMA node

and 32GB of DDR4 2400MHz RAM. Our machine runs Fedora

Server 32, with stock Linux Kernel 5.8.13-200. We disabled

SMT (hyperthreading) and we configure the machine’s BIOS

to use the maximum performance profile (thus disabling

DVFS). For our test machine, we assigned the heartbeat rate

to be ♥ = 100𝜇𝑠 by following the tuning process proposed in

the original heartbeat paper [5]. Our code is compiled with

GCC version 7.5.0 with flags -O3 -m64 -march=x86-64. For
load balancing, our TPAL runtime and that of Cilk Plus use

randomized work stealing.

We reserve the first core either to do nothing during the

benchmark or to execute the ping thread, when needed. The

reasons we picked this configuration are (1) we wanted to

avoid the overheads generated by a ping thread from affect-

ing any of the worker threads that executed the benchmark

workload and (2) we can avoid various other sources of over-

head that can, in Linux and Nautilus kernels, slow down the

first core in the system.

The Serial/Linux programs are, in all cases but one, the

versions of the parallel programs with spawns/joins (also

parallel loops) removed. Only in the case of mergesort did

we use a significantly different serial program, i.e., serial

mergesort. We report the average over 30 runs.

4.3 TPAL vs Cilk Plus

TPAL’s task creation overheads are lower than Cilk’s.
Cilk Plus benefits from significant engineering to make its

parallel function call mechanism efficient, even when the

program runs on a single core [30]. Furthermore, its parallel

loop construct implements an additional form of granularity

control by splitting its parallel loop range into 8𝑃 blocks,

where 𝑃 denotes the number of cores. The single-core execu-

tion of Cilk Plus is nevertheless slowed down noticeably by

task-creation costs in certain cases, whereas in our approach,

there is one uniform mechanism, namely the heartbeat, that

ensures task-related overheads are well amortized for all
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Figure 7. Speedups over serial execution on Linux, 15 cores.

Overall TPAL outperforms Cilk Plus.

programs and all inputs. Figure 6 compares the single-core

running times of Cilk Plus and TPAL versions of the bench-

marks. In all cases but one, our implementations are as fast

or faster than those of Cilk Plus. The only exception is man-
delbrot, which is 2% slower.

TPAL performs better than Cilk at full scale. To scale
up, both implementations need to create or promote a num-

ber of tasks that is sufficient to keep the cores fed, while also

keeping task overheads low. Figure 7 compares the 15-core

running times of Cilk Plus and TPAL versions of the bench-

marks. The parallel execution times of the TPAL versions are

considerably lower than those of Cilk, with four exceptions.

Of these exceptions, only mandelbrot rises above 10%. When

TPAL’s recurrent decomposition comes into play, speedups

of 53% (geomean) compared to Cilk result, while when re-

current decomposition does not come into play, slowdowns

of only 9.8% (geomean) occur.

The floyd_warshall benchmark makes for an interesting

point of comparison, because it shows a situation where

Cilk’s granularity-control heuristic for cilk_for loops fails.

For the input size of 1k vertices, there is not enough paral-

lelism to keep all 15 cores fed. The Cilk heuristic generates

for this input a much larger number of tasks than our tech-

nique (23× more). As a consequence Cilk Plus achieves a

higher utilization than TPAL (82% vs. 54%, respectively), and

yet is 67% slower (Figure 7), owing to high task overheads. In

effect, the Cilk version keeps processors fed doing the busy

work of creating and destroying an overabundance of tasks,

and ultimately performs worse for it. Our approach finds

the right balance for this input, creating just enough tasks

to keep cores fed with useful work, but not wasting time

sharing too-small tasks. Moreover, as the input increases to

2K vertices, thereby favoring Cilk’s granularity heuristic, our

approach scales as well as Cilk does, taking advantage of an

amount of parallelism that is closer to keeping all cores fed

and reaches comparable utilization levels (89% for Cilk Plus

vs. 84% for TPAL). We redirect the interested reader to the

Appendix for more details.
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Overall, these results show that our approach achieves

excellent performance both on parallel as well as sequential

runs, i.e., scaling up and down.

4.4 TPAL Approaches Near-Zero Cost

We now consider the sources of overhead that could limit

the performance of TPAL. If these overheads were zero, we

would expect the recurrent decomposition of TPAL to always

perform strictly better than the initial decomposition of Cilk.

TPAL’s compilation-related performance overhead is
low. Thanks to its serial-as-the-default scheduling policy,

our compilation technique produces binaries whose perfor-

mance is close to that of corresponding serial programs,

because they are very close to the serial programs. Figure 8

compares the execution time of the serial baseline programs

of our benchmarks with those of our TPAL binaries. Here, the

heartbeat interrupt mechanism is turned off, so pure sequen-

tial execution occurs. Our programs are at most 6% slower

than their serial baseline programs, except for floyd-warshall,
kmeans, and knapsack. The performance of floyd-warshall
may be related to our manual compilation technique having

to slightly modify the innermost loop which is very fine

grained, causing a perturbation. In an integrated compiler-

based implementation of TPAL (Section 7), that would be

easily avoided. The kmeans benchmark is slower by 17% be-

cause the TPAL version uses an auxiliary data structure to

accumulate centroid values, whereas the serial program does

not. This situation is the same in the original Rodinia imple-

mentations, and as such is not a limitation of our compilation

technique.

The 51% slowdown of knapsack is the most concerning.

It happens for a simple reason: although this benchmark

performs almost no computation besides recursive calls, our

implementation still pays a cost for pushing and popping

promotion-ready stack marks. This cost is visible in knap-
sack, because there is little other computation. In contrast, al-

though it also incurs the costs of maintaining the promotion-

ready stack marks, mergesort shows only 4–6% overhead,

suggesting the bookkeeping costs are less significant. Addi-

tional optimizations (e.g., 32-bit pointers) may reduce this

overhead but are outside the scope of this work.

Signal overhead is low, but could be improved. To pro-
mote latent parallelism inHeartbeat Scheduling, signals must

interrupt each core on a regular basis. These interrupts need

to arrive often enough to create sufficient parallelism, but

far enough apart to keep overheads low. Figure 9 isolates

and presents the overheads on a single core due to the in-

terrupt mechanism only (i.e., without any promotions), as

well as when interrupts generate parallel tasks. The bars la-

beled Serial represent runs of the serial baseline program (not

TPAL), and therefore help to isolate the cost of interrupts.

The figure presents results only for the INT-PingThread ap-

proach of producing the beat, as described in Section 3.2. We
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Figure 8. Normalized execution time of TPAL sans heart-

beat interrupts and concomitant promotions, on Linux, sin-

gle core. The compilation-related performance overhead of

TPAL is minimal compared to sequential code.
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Figure 9. TPAL overheads including interrupts only, and

interrupts plus promotions, on Linux, single core.

do not present the INT-Papi approach as it always incurs

much higher overheads and does not provide any additional

benefits.

Interrupt-only overheads at ♥ = 100 𝜇s are generally low,

with a geomean of 3%. At ♥ = 20 𝜇s, however, interrupt-only

overheads approach 20% on several occasions, leading to a

geomean as high as 16%. As we describe in more detail in

Section 5.1, these overheads have a considerably higher and

compounding effect at larger scales. However, it is possible

to mitigate them through the direct use of timer and IPI

hardware as enabled in Nautilus.

Promotion overhead is low but could be improved. Fig-
ure 9 also depicts the total overhead of promotions by taking

the running times of our TPAL programs on a single core

when allowing not only signals, but also promotions, to hap-

pen. At ♥ = 100 𝜇s, all benchmarks except one input of spmv,
kmeans, and knapsack, incur a low overhead at or below 11%.

The overheads of kmeans and knapsack are already explained
by the compilation-related overheads, which are not specific

to TPAL. Although we cannot fully explain the cause of the

18% overhead of spmv with the powerlaw input, we have

found that on our other test machines the overhead is closer

to 10%. For ♥ = 20 𝜇s, however, the overhead of promotions

becomes unacceptable and reaches a geomean of 34%.
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Figure 10. Achieved and target heartbeat rate in Linux and

Nautilus, 15 cores.

Linux misses its target heartbeat rate. An even bigger

problem in Linux is that, owing to high signaling overheads,

it largely misses its target heartbeat rate. Figure 10 shows

that Linux struggles to keep up with its target rate of 150K

heartbeats/s across all 15 cores, even at a leisurely ♥ = 100𝜇s.

While it gets close to desired rate in 3 out of 12 benchmarks in

our suite, in all other cases it misses its target, and most often

by a lot. It is important to note that we present results for

the best Linux mechanism (INT-PingThread); the INT-Papi

mechanism performs even worse. The best Linux mechanism

cannot even sustain heartbeat signals at a consistent rate for

all benchmarks: for some it is as low as 82K/s, significantly

lower than the desired rate of 150K/s.

We do not understand in detail why Linux signaling per-

forms so poorly, but our results are in line with other obser-

vations of Linux behavior, as described earlier. Conceivably,

a suitable Linux kernel mechanism could be designed to

improve the situation, and this is a subject for future work.

The situation is aggravated for ♥ = 20𝜇s (Figure 10). Here

Linux always misses its mark by a factor of 2.7–9×: while the
target heartbeat rate is a rapid 750K heartbeats/s across all

cores, Linux delivers at most 281K, and as low as 83K. Failure

to achieve the target rate corresponds to potentially missed

opportunities to extract parallelism from the application. We

set out to mitigate this shortcoming by exploring alternate

mechanisms to deliver interrupts reliably and at low cost.

Performance at scale. In Figure 11, we present speedup

curves for all benchmarks. Overall, the curves suggest that

TPAL and Cilk Plus achieve scaling as cores are added. How-

ever, the curves of TPAL usually show low overhead at small

core counts, and highest performance at scale. There is one

significant exception: mandelbrot. In mandelbrot, there is a
need to spawn a large number of tasks, in order to keep the 15

cores fed, but the speedup curve of Cilk suggests that TPAL

is not generating a sufficient number of tasks. The reason

for insufficient tasks is that the signaling mechanism pro-

vided by Linux does not support a high enough throughput

to meet the needs. In Nautilus, where the signaling mech-

anism shows better performance at scale, our mandelbrot
benchmark scales very well, outperforming the Cilk Plus

version.

5 OS Support for Heartbeat Scheduling
The signaling mechanisms available in Linux were not de-

signed for the purpose of driving heartbeat interrupts at

fine granularity, such as ♥ = 20𝜇s—100𝜇s. As shown shown

by others [33], existing software mechanisms in Linux are

unable to achieve predictably low latencies for out-of-band

event signaling. While the performance of such signaling

mechanisms ultimately depends on hardware capabilities,

software overheads, a high degree of abstraction, and mis-

matched interfaces can introduce barriers to signaling per-

formance. To understand the extent of these issues as they

pertain to heartbeat signals, we implemented a prototype in

a lightweight OS kernel framework called Nautilus that al-

lows us to precisely control the software overheads of event

signaling without significant effort.

5.1 Nautilus and the TPAL HRT

Nautilus is a lightweight kernel framework intended to sup-

port hybrid runtime systems (HRTs), i.e. language runtimes

that have the full power of the OS kernel [34–36]. It is a

publicly available open-source codebase
2
that currently runs

directly on x64 NUMA hardware and Intel Xeon Phi, as well

as in a unikernel configuration atop various virtualization

platforms. Applications in Nautilus run in a single shared

address space, in kernel-mode, with fully privileged access

to the machine.

We created a prototype TPALHybrid Runtime (TPALHRT)

that runs in Nautilus. It is important to note that TPAL HRT

uses application code that is identical to the Linux user-level

implementation. The TPAL compiler transformations are no

different. The TPAL runtime is also almost entirely identical.

What is different is that everything runs within the kernel,

and heartbeat signaling is accomplished directly using the

x64 timer and interrupt hardware. Arguably, a representation

that captures task parallelism, such as TPAL, makes such a

radically different implementation feasible for the end-user.

Nautilus includes a lightweight, inter-core signaling frame-

work called Nemo, which reduces signaling latency and jitter

significantly [33]. Nemo is essentially a thin veneer around

the standard hardware mechanisms for signaling between

CPU cores, namely inter-processor interrupts (IPIs). In most

architectures, IPIs represent the lower limit on architected,

out-of-band event signaling. Their cost is typically within a

few thousand cycles, most of which is consumed by interrupt

handling overhead on the receive side CPU. OSes typically

use IPIs for internal synchronization events, but Nautilus

2https://github.com/HExSA-Lab/nautilus

https://github.com/HExSA-Lab/nautilus
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Figure 11. Speedup over Serial/Linux for Cilk Plus and TPAL/Linux, varying the number of cores.
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exposes this capability to parallel runtimes through Nemo,

allowing programmers to multiplex a fixed set of software

events and their handler functions atop IPIs. Thus, Nemo is

a natural fit for heartbeat signals.

We built our TPAL HRT directly atop Nemo and the hard-

ware timer interrupts that Nautilus also exposes, as depicted

in Figure 12. The first TPAL worker on CPU 0 registers a

Nautilus timer handler that will be invoked at the speci-

fied heartbeat interval (♥)/rate. This builds upon the CPU’s

local APIC timer, which can (typically) be programmed to

interrupt at intervals down to 10 ns. The timer interrupt

directly triggers the heartbeat timer handler. The timer han-

dler in turn uses Nemo to distribute a heartbeat signal to

every other core, which Nemo does using IPIs (1). On the

destinations, these IPIs trigger (2), via the Nemo framework,

the TPAL workers (3), which have more opportunities to

unleash parallelism in the form of task promotions (4) due

to the consistently achieved heartbeat rate. This approach

brings the limit on ♥ closer to the hardware limit.

5.2 Signaling Performance in TPAL HRT

Recall that Figure 9 showed the impact of the heartbeat

signaling mechanism on Linux for 20 and 100 𝜇s heartbeats.

These single-core results were discussed in Section 4.4.

Figure 13 shows the corresponding results for TPAL HRT.

The overheads for ♥ = 100 𝜇s corresponding to signaling

alone are completely masked, whereas in the best-case Linux

implementation they were typically around 3–4% and as high

as 7%. At 20 𝜇s, while the Linux overheads are on the order of

13–22%, the TPAL HRT overheads are at most 4.9%, and are

usually much lower. These gains cascade when promotions

are also enabled. Clearly, it is Linux that imposes noticeable



Task Parallel Assembly Language for Uncompromising Parallelism PLDI ’21, June 20–25, 2021, Virtual, Canada

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

pl
us

-r
ed

uc
e-

ar
ra

y

sp
m

v-
ra

nd
om

sp
m

v-
po

w
er

la
w

sp
m

v-
ar

ro
w

he
ad

m
an

de
lb

ro
t

km
ea

ns

sr
ad

flo
yd

-w
ar

sh
al

l-1
K

flo
yd

-w
ar

sh
al

l-2
K

G
eo

m
ea

n

kn
ap

sa
ck

m
er

ge
so

rt
-u

ni
fo

rm

m
er

ge
so

rt
-e

xp

G
eo

m
ea

n

Iterative Benchmarks Recursive Benchmarks

Ex
ec

ut
io

n 
Ti

m
e

No
rm

al
ize

d 
to

 S
er

ia
l/N

au
til

us Serial, 100 !s interrupts TPAL 100 !s, interrupts+promotions
Serial, 20 !s interrupts TPAL 20 !s, interrupts+promotions

1.81.9

Figure 13. TPAL overheads including interrupts only, and

interrupts plus promotions, on Nautilus, single core.

0

1

2

3

4

5

6

7

p
lu

s-
re

d
u

ce
-a

rr
a

y

sp
m

v
-r

a
n

d
o

m

sp
m

v
-p

o
w

e
rl

a
w

sp
m

v
-a

rr
o

w
h

e
a

d

m
a

n
d

e
lb

ro
t

k
m

e
a

n
s

sr
a

d

fl
o

y
d

-w
a

rs
h

a
ll

-1
K

fl
o

y
d

-w
a

rs
h

a
ll

-2
K

G
e

o
m

e
a

n

k
n

a
p

sa
c
k

m
e

rg
e

so
rt

-u
n

if
o

rm

m
e

rg
e

so
rt

-e
x
p

G
e

o
m

e
a

n

Iterative Benchmarks Recursive Benchmarks

Sp
ee

du
p 

ov
er

 S
er

ia
l/L

in
ux Cilk/Linux TPAL 100 !s/Linux TPAL 100 !s/Nautilus

9.514.0

8.38.3

12.2

14.9

Figure 14. Speedups over serial execution on Linux of 15-

core runs of Cilk Plus, TPAL/Linux and TPAL/Nautilus. TPAL

outperforms serial/Linux and Cilk Plus on all benchmarks.

costs, even when ♥ is a leisurely 100 𝜇s, as current hardware

can indeed support lower-cost signaling.

As Nautilus is capable of exploiting the fast interrupt de-

livery mechanisms of modern hardware, it also achieves

its target heartbeat rate. Figures 10 and 13 show that Nau-

tilus practically always achieves the heartbeat rate that it

is requested to deliver for both ♥ = 100 𝜇s and ♥ = 20 𝜇s.

While the best Linux mechanism cannot even sustain heart-

beat signals at a consistent rate for all benchmarks, even at

♥ = 100 𝜇s, Nautilus not only hits the target, but it also de-

livers a much more consistent rate for both 100 𝜇s and 20 𝜇s.

There is clearly a scaling issue that may affect performance

in Linux at higher core counts, but does not affect Nautilus.

5.3 Putting It Together: Performance at Scale

Figure 14 compares the overall speedups achieved by Cilk

and TPAL on Linux and Nautilus at scale (16 total cores)

normalized over the serial execution on Linux. Here ♥ = 100

𝜇s, which is generous to Linux.

Cilk Plus achieves speedups on two thirds of our work-

loads but incurs slowdowns on the remaining third. While

some speedups are high (e.g., 14× for mandelbrot) often per-

formance improvements are limited, leading to a respectable

but less-than-desired speedup geomean of 1.9× for iterative

benchmarks and 2.4× for recursive ones on 15 cores.

TPAL on Linux attains higher performance than Cilk Plus

in most cases, or performs comparably well, leading to a

geomean of 4× speedup for iterative benchmarks and 3.2×
for recursive ones. Similarly, TPAL on Nautilus achieves

speedup geomeans of 4.4× and 3.6× respectively for iterative

and recursive workloads, outperforming both Cilk Plus and

TPAL/Linux in aggregate. Looking at the individual work-

loads we observe that TPAL on Nautilus achieves the lowest

wall-clock execution times than any other system (Cilk plus

or TPAL/Linux) for all benchmarks except one: kmeans, in
which TPAL/Linux narrowly beats TPAL/Nautilus by 12%. It

appears that achieving the desired heartbeat interval/rate is a

double-edged sword. On the one hand, TPAL HRT can signif-

icantly outperform the Linux implementations at scale—for

example, in srad andmandelbrot. Here, the correct and stable
heartbeats trigger useful promotions that manifest useful

parallelism that contributes to performance, allowing, for

example, TPAL to overcome the obstacles it was facing with

mandelbrot on Linux, as noted in Section 4.3. On the other

hand, when Linux fails to achieve the target heartbeat rate,

this failure benefits benchmarks in which promotions are not
desirable by the simple fact that there are fewer promotion

opportunities due to this failure.

Overall, TPAL on Linux achieves significant speedups over

Cilk (geomean 53%) for benchmarks that are amenable to

recurrent decomposition, while the others (that do not lend

well to our technique) incur minimal slowdown (geomean

9.8%). It is important to also note that if we consider both

Linux and Nautilus implementations, TPAL strictly outper-

forms Cilk Plus: in all cases, at least one of our TPAL im-

plementations achieves higher speedup than Cilk Plus, and

more often both do.

6 Related Work
Many task-parallel programming languages have been de-

veloped, going back to the 1980s, including multiLisp [37],

NESL [12, 14], Cilk (extending C) [30], several extensions of

Java [17, 40, 42], parallel Haskell [45, 48, 54], several forms

of parallel ML [10, 28, 32, 55, 57, 58, 61], and X10 [20]. All of

these task-parallel languages rely on task-scheduling tech-

niques that go back to Brent’s seminal work [18], which has

been extended in many directions [4, 8, 11, 13, 15, 16, 24, 43,

51]. These techniques primarily focus on reducing schedul-

ing overheads of tasks that are already created. Task-creation

overheads have also proved to be significant, and there has

been work on reducing them [6, 25, 30, 38, 41, 60, 63], going

back to Cilk-5’s clone optimization. Our TPAL takes inspi-

ration from prior work but takes a different tack: instead of

reducing the cost of task creation—which can only be done

up to a point—TPAL amortizes the cost against the abundant

useful work that a program naturally performs.

There has been recent interest in improving the quality

of code generated by high-level parallel languages, such as

Cilk Plus. Tapir [56] extends LLVM to support Cilk Plus,

bringing to parallel function calls and loops the benefits of

LLVM’s existing serial code-optimization passes. Although it
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addresses compiler optimization of parallel code, Tapir does

not address granularity control, a major challenge in paral-

lelizing codes efficiently, whereas TPAL does. Furthermore,

by design, Tapir does not address compiler optimization in

the stages following the lowering of Tapir’s high-level paral-

lel instructions, whereas TPAL does. We believe that there

is now a feasible path to combine Tapir and TPAL, as we

outlined in Section 3.1, which will feature the benefits of

each approach in one system.

For our implementation of TPAL, we used the signaling

mechanism provided by the OS, in our case, Linux, to drive

heartbeats. The performance issues related to the Linux sig-

nal mechanism are relatively well known, and are explicitly

noted in the source code. In particular, the perf sample rate is

limited to 10usec for this reason [2] (lines 418 and 492). There

is also some discussion of it in the research literature [62].

Alternatively, the heartbeats can be driven by software
polling [26]. In software polling, there is typically some

sophisticated compiler support that inserts into programs

the branch instructions needed to drive heartbeats. This ap-

proach has some advantages, especially in the context of

managed languages, where there may be preexisting sup-

port for software polling. However, there are two challenges

facing any implementation of software polling. First, it can

block compiler optimizations if not implemented carefully.

Second, an implementation needs to ensure there is enough

space between polling events to keep polling overheads low,

but close enough to consistently meet the target hartbeat

rate. These challenges have been addressed by advanced Java

runtimes, where there is evidence showing that the overhead

cost of the polling is close to 2% [47]. To achieve this result, it

is crucial to use a single load/cmp/branch sequence to ensure

that the branch would staticalliy be predicted as not taken,

and that the register allocation was not affected by the un-

likely branch and call [1, 9]. Also, in non-managed languages,

such as C++, it can be appropriate to use software polling,

and there has been work on bringing compiler support to

LLVM [31]. We plan to experiment with such alternative

mechanisms in future implementations of TPAL.

7 Conclusion

When it comes to performance, it takes two to tango: parallel

and sequential computation. Today, we expect the program-

mer to choreograph carefully, when exactly each will take

a step. If parallel goes too far, performance will suffer be-

cause of the overheads associated with realizing it in practice,

such as task creation, scheduling, etc. If sequential goes too

far, scalability will suffer. This choreography involves diffi-

cult compromises and requires carefully optimizing code to

make sure that each gets their “fair” share by considering

everything from lower level concerns such as architectural

constant factors, to compiler optimizations, and finally to

algorithms.

With widespread availability of multicore hardware, we

want languages that encourage and enable writing high-

level parallel programs without all of these compromises.

To this end, we proposed TPAL as a foundation for writ-

ing task-parallel programs. TPAL delivers the right level of

parallelism by construction, always and consistently, and ap-

plies to irregular, nested, and loop-based parallel codes. We

implemented and evaluated TPAL, considering important

implementation tradeoffs at the runtime/OS level, on a chal-

lenging suite of benchmarks, featuring irregular, fine-grain

parallelism. We showed that TPAL achieves consistent effi-

ciency and an ability to find the right amount of parallelism

regardless of workload.
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(b) Utilization (i.e., fraction of execution time spent on useful work).

Figure 15. The number of generated tasks and utilization for Cilk Plus and TPAL on Linux, 15 cores.

A Additional Experimental Results

Figures 15a and 15b present the number of tasks generated by Cilk and TPAL when running on Linux at ♥ = 100 𝜇s, along

with the utilization that each technique achieves across our benchmark suite, respectively.

Figure 15a shows that TPAL creates more tasks than Cilk Plus for about half the benchmarks in our suite, while for the

remaining half it does not. Yet, as Figure 7 indicates, TPAL outperforms Cilk Plus at scale. This seeming discrepancy highlights

the ability of recurrent decomposition to find the right balance between the amount of extracted parallelism and task size. Too

many and too small tasks will inevitably accumulate overhead on the program’s execution and may outweigh some of the

benefits of parallel execution.

Figure 15b shows that TPAL generally achieves comparable or higher utilization than Cilk Plus across our benchmark suite,

with the exception of four benchmarks, most notable of which is floyd-warshall with 1K inputs. While TPAL’s utilization is

much lower than Cilk Plus’ for this benchmark, TPAL outperforms Cilk Plus because it creates just enough tasks to keep the

cores fed with useful work, but not wasting time sharing with tasks that are too small. This behavior was discussed at length

in Section 4.3.

B Nested Parallelism

B.1 Loop-based nested parallelism

In TPAL, it is possible to write programs that nest loops in any desired fashion. There may be parallel loops inside serial ones,

or vice versa, or parallel loops inside other parallel ones. For example, we can write a parallel pow program that computes the

result f = de by executing our prod program inside an outer, pow loop. The steps of writing such a pow program are similar to

those we outlined for prod: we need serial blocks, handler blocks, and parallel blocks. Each time around the pow loop, there is

going to be a jump to prod program. Symmetrically, there must a replacement of the instruction at line 7 of Figure 2 to jump

back to the pow loop. Recall from before that by default our prod program starts executing in a serial fashion. This property is

crucial for performance, especially in loop nests. By starting the inner loop serial first, we get to best of both worlds: if the

inner loop turns out to be short lived, we pay zero overhead cost for parallelism, but if it is sufficiently long lived, we can

access its parallelism.

To complete the implementation, there is one additional change we need to make to our prod program. In Heartbeat

Scheduling, a promotion must always manifest the outer-most latent parallelism in the program. To satisfy this constraint in

our pow program, we must always promote from remaining iterations of the outer (i.e., pow) loop if possible (i.e., there are

at least two or more remaining). Otherwise, if there is no such latent outer parallelism, we can try to promote from inner

parallelism (i.e., in the prod loop). In order to implement this policy, we have to modify the handler blocks of our prod loop:
the modified blocks must try to promote from remaining iterations of the pow loop first, and only if that attempt fails, try to

promote from remaining iterations of the prod loop.

To see how this policy is implemented, let us build on our running prod example by nesting that loop-based program to

function as the inner loop in TPAL version of the pow program in Figure 16. In particular, our pow program computes f = de

by iterating multiplications of an accumulator register pr by d, using prod to perform the multiplications. In Figure 17, we see

there are four blocks that handle the initial sequential execution of pow. Just like with prod, the loop and exit blocks have

promotion-ready program point and join-target annotations. In this case, these annotations enable the outer parallelism for

the pow loop. Unlike prod, there is a continuation block ploop-cont, which is the return continuation of the inner loop.
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// computes f = de

reducer<op_mul<int>> pr(1)
cilk_for(int j = 0; j != e; j++)

reducer<op_add<int>> r(0)
cilk_for(int i = 0; i != d; i++)
r += *pr

pr *= *r
f := *pr

Figure 16. The pow program

1 pow: [ ·] // computes f = de

2 pr := 1

3 pjr := 0

4 jump ploop

5

6 pexit: [ j t p p t assoc -comm;

7 {pr ↦→ pr2}; pcomb]

8 f := pr

9 jump pret

10 ploop: [prppt ptry -promote]

11 i f - jump e, pexit

12 a := d

13 b := pr

14 ret := ploop -cont

15 jump prod

16

17 ploop -cont: [ ·]
18 pr := c

19 e := e - 1

20 jump ploop

Figure 17. The sequential blocks of the pow program.

The part of the program that implements the promote-the-outermost-parallelism policy of heartbeat scheduling is shown in

Figure 18. These handler blocks implement the following behavior: if it is the case that, from the pow loop, d ≥ 2, then our

handler promotes a new parallel task for the outer, pow loop. If, instead it is the case that, d < 2 but a ≥ 2, our handler promotes

a new parallel task for the inner (i.e., prod) loop. Otherwise, the handler returns control to whichever block was interrupted.

To implement this overall strategy, we need to make just two modifications to prod: we have to change the promotion-ready

program point annotations to instead point to our new handler block for pow, namely ptry-promote. The remaining blocks of

pow are the ones shown in Figure 19, which implement the parallel part of the program.

B.2 Recursive parallelism

Given a minor extension, TPAL can support recursive parallelism, e.g., in the style of Cilk spawn/sync syntax, along with

ordinary, serial function calls and stack and heap memory. The extension brings support for parallel and serial function calls by

introducing call stacks, which are managed by TPAL programs. TPAL is agnostic to stack representation: it can use the usual

linear C representation or, e.g., a segmented one. It is also agnostic to calling convention: it can support the usual conventions

of RISC architectures and x64.

In TPAL, the convention for issuing parallel calls uses the approach proposed for Heartbeat Scheduling. Each task has a

private call stack and issues parallel and serial calls in much the same way, by pushing and popping frames from the end of the

call stack. The difference is parallel calls require some additional bookeeping in the call stack of each task: the promotion-ready
mark list. The promotion-ready mark list consists of a linked list stored across stack frames, such that each node in the list

points into a frame. These pointers exist to be accessed by promotion handlers, whose purpose is to try to manifest latent

parallelism held in some state stored in a frame. If it holds onto some latent parallelism, before it makes a call to some other

function, a function must “advertise” that latent parallelism by registering a mark in its own frame. Symmetrically, when it

eliminates latent parallelism, a function must remove the corresponding mark. TPAL provides three instructions for managing

the marks: two for pushing and popping marks in the current frame of a task, and one for accessing the least-recent mark in

the current task.

Access to the least-recent mark is essential, because of the outer-most policy of Heartbeat Scheduling. To support this policy,

each handler in the program must first try to promote any parallelism in the current call stack before trying to promote any

loop-level parallelism. Moreover, any such handler must promote parallelism from the least-recent frame in the mark list.

The overhead carried by our parallel calling convention is small: it requires only modest support beyond existing loop-based

parallelism, in the common case requiring maintenance of just a low-cost mark structure, and supports all combinations of

nesting with parallel and serial loops.
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21 ptry -promote: [ ·]
22 pabort := ploop

23 ploop -promote -cont := ploop -par

24 i f - jump pjr, ploop -try-promote

25 pabort := ploop -par

26 jump ploop -par-try-promote

27

28 loop -try-promote: [ ·]
29 pabort := loop -try-promote

30 ploop -promote -cont := loop

31 i f - jump pjr, ploop -try-promote

32 jump ploop -par-try-promote

33

34 loop -par-try-promote: [ ·]
35 pabort := loop -par-try-promote

36 ploop -promote -cont := loop -par

37 i f - jump pjr, ploop -try-promote

38 jump ploop -par-try-promote

39 ploop -try-promote: [ ·]
40 t := e < 2

41 i f - jump t, pabort

42 pjr := j r a l l o c pexit

43 jump ploop -promote

44

45 ploop -par-try-promote: [ ·]
46 t := e < 2

47 i f - jump t, pabort

48 jump ploop -promote

49

50 ploop -promote: [ ·]
51 m := e / 2

52 n := e % 2

53 e := m

54 tr := pr

55 pr := 1

56 // ↓ needed for prod

57 ret := ploop -par-cont

58 fork pjr, ploop -par

59 e := m + n

60 pr := tr

61 jump ploop -promote -cont

Figure 18. Promotion-handler blocks of the pow program.

62 pcomb: [ ·]
63 pr := pr * pr2

64 j o i n pjr

65

66 ploop -par: [prppt ptry -promote]

67 i f - jump e pjoin

68 a := d

69 b := pr

70 ret := ploop -par-cont

71 jump prod

72 ploop -par-cont: [ ·]
73 pr := c

74 e := e - 1

75 jump ploop -par

76

77 pjoin: [ ·]
78 j o i n pjr

Figure 19. The parallel blocks of the pow program.

To enable recursive parallelism, we extend the grammar of TPAL, as shown in Figure 21, with support for stack-based

memory. Support for heap-based memory, e.g., by introducing malloc/free, is also possible, but we omit it to simplify the

presentation. The extensions to TPAL that are relevant for our present purpose are the eight new instructions in the grammar.

The first four are conventional: we provide instructions for allocating and deallocating a given number of words from a stack,

for which the stack pointer is given in a register, and we provide load and store instructions that can access memory at an

given address. The addressing mode is specified by a base pointer register, plus an integer-literal offset. The four remaining

instructions assist in the promotion of tasks that use stack memory, e.g., to make function calls.

In heartbeat scheduling, promotion assigns highest priority to latent parallelism in the outermost execution context, much

like in the classic work-stealing algorithm. As such, to implement promotion efficiently for recursive programs, such as our

Cilk-based fib program, the TPAL stack needs to provide constant-time access to the outermost promotable frame. Once

this frame is promoted, we need access to the next one, and so on. Thus, at a minimum, we need a singly linked list between

promotable frames from top to bottom, i.e., staring from the oldest frames. Yet, at the same time, the execution of a task pushes

and pops frames at the bottom of its stack. In particular, it is possible that a promotable frame gets popped before it is promoted

(e.g., the left branch of a pair terminates before the right branch gets promoted). Efficiently removing the frame from the singly

linked list between promotable frames requires reverse pointers, hence the need for a doubly linked list. To represent this
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int fib(int n)
if n < 2
return n

int f1 =

cilk_spawn fib(n - 1)
int f2 = fib(n - 2)
cilk_sync
return f1 + f2

Figure 20. The fib program

instructions 𝚤 ::= . . .

| 𝑟 := snew
| salloc 𝑟, 𝑛 | sfree 𝑟, 𝑛
| 𝑟 := mem[𝑟 + 𝑛] | mem[𝑟 + 𝑛] := 𝑣

| prmpushmem[𝑟 + 𝑛] | prmpopmem[𝑟 + 𝑛]
| 𝑟 := prmempty 𝑟 | prmsplit 𝑟, 𝑟𝑟

Figure 21. Extensions for TPAL to support stack memory

doubly linked list, promotable frames include a prev and a next pointer, using null to terminate the list. We call this linked list

the promotion-ready mark list.
We demonstrate our promotion-aware stack data structure with an example implementation of the recursive fib function

in TPAL. The sequential blocks of the program are given in Figure 22, and the parallel blocks in Figure 23. We give a sample

trace of this program in Figure 24, where we step through the first two recursive calls of the application fib(3). In the first

step, we have the initial frame, which is created by the fib block. In the second, the program pushes a new frame for the

continuation of the first recursive call, fib(2), and in the third, a frame corresponding to the continuation of fib(1). In the

process of creating these frames, the loop block pushes promotion-ready marks as well, using the instruction at line 19. In the

resulting trace step, there are two promotion-ready marks in the stack, each representing instances of latent parallelism that

exists between the first branch (i.e., the call fib(n - 1)) and its continuation, the second branch (i.e., the call fib(n - 2)).
Now, suppose that, by the next step, a heartbeat interrupt triggers the handler for the loop block, and execution continues

through to line 46 in the handler. This sequence of instructions has to perform the usual setup for a promotion: create a new

join record, and prepare registers for the fork instruction. It also has to modify the stack so that the continuation of the current

task and the child task each terminate by issuing a join instruction, which satisfies a dependency on the join continuation

task. The stack of the running task is modified, first by the promotion mark-list split instruction on line 44, and then by the

write issued on line 46, where the resulting stack corresponds to the last one in our trace. The split operation pops the oldest

promotion-ready mark from the stack (replacing it by a nil value), and assigns sp-top to point at the cell one past the old

promotion mark. The write issued on line 46 overwrites the original continuation targeting branch1 with a new continuation,

which targets the joink block.
After the fork instruction executes, we have a program state corresponding to the diagram in Figure 25. The interrupted

computation continues to run in its original task, 𝑇1, and the forked branch in the task 𝑇2. Each of these new tasks has a

dependency the join continuation𝑇𝑗 . In this case, the join continuation is trivial, because it just jumps to the exit block, which
is the termination point of the whole fib program. But in general, there may be an arbitrary join continuation in its place, if

fib is called by another function. As a result of the promotion, the task 𝑇𝑗 inherits the segment of the stack below the frame

that is promoted. Our semantics is prescriptive only for the high-level behavior of the stack, not to its implementation: it may

involve copying out the frames for the join continuation or allowing regions of the stack to be divided among parent and child

tasks. In the implementation section, we detail the various implementation strategies for a stack.
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1 // computes f = fib ( n)

2 fib: [ ·]
3 s a l l o c sp, 1

4 mem[sp + 0] := exit

5 jump loop

6

7 exit: [ ·]
8 s f r e e sp, 1

9 jump ret

10

11 loop: [prppt loop -try-promote]

12 f := n

13 t := n < 2

14 i f - jump t, retk

15 f := 0

16 s a l l o c sp, 3

17 mem[sp + 0] := branch1

18 t := n - 2

19 prmpush mem[sp + 1]

20 mem[sp + 2] := t

21 n := n - 1

22 jump loop

23 retk: [ j t p p t assoc -comm;

24 {f ↦→ f2}; comb]

25 t := mem[sp + 0]

26 jump t

27

28 branch1 : [ ·]
29 mem[sp + 0] := branch2

30 prmpop mem[sp + 1]

31 n := mem[sp + 2]

32 mem[sp + 2] := f

33 jump loop

34

35 branch2 : [ ·]
36 t := mem[sp + 2]

37 f := f + t

38 s f r e e sp, 3

39 jump retk

Figure 22. The sequential blocks of the fib program.

40 loop -try-promote: [ ·]
41 t := prmempty sp

42 i f - jump t, loop

43 jr := j r a l l o c retk

44 prmsplit sp, top

45 sp-top := sp + top - 1

46 mem[sp + 0] := joink

47 tn := n

48 n := mem[sp-top + 2]

49 tsp := sp

50 sp := snew
51 s a l l o c sp, 1

52 mem[sp + 0] := joink

53 fork jr, loop -par

54 sp := tsp

55 n := tn

56 jump loop -par

57 comb: [ ·]
58 f := f + f2

59 j o i n jr

60

61 joink: [ ·]
62 sp := sp-top + 3

63 j o i n jr

64

65 loop -par: [prppt loop -par-try-promote]

66 // similar to the loop block

67 ...

68

69 loop -par-try-promote: [ ·]
70 // similar to the loop -try-promote

block

71 ...

Figure 23. The parallel blocks of the fib program.
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exit exit
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Figure 24. Trace of the stack contents of executing fib(3). Each stack in the diagram represents the contents of the stack

just after executing the line of fib listed above. The dashed lines mark the boundary between two stack frames. The dotted

lines represent the linking between promotion-ready marks in the stack.
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Figure 25. Result of promiting fib(3)
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register files 𝑅 ::= { 𝑟1 ↦→ 𝑣1, . . . , 𝑟𝑛 ↦→ 𝑣𝑛 }
heaps 𝐻 ::= { 𝑙1 ↦→ ℎ1, . . . , 𝑙𝑛 ↦→ ℎ𝑛 }
heap values ℎ ::= 𝐵

program counters
¯𝑙 ::= 𝑙 [N]

cycle counters ⋄ ∈ N
tasks 𝑇 ::= ⟨¯𝑙 ;⋄;𝐻 ;𝑅; 𝐼 ⟩

join-activation-record maps 𝐽 ::= { 𝑗1 ↦→ 𝑗𝑟1, . . . , 𝑗1 ↦→ 𝑗𝑟𝑛 }
join-activation records 𝑗𝑟 ::= (𝑙 ; 𝑗𝑠)
join statuses 𝑗𝑠 ::= jsopen | jsclosed

extensions for stacks:

heap values ℎ ::= . . . | tup (𝑣1, . . . , 𝑣𝑛)
operands 𝑣 ::= . . .

| uptr ℎ | prmark

Figure 26. Formal grammar of the TPAL evaluator.

𝑅(𝑟 ) = 𝑅(𝑟 )
𝑅(𝑛) = 𝑛

𝑅(𝑙) = 𝑙

𝐻̂ (𝑅, 𝑣) = (𝑙𝑡 , 𝐵𝑡 )
where 𝑙𝑡 = 𝑅(𝑣)

𝐵𝑡 = 𝐻 (𝑙𝑡 )

PromotionReady(𝑙 [𝑛], 𝐻,⋄) = (𝑛 ≡ 0) ∧ (𝐻 (𝑙) = [prppt 𝑙 ′] 𝐼 ) ∧ (⋄ > ♥)

MergeJ(𝐽1, 𝐽2) = 𝐽1 ∪ { 𝑗 ↦→ 𝑗𝑟 | ( 𝑗 ↦→ 𝑗𝑟 ) ∈ 𝐽2 ∧ 𝑗 ∉ 𝑑𝑜𝑚(𝐽1) }

MergeR(𝑅1, 𝑅2,Δ𝑅) = { 𝑟 ↦→ 𝑣 | (𝑟 ↦→ 𝑣) ∈ 𝑅1 ∧ 𝑟 ∉ 𝑑𝑜𝑚(Δ𝑅) }
∪ { 𝑟𝑡 ↦→ 𝑣 | (𝑟𝑠 ↦→ 𝑣) ∈ 𝑅2, (𝑟𝑠 ↦→ 𝑟𝑡 ) ∈ Δ𝑅 }

MergeH(𝐻1, 𝐻2) = 𝐻1 ∪ { 𝑙 ↦→ ℎ | (𝑙 ↦→ ℎ) ∈ 𝐻2 ∧ 𝑙 ∉ 𝑑𝑜𝑚(𝐻1) }

Figure 27. TPAL metafunctions.

C Formal model

We present the grammar of our TPAL evaluator in Figure 26. A register file 𝑅 is a mapping from registers to values. A heap 𝐻

is a mapping from labels to heap values. For the semantics with register-based memory only, a heap value ℎ can be only a

source block. The extension for call stacks adds tuples, which are the underlying representation used for stacks. A program

counter
¯𝑙 is a label paired with a number. The number represents an offset from the first instruction of the block associated

with the label. A cycle counter ⋄ is a number that counts the number of elapsed instructions since the previous heartbeat

interrupt. A task 𝑇 is a tuple consisting of a program counter, a cycle counter, a heap, a register file, and a current instruction

sequence. A join-activation-record map 𝐽 is a mapping from join-record ids to join records. A join-activation record 𝑗𝑟 is a pair

consisting of a continuation label and a join status, which is either open or closed.

In Figure 27, we present the metafunctions used by the TPAL evaluator. The promotion-ready metafunction checks for the

need to service a heartbeat interrupt by inspecting the program counter and cycle counter. Themerge operations handle merging

for the respective environments of two tasks meeting at a join point. Merging of join records and heaps is straightforward

because there can be no conflicts: tasks can only increase the overall information content in these environments. Merging of

register files is a little more complicated. The contents of the result register file consist of a copy of the contents of the first

register file, along with selected contents from the second. The selected contents consist of only those registers mentioned in

the register-renaming environment.
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cost graphs 𝑔 ::= 0 | 1 | (𝑔 · 𝑔) | (𝑔 ∥ 𝑔)
cost of task creation (in nb. of cycles) 𝜏

Work(0) = 0

Work(1) = 1

Work(𝑔1 · 𝑔2) = Work(𝑔1) +Work(𝑔2)
Work(𝑔1 ∥ 𝑔2) = 𝜏 +Work(𝑔1) +Work(𝑔2)

Span(0) = 0

Span(1) = 1

Span(𝑔1 · 𝑔2) = Span(𝑔1) + Span(𝑔2)
Span(𝑔1 ∥ 𝑔2) = 𝜏 +max(Span(𝑔1), Span(𝑔2))

Figure 28. Cost semantics of TPAL

We define the components needed for the cost model in Figure 28. We use cost graphs as a convenient way to formalize

the work and span of an execution. The execution of a TPAL program induces a series-parallel, directed acyclic graph. The

grammar of cost graph includes: the empty graph, written 0, the one-vertex graph, written 1, sequential composition of two

graphs, written (𝑔1 · 𝑔2), and parallel composition of two graphs, written (𝑔1 ∥ 𝑔2). Figure Figure 28 also gives the formal

definition of the work and span of cost graph 𝑔, written Work(𝑔) and Span(𝑔), respectively. We weight fork-join operations

with some cost 𝜏 . This fixed parameter 𝜏 represents the runtime overhead associated with a fork-join operation.

We show the transition rules for single-task steps in Figure 29. A step takes a task record to a changed task record, or to a

halt state.

(¯𝑙, 𝐻, 𝑅, 𝐼 ) → (¯𝑙 ′, 𝐻 ′, 𝑅′, 𝐼 ′)
The move transition assigns the contents of a register. The binary op transition performs a given binary operation and assigns

the result to a register. The conditional branch transitions handle both cases of an if instruction. We interpret the number zero

to represent a true value and all others false. An unconditional branch jumps to a specified label. Finally, a halt instruction

leaves the task record unchanged.

In Figure 30, we present the transitions for a multi-task evaluation. For simplicity, we use a big-step semantics. The judgment

takes a join-record map 𝐽 and a task 𝑇 and evaluates the task to a final configuration 𝑇 ′
, a final join-record map 𝐽 ′, and a cost

graph 𝑔.

𝐽 ;𝑇 ⇓ 𝐽 ′;𝑇 ′
;𝑔

The sequential transition applies when the task is ready to perform a serial transition step. The join-record allocation transition

allocates for the task a fresh join-record in the join-record map. Initially, this join record is in a close state, meaning that there

are one or zero tasks with dependency edges registered on the join record. The fork rule generates subderivations for parent

and child tasks, joins their results to generate a subderivation for the combine task, and delivers the result of the combine task

as its final result. The join-block transition applies when parent and child tasks issue a join instruction. The join-continue

transition applies when the combine block issues a join instruction. At this point, the issuing task proceeds to jump to the join

continuation block stored in the join record, thereby completing the parallel loop. Finally, the try-promote transition fires only

when a promotion is ready. The guard on all the rules ensure that the try-promote rule is mutually exclusive with all others.

C.1 Support for stack memory

In Figure 31, we show the transition rules for handling stack instructions. The first transition rule allocates a fresh stack to the

caller and stores a pointer in the destination register. The second and third allocate and free a specified number of cells in

the stack pointed to by the first register operand. The stack store transition writes a value in a specified operand to a stack

cell, specified by a register holding a stack pointer and an integer offset. The stack load transition reads a value from a stack

cell, as specified by a register holding the stack pointer and an integer literal offset. The promotion-mark empty transition

rules write a zero (true) in a destination register if the promotion-ready mark list is empty, and nonzero (false) otherwise. The

promotion-ready mark push and pop transitions push and pop a mark at a cell in the stack, specified by a register holding a

stack pointer and an integer literal offset. The promotion-ready mark split transition pops the outermost (i.e., least recent)

promotion-ready mark in the stack. Its first operand specifies a pointer to the call stack and its second a destination register in
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[move]

𝑅 [𝑟 = 𝑅(𝑣)] = 𝑟 ′

(𝑙 [𝑛], 𝐻, 𝑅, 𝑟 := 𝑣 ; 𝐼 ) → (𝑙 [𝑛+1], 𝐻, 𝑅′, 𝐼 )

[binop]

𝑅(𝑟 ) = 𝑛1 𝑅(𝑣) = 𝑛2

𝑅 [𝑟𝑑 = 𝑜𝑝 (𝑛1, 𝑛2)] = 𝑅′

(𝑙 [𝑛], 𝐻, 𝑅, 𝑟𝑑 := 𝑜𝑝 𝑣, 𝑟 ; 𝐼 ) → (𝑙 [𝑛+1], 𝐻, 𝑅′, 𝐼 )

[if-true]

𝐻̂ (𝑅, 𝑣) = (𝑙 ′, [★] 𝐼 ′) 𝑅(𝑟 ) = 0

(𝑙 [𝑛], 𝐻, 𝑅, if-jump 𝑟, 𝑣 ; 𝐼 ) → (𝑙 ′ [0], 𝐻, 𝑅, 𝐼 ′)

[if-false]

𝑅(𝑟 ) ≠ 0

(𝑙 [𝑛], 𝐻, 𝑅, if-jump 𝑟, 𝑣 ; 𝐼 ) → (𝑙 [𝑛+1], 𝐻, 𝑅, 𝐼 )

[jump]

𝐻̂ (𝑅, 𝑣) = (𝑙, [★] 𝐼 )
(¯𝑙, 𝐻, 𝑅, jump 𝑣) → (𝑙 [0], 𝐻, 𝑅, 𝐼 )

[halt]

(¯𝑙, 𝐻, 𝑅, halt) → (¯𝑙, 𝐻, 𝑅, halt)

Figure 29. TPAL sequential transitions: (¯𝑙, 𝐻, 𝑅, 𝐼 ) → (¯𝑙 ′, 𝐻 ′, 𝑅′, 𝐼 ′).

which to put an offset value. The offset value is set to be the address of the cell at which that promotion-ready mark that was

popped.

D Example trace of prod
For our trace execution, we are going to assume that we are running our prod program in a TPAL task, whose register file 𝑅

initially holds assignments for the argument values a ↦→ 3 and b ↦→ 4. In addition to the register file, there is the contents of

the heartbeat cycle counter ⋄, a line number, corresponding to the program counter, and the instruction at that line number,

which is being executed.

⋄ 0 1 2 3 4

𝑅
a ↦→ 3

b ↦→ 4

r ↦→ 0

. . .
. . . . . .

r ↦→ 4

. . .

line # 2 3 10 11 12

𝚤 r := 0 jump loop i f - jump a, exit r := r + b a := a - 1

Note that, contrary to the C convention, our if-jump instruction branches to its argument label if its register argument is zero,

and otherwise falls through.

The task parallelism in our prod program is based on the following observation: each iteration performed by the loop block

can, in principle, be executed independently by parallel tasks. Of course, there is a potential obstacle: our loop block updates

an accumulator register r in a serial fashion: ((. . . (0 + b) . . .) + b) + b. But these updates can, thanks to the associativity of

integer addition, break into smaller tasks, such as (0 + . . . + b) + . . . + (0 + . . . + b). We just need a way of carving out pieces

of work into fresh tasks and a way to combine the results of parallel tasks at join points. Our TPAL handles the creation of

parallel tasks by heartbeat scheduling. In heartbeat scheduling, the program tries to create a new parallel task on a regular

basis, at a rate that is controlled by the heartbeat interval, denoted ♥. The heartbeat interval is a tuning parameter for heartbeat

scheduling that is machine specific, and can be found by running a tuning program one time, on the target machine. Let us

suppose that, for our sample execution, the setting ♥ = 4 is what we got from tuning, noting, however, that values in practice

on real machines tend to be much larger.
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[seq]

¬PromotionReady(¯𝑙, 𝐻,⋄)
(¯𝑙, 𝐻, 𝑅, 𝐼 ) → (¯𝑙 ′, 𝐻 ′, 𝑅′, 𝐼 ′)

𝐽 ; ⟨¯𝑙 ′;⋄ + 1;𝐻 ′
;𝑅′

; 𝐼 ′⟩ ⇓ 𝐽 ′; ⟨¯𝑙 ′′;⋄′;𝐻 ′′
;𝑅′′

; 𝐼 ′′⟩;𝑔
𝐽 ; ⟨¯𝑙 ;⋄;𝐻 ;𝑅; 𝐼 ⟩ ⇓ 𝐽 ′; ⟨¯𝑙 ′′;⋄′;𝐻 ′′

;𝑅′′
; 𝐼 ′′⟩; 1 · 𝑔

[jralloc]

¬PromotionReady(𝑙 [𝑛], 𝐻,⋄)
𝑗 fresh 𝐽 ′ = { 𝑗 ↦→ (𝑙𝑘 ; jsclosed) } ∪ 𝐽 𝑅′ = 𝑅 [𝑟 = 𝑗]
𝐽 ′; ⟨𝑙 [𝑛+1] ;⋄ + 1;𝐻 ;𝑅′

; 𝐼 ⟩ ⇓ 𝐽 ′′; ⟨¯𝑙 ′;⋄′;𝐻 ′
;𝑅′′

; 𝐼 ′′⟩;𝑔
𝐽 ; ⟨𝑙 [𝑛] ;⋄;𝐻 ;𝑅; 𝑟 := jralloc 𝑙𝑘 ; 𝐼 ⟩ ⇓ 𝐽 ′; ⟨¯𝑙 ′;⋄′;𝐻 ′

;𝑅′′
; 𝐼 ′′⟩; 1 · 𝑔

[fork]

¬PromotionReady(𝑙 [𝑛], 𝐻,⋄)
𝑅(𝑟 ) = 𝑗 𝐽 ( 𝑗) = (𝑙𝑘 ; 𝑗𝑠)

𝐽0 = { 𝑗 ↦→ (𝑙𝑘 ; jsopen) } ∪ 𝐽 𝐻̂ (𝑅, 𝑣𝑡 ) = (𝑙𝑡 , [★] 𝐼𝑡 )
𝐽0; ⟨𝑙 [0] ; 0;𝐻 ;𝑅; 𝐼 ⟩ ⇓ 𝐽1; ⟨¯𝑙1;⋄1;𝐻1;𝑅1; join 𝑟1⟩;𝑔1

𝐽0; ⟨𝑙𝑡 [0] ; 0;𝐻 ;𝑅; 𝐼𝑡 ⟩ ⇓ 𝐽2; ⟨¯𝑙2;⋄2;𝐻2;𝑅2; join 𝑟2⟩;𝑔2

𝑅1 (𝑟1) = 𝑅2 (𝑟2) = 𝑗

𝐻 (𝑙𝑘 ) = [jtppt 𝑗𝑝;Δ𝑅; 𝑙𝑐 ] 𝐼 ′ 𝐻 (𝑙𝑐 ) = [★𝑐 ] 𝐼𝑐
MergeR(𝑅1, 𝑅2,Δ𝑅) = 𝑅𝑐 MergeH(𝐻1, 𝐻2) = 𝐻 ′

{ 𝑗 ′ ↦→ 𝑗𝑟 | ( 𝑗 ′ ↦→ 𝑗𝑟 ) ∈ MergeJ(𝐽1, 𝐽2) ∧ 𝑗 ′ ≠ 𝑗 } ∪ { 𝑗 ↦→ (𝑙𝑘 ; 𝑗𝑠) } = 𝐽𝑐
𝐽𝑐 ; ⟨𝑙𝑐 [0] ; 0;𝐻 ′

;𝑅𝑐 ; 𝐼𝑐⟩ ⇓ 𝐽 ′;𝑇 ;𝑔′

𝐽 ; ⟨𝑙 [𝑛] ;⋄;𝐻 ;𝑅; fork 𝑟, 𝑣𝑡 ; 𝐼 ⟩ ⇓ 𝐽 ′;𝑇 ; (𝑔1 ∥ 𝑔2) · 𝑔′

[join-block]

¬PromotionReady(¯𝑙, 𝐻,⋄)
𝑅(𝑟 ) = 𝑗 𝐽 ( 𝑗) = (𝑙𝑘 ; jsopen)

𝐽 ; ⟨¯𝑙 ;⋄;𝐻 ;𝑅; join 𝑟 ⟩ ⇓ 𝐽 ; ⟨¯𝑙 ;⋄;𝐻 ;𝑅; join 𝑟 ⟩; 1

[join-continue]

¬PromotionReady(¯𝑙, 𝐻,⋄)
𝑅(𝑟 ) = 𝑗 𝐽 = ( 𝑗 ↦→ (𝑙𝑘 ; jsclosed)) ∪ 𝐽 ′ 𝐻 (𝑙𝑘 ) = [★] 𝐼

𝐽 ′; ⟨𝑙𝑘 [0] ;⋄;𝐻 ;𝑅; 𝐼 ⟩ ⇓ 𝐽 ′;𝑇 ′
;𝑔

𝐽 ; ⟨¯𝑙 ;⋄;𝐻 ;𝑅; join 𝑟 ⟩ ⇓ 𝐽 ′;𝑇 ′
; 1 · 𝑔

[try-promote]

PromotionReady(𝑙 [𝑛], 𝐻,⋄)
𝐻 (𝑙) = [prppt 𝑙ℎ] 𝐼ℎ

𝐽 ; ⟨𝑙ℎ [0] ; 0;𝐻 ;𝑅; 𝐼ℎ⟩ ⇓ 𝐽 ′;𝑇 ;𝑔

𝐽 ; ⟨𝑙 [𝑛] ;⋄;𝐻 ;𝑅; 𝐼 ⟩ ⇓ 𝐽 ′;𝑇 ; 1 · 𝑔

Figure 30. TPAL parallel transitions: 𝐽 ;𝑇 ⇓ 𝐽 ′;𝑇 ′
;𝑔.

D.1 Heartbeat interrupts

Continuing where we left off with the program trace, we see that the next instruction is going to jump back to the top of

the loop block. However, before this jump happens, heartbeat scheduling takes over by interrupting our task, temporarily.

This temporary interruption happens at this step because it is the first step for which the two following properties hold

simultaneously. First, it is now the case that, based on our machine’s tuning parameter ♥, sufficient sequential work has

been performed by our current task for it to amortize the creation of a new parallel task. In other words, the heartbeat cycle

counter ⋄ = 5 is greater than the heartbeat interval ♥ = 4. Second, the jump instruction brought the program counter to a
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[stack-new]

𝑅 [𝑟 = uptr tup ()] = 𝑅′

(𝑙 [𝑛′ ], 𝐻, 𝑅, 𝑟 := snew; 𝐼 ) → (𝑙 [𝑛′+1], 𝐻, 𝑅′, 𝐼 )

[stack-alloc]

𝑅(𝑟 ) = uptr tup (𝑣0, . . . , 𝑣𝑚)
𝑅 [𝑟 = uptr tup (0, . . . , 0︸  ︷︷  ︸

𝑛

, 𝑣0, . . . , 𝑣𝑚)] = 𝑅′

(𝑙 [𝑛′ ], 𝐻, 𝑅, salloc 𝑟, 𝑛; 𝐼 ) → (𝑙 [𝑛′+1], 𝐻, 𝑅′, 𝐼 )

[stack-free]

𝑅(𝑟 ) = uptr tup (𝑣0, . . . , 𝑣𝑛−1, 𝑣𝑛, . . . , 𝑣𝑚)
𝑅 [𝑟 = uptr tup (𝑣𝑛, . . . , 𝑣𝑚)] = 𝑅′

(𝑙 [𝑛′ ], 𝐻, 𝑅, sfree 𝑟, 𝑛; 𝐼 ) → (𝑙 [𝑛′+1], 𝐻, 𝑅′, 𝐼 )

[stack-store]

𝑅(𝑟 ) = uptr tup (𝑣0, . . . , 𝑣𝑛, 𝑣𝑛+1, . . . , 𝑣𝑚)
𝑅 [𝑟 = uptr tup (𝑣0, . . . , 𝑣, 𝑣𝑛+1, . . . , 𝑣𝑚)] = 𝑅′

(𝑙 [𝑛′ ], 𝐻, 𝑅,mem[𝑟 + 𝑛] := 𝑣 ; 𝐼 ) → (𝑙 [𝑛′+1], 𝐻, 𝑅′, 𝐼 )

[stack-load]

𝑅(𝑟 ) = uptr tup (𝑣0, . . . , 𝑣𝑛, 𝑣𝑛+1, . . . , 𝑣𝑚) 𝑅 [𝑟𝑑 = 𝑣𝑛] = 𝑅′

(𝑙 [𝑛′ ], 𝐻, 𝑅, 𝑟𝑑 := mem[𝑟 + 𝑛]; 𝐼 ) → (𝑙 [𝑛′+1], 𝐻, 𝑅′, 𝐼 )

[prm-empty-true]

𝑅(𝑟 ) = uptr tup (𝑣0, . . . , 𝑣𝑛) prmark ∈ { 𝑣0, . . . , 𝑣𝑛 } 𝑅 [𝑟𝑑 = 0] = 𝑅′

(𝑙 [𝑛′ ], 𝐻, 𝑅, 𝑟𝑑 := prmempty 𝑟 ; 𝐼 ) → (𝑙 [𝑛′+1], 𝐻, 𝑅′, 𝐼 )

[prm-empty-false]

𝑅(𝑟 ) = uptr tup (𝑣0, . . . , 𝑣𝑛) prmark ∉ { 𝑣0, . . . , 𝑣𝑛 } 𝑅 [𝑟𝑑 = 1] = 𝑅′

(𝑙 [𝑛′ ], 𝐻, 𝑅, 𝑟𝑑 := prmempty 𝑟 ; 𝐼 ) → (𝑙 [𝑛′+1], 𝐻, 𝑅′, 𝐼 )

[prm-push]

𝑅(𝑟 ) = uptr tup (𝑣0, . . . , 𝑣𝑛, 𝑣𝑛+1, . . . , 𝑣𝑚)
𝑅 [𝑟 = uptr tup (𝑣0, . . . , prmark, 𝑣𝑛+1, . . . , 𝑣𝑚)] = 𝑅′

(𝑙 [𝑛′ ], 𝐻, 𝑅, prmpushmem[𝑟 + 𝑛]; 𝐼 ) → (𝑙 [𝑛′+1], 𝐻, 𝑅′, 𝐼 )

[prm-pop]

𝑅(𝑟 ) = uptr tup (𝑣0, . . . , 𝑣𝑛, 𝑣𝑛+1, . . . , 𝑣𝑚) prmark = 𝑣𝑛
𝑅 [𝑟 = uptr tup (𝑣0, . . . , 0, 𝑣𝑛+1, . . . , 𝑣𝑚)] = 𝑅′

(𝑙 [𝑛′ ], 𝐻, 𝑅, prmpopmem[𝑟 + 𝑛]; 𝐼 ) → (𝑙 [𝑛′+1], 𝐻, 𝑅′, 𝐼 )

[prm-split]

𝑅(𝑟𝑠 ) = uptr tup (𝑣0, . . . , 𝑣𝑛−1, prmark, 𝑣𝑛+1, . . . , 𝑣𝑚) prmark ∉ { 𝑣𝑛+1, . . . , 𝑣𝑚 }
𝑅 [𝑟𝑠 = uptr tup (𝑣0, . . . , 𝑣𝑛−1, 0, 𝑣𝑛+1, . . . , 𝑣𝑚)] = 𝑅′ 𝑅′[𝑟𝑝 = 𝑛] = 𝑅′′

(𝑙 [𝑛′ ], 𝐻, 𝑅, prmsplit 𝑟𝑠 , 𝑟𝑝 ; 𝐼 ) → (𝑙 [𝑛′+1], 𝐻, 𝑅′′, 𝐼 )

Figure 31. TPAL sequential transitions for the stack: (¯𝑙, 𝐻, 𝑅, 𝐼 ) → (¯𝑙 ′, 𝐻 ′, 𝑅′, 𝐼 ′).

promotion-ready program point. A promotion-ready program point is, in general, the first instruction in a block that has the

prppt annotation. To see the heartbeat interrupt in action, let us continue with our execution trace where we left off, just

after the jump instruction. At this point, our current task proceeds to handle the heartbeat interrupt by using the handler as

specified by the annotation on the loop block. This handler block is the one labeled loop-try-promote in Figure 33. The first

action carried out by the handler block is to test whether there is any latent parallelism held by the current task. This test is

performed by first two instructions of the handler, which takes a branch based on the contents of a.
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1 prod: [ ·] // computes c = a * b

2 r := 0

3 jump loop

4

5 exit: [ j t p p t assoc -comm;

6 {r ↦→ r2}; comb]

7 c := r

8 jump ret

9 loop: [prppt loop -try-promote]

10 i f - jump a, exit

11 r := r + b

12 a := a - 1

13 jump loop

Figure 32. The sequential blocks of the prod program.

14 loop -try-promote: [ ·]
15 t := a < 2

16 i f - jump t, loop

17 jr := j r a l l o c exit

18 jump loop -promote

19

20 loop -par-try-promote: [ ·]
21 t := a < 2

22 i f - jump t, loop -par

23 jump loop -promote

24 loop -promote: [ ·]
25 m := a / 2

26 n := a % 2

27 a := m

28 tr := r

29 r := 0

30 fork jr, loop -par

31 a := m + n

32 r := tr

33 jump loop -par

Figure 33. Promotion-handler blocks of prod.

5 6 7

a ↦→ 2

. . .
. . .

t ↦→ 1

. . .

13 15 16

jump loop t := a < 2 i f - jump t, loop

At this point, if the number of iterations in a were fewer than two, then, in effect, the conditional branch would transfer

control away from the handler, and back to the loop, by branching to the loop block. However, given that there remain a = 2

iterations in the trace, the handler can commit to releasing some of the parallelism that is latent in the loop.

D.2 Promotion

In TPAL, the process of taking latent parallelism, e.g., the ≥ 2 iterations remaining in register a, and transfering some to a

fresh parallel task is called promotion. The first promotion performed by a parallel region is special, because the task initiating

the process has to create a new synchronization variable to coordinate between all the parallel tasks that might be involved.

The next instruction allocates a new join record, which is a synchronization variable that is going to be used by the parent

and its child tasks. The exit block label that is being passed to jralloc specifies a custom protocol that will later manage the

aggregation of results and the continuation of the parallel tasks involved in the join.

8 9

. . .
jr ↦→ j0

. . .

17 18

jr := j r a l l o c exit jump loop -promote

In the next step, there appears in the register file a pointer to the join record, j0, which was allocated in the heap. With the

join pointer ready, the handler jumps to the loop-promote block, where the promotion will be completed. The loop-promote
block first performs a sequence of instructions, from line 25 to 29, to prepare the registers of the current task to seed a new

child task. After the initial instructions, the child task is spawned as a side effect of executing the fork instruction. This

instruction takes two arguments, a pointer to a join record, jr, and the label of a block, loop-par. Its first action is to register

a dependency edge in the join record for the child task. Its second action is to spawn the child task, with a copy of the register

file of the parent task, but with its program counter assigned to execute the block at the argument label, loop-par. Finally, the
fork instruction continues executing the parent task from the next instruction, starting with a fresh heartbeat cycle counter,

i.e., ⋄ = 0.
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34 loop -par: [prppt loop -par-try-promote]

35 i f - jump a, exit -par

36 r := r + b

37 a := a - 1

38 jump loop -par

39 comb : [ ·]
40 r := r + r2

41 j o i n jr

42

43 exit -par: [ ·]
44 j o i n jr

Figure 34. Parallel blocks of prod.

15 0 1 2

m ↦→ 1

n ↦→ 0

a ↦→ 1

tr ↦→ 4

r ↦→ 0

. . .

. . .
a ↦→ 1

. . .

r ↦→ 4

. . .

30 31 32 33

fork jr, loop -par a := m + n r := tr jump loop -par

After completing fork instruction, the parent task issues the final instructions of the heartbeat interrupt handler. These

instructions rearrange the registers so that the parent task can resume executing its part of the computation, with its original

accumulator value back in r.

D.3 Parallel tasks

The child and parent tasks are now executing in parallel, but have resumed executing from a different loop block, namely

loop-par, which resides in a different parallel region of the program. The parallel region of our prod program consists of the

three blocks shown in Figure 34. Let us continue our trace, this time from the starting point of the child task that our parent

task just spawned.

0 1 2 3

a ↦→ 1

. . .
. . .

r ↦→ 4

. . .

a ↦→ 0

. . .

35 36 37 38

i f - jump a, exit -par r := r + b a := a - 1 jump loop -par

The sequence of instructions executed by the child task looks almost identical to the ones in the loop block, where our trace

started, i.e., in the parent task, before the heartbeat interrupt arrived. The difference is in the continuation of the loop: before it

can exit with a result, the prod program has to aggregate the results of all the parallel tasks. In our trace, the only other task

involved in the join is the parent task, which has since been executing in parallel from where we left off. Thus far, the parent

thread has executed with almost the same trace as our child task, except starting with a different heartbeat cycle counter. There

is a slightly larger value accumuated in the heartbeat cycle counter ⋄ of the parent task due to there being extra instructions at

the end of the heartbeat handler, just before jumping to loop-par. As a consequence, the parent task triggers one additional

heartbeat interrupt, whereas the child completes before triggering one. The interrupt handled by the parent task does not lead

to a promotion in our trace, because the value of a in the register file of the parent task is zero by this point. Consequently, the

parent task executes the handler up to line 22, where the handler short circuits.

In general, however, if either child or parent tasks were holding onto at least two remaining iterations, our program

may generate a dynamic number of additional tasks. Any such additional tasks are going to be spawned with the same

join record, that is, the one allocated by the initial invocation of the heartbeat handler, loop-try-promote. To get this

behavior, we structured our prod program so that all subsequent heartbeat interrupts trigger a different handler block, namely

loop-par-try-promote, shown in Figure 33. This handler assumes that the join record is already referenced by register jr.
Such handling of join records is essential: in TPAL every dynamic instance of a parallel region, such as the one we traced thus

far, acts on one join record. In general, however, there may be multiple dynamic instances of the same parallel region, e.g., in a

program that executes multiple instances of our prod program. In such a case, there can be a dynamic number of join records

in flight at a time, one for each dynamic instance of prod, for example.
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D.4 Join resolution

Our sample program is nearly finished, except for the final steps, whereby all of the parallel tasks take part in aggregating

their partial results, after which a final result is obtained. Let us suppose that the child task is going to be the first to reach its

join point. Resuming where we left off above, our child task branches out of its loop to the exit-par block, where it executes

the join instruction.

4 5

. . . . . .

35 44

i f - jump a, exit -par j o i n jr

At this point, the join between the child and parent tasks is open, because there is at least one task that has not yet reached

the join point. Because the join is open, the child task is removed from the task graph, and its register file is stashed away,

e.g., in the join record, for later. Later, after the parent task reaches its joint point, the behavior changes, because the parent

can now combine its result, in r, with the result computed by the child task. The next steps of the parent task are all specific

to the join-resolution protocol that is determined by the label that was originally passed to jralloc, in our case exit. The
join-resolution protocol is customized by the annotation on this exit block. The annotation determines, first, how to combine

the results of the tasks by specifying a code block, which is in our case the comb block. There is, however, one complication:

because our comb block needs the values from the r registers of both tasks, there needs to be one extra register to pass the

result from the child task. The annotation determines, second, what register will be seeded with the child copy of r, which is

in our case r2. After aggregating the results, the comb block itself issues the fork instruction one last time, after which, the

join becomes closed. Because the join point is closed, the parent task takes ownership of the continuation by jumping to the

exit block.

0 1 2 3 4

. . . . . .

r ↦→ 8

r2 ↦→ 4

. . .

r ↦→ 12

. . .
. . .

35 44 40 41 7

i f - jump a, exit -par j o i n jr r := r + r2 j o i n jr c := r

Even though it is the parent task in this case, any one of the tasks involved in a join can, depending on which finishes last, be

the one to close the join and execute the continuation. Our parallel program has now reached its end: it will store the final

result in c and jump to the continuation block, ret.

D.5 Discussion

The diagram in Figure 35 shows the control-flow graph of the entire prod program. Most edges in the graph represent control

flow that is triggered by conditional (e.g., loop → loop) and unconditional jump instructions (e.g., prod → loop). The other
edges are the result of a heartbeat interrupt (e.g., loop→ loop-try-promote), a fork instruction (e.g., loop-try-promote→
loop-par), or a join instruction (e.g., comb → exit-par). With this representation in mind, we can now address one obvious

question: Why are loop and loop-par so similar? Could we do with just one? Indeed, we could have written the program

with just one loop block, but such a representation brings with it some indirect costs. If we insist on there being one loop block,

then we either must allocate the join record jr up front, before the loop starts, or delay allocating the join record by initially

storing a sentinel value in jr, and updating loop-try-promote to handle both sentinel and non-sentinel cases. Allocating

the join record up front is undesirable because, even if its cost is small, small costs can easily add up to a large overall cost.

Delaying the allocation helps avoid the cost of allocation, but still requires there to be, e.g., a conditional branch on the exit of

the loop, because the loop needs to issue a join instruction if and only if at least one promotion occurred.

In general, the two practical options are the expanded style we used for our prod program, or the reduced style that would
take the approach of delaying the allocation of the join record. There is a tradeoff between the two options that we need

to consider. In the expanded style, we can see that there is at least one opportunity for code specialization. That is, in our

program prod program, the blocks prod, loop and exit pay zero overhead cost for task parallelism (the prppt and jtppt
annotations carry zero runtime overhead). In particular, these blocks do not see the register jr as alive, and therefore never

have to pay to access it. This property is crucial for being able to scale down: for instances of prod that are sufficiently small

(e.g., small enough to complete in between successive heartbeat interrupts), the three sequential blocks may complete their

computation without being involved in a promotion. Overall, the expanded style can achieve the cleanest separation between

parallel and sequential code, ultimately providing a complete statically identifiable part of the control-flow graph, for which

we can avoid overheads, such as the management of the join counter, and more generally use of deeper specializations. Deeper



Task Parallel Assembly Language for Uncompromising Parallelism PLDI ’21, June 20–25, 2021, Virtual, Canada

loop

prod

loop-try-promoteexit

exit-par loop-par

comb

loop-par-try-promote

open joinclosed join

heartbeat interrupt

first promotion

heartbeat interrupt

serial blocks

parallel blocks

Figure 35. Control-flow graph of our prod program.

specializations might, for example, open up opportunities to optimize the sequential part of the control-flow graph more

aggressively than otherwise, because in such blocks, it is guaranteed that the loop up to that point has run in a completely

serial fashion since it began. Specializations such as these do cause an increase in code size, an issue that has implications for

nested parallel loops, which we discuss next.
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