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Granularity control is a balancing act

Strategies for executing fork-join programs

More practical:
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State of the art

* Expect the programmer to solve the problem by tuning the
program.

* Goal: minimum-size parallel task is large enough.
* Tuning is an exponential search problem.
* Result is platform dependent code.

* Tuning generic/templated code is impractical.
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Limitations of manual granularity control

parallel-for (1=0; 1<n; 1++)
b[1] = toUpperCase(al1i])

int grain = 5000 // picked by tuning

parallel-for (i=0; i<(n+grain-1)/grain; i++) aii?#aetr:\tffl
for (j=1*grain; j<min(n, (1+1)*grain),; J++) <____///

b[]J] = toUpperCase(aljl)

te::nplate <F,A,B> | No single usable setting of
void map(F £, A* a, B* b, int n) grain for all call sites!
parallel-for (i=0; i<n; i++) i o
b[1] = f(al1])

map (toUpperCase, a, b, n)
map (someExpensiveComputation, a, b, n)
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Main approaches to taming task-creation overheads
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Reduce the number of tasks created Redch;ce tEe co?_t of each
(i.e., prune excess parallelism) ask creation

A (useful, but not sufficient)

Lazy Scheduling: Granularity control:
Delay creating a task until it’s Prediction of running time ;T
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. L : Granularity Control:
(rqu/res soph/stlcated (depends on predicting
compiler/runtime SUPPOIt; — gyecytion time, requires some | a runtime technique that,
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Series-parallel guard

Our goal: lift the burden of tuning by transferring to the runtime.

We propose: (a single, new programming construct)

spguard (Feost, Fpar, Fseq)

N

Abstract-cost function Parallel body Sequential body
e.g., n *log(n), n? (some code that is
semantically equivalent
to the parallel body)

Behavior of spguard: determine automatically, at run time, whether to
run sequential or parallel body.



Example: parallel mergesort

Seq parallelMergesort (Seqg x) {

Seq r
spguard ([&] {
int n = size (x)

return n * log(n) <+— Abstract-cost function

br L&) A
1f size (x) < 2
r = X
else
(x1, x2) = splitInHalves (x)
rl = spawn parallelMergesort (x1) <+— Parallel body
r2 = parallelMergesort (x2)
sync
r = concat(rl, r2)
boo L&) A
r = sequentialSort (X) <«—— Sequential body
}) // endspguard
return r
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How does it predict when to sequentialize?

Our desired task size:

K Marginal profitable task size (e.g., 25-500 pusec)

Consider an execution of spguard (Feost, Fpar, Fseq)

For such an execution, let:
cost = Result of cost function (i.e., cost = Feost ())

work = Execution time across all parallel paths of body, (i.e., Fpar () OF Feeq ()).

After it executes, we update the internal state of the spguard:
COStmax ’
which represents the largest observed cost such that work < «.

Sequentialize iff: cost <2 * cost,,,



Challenge: predicting when to sequentialize
spguard (Fcost, Fpar, Fseq)

K Marginal profitable task size (e.g., 25-500 psec)

cost = Result of cost function (i.e., cost = Feost ())

work = Execution time across all parallel paths of an execution of the spguard

Convergence of cost,,,, :
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Cost model and bound

Work
w = total # of vertices

Span
s = length of critical
path

Critical path — Spans =10

Work-stealing bound (Blumofe & Leiserson)

For any fork-join program, the running time t, on p cores,
including the load balancing operations, but excluding
task-creation overheads, is bounded as follows:

E[to] < w/p + O(s)



Bound for Oracle-Guided Granularity Control

We extend the model to take into

W Work (total # vertices) _
account task-creation costs:

S Span (critical-path length) T Cost of creating a fiber

tp Running time of the

program on p cores K Amount of per-task work targeted

(e.g., to ensure 5% per-task
overhead, set k = 201)

Work stealing: E:tp: < W/p + O(S)
Our bound: E[to] < w/p + (t/x *w/p) + O(x/T *s) + O(log? k)
| | | | | |
3. Overhead
1. (e.9., 5%) 2. (e.9-, 20x) introduced by
granularity

controller



C++ library implementation

* Qur library provides:
* the spguard construct
* helper functions for frequently used cost functions

e parallel-for loops and data-parallel operations, e.g., map, reduce, prefix-
scan, filter, etc.

e Qur library uses Cilk Plus spawn/sync as basis, but is compatible with any
fork-join language or library.

* We ported 8 benchmark codes from the Problem Based Benchmark Suite
(PBBS), a collection representing irregular workloads.

* We needed to write only 24 explicit cost functions; the rest could use the
default, which is linear complexity.



Benchmarking results
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Conclusion

Formal bounds for scheduling fork join

Brent 74, Arora et al ’98, Blumofe &
Leiserson '99, Agarwal et al '07, Acar et
al ‘11

Lazy-scheduling methods

Mohr et al ’91, Feeley '93, Goldstein et al
‘96, Frigo et al ’98, Imam et al 14,
Tzannes et al ’14, Acar et al ‘18

Prediction-based methods

Weening ‘89, Pehoushek et al '90, Lopez
et al ’96, Duran et al ‘08, Acar et al 16,
lwasaki et al ’16, Shintaro et al ‘16

Oracle-Guided Granularity
control extends these results
with analytical bounds on
scheduling overheads for fork-
join programs.
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as a library and can switch
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unlike this class of algorithms.
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+— Control is the first in this class
to have a state-of-the-art
Implementation and be backed
by end-to-end bounds.
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