
Provably and Practically
Efficient Granularity Control

Umut Acar
Carnegie Mellon

University and Inria

Arthur Charguéraud

Inria & University of
Strasbourg, ICube

Vitaly Aksenov
Inria & ITMO University

Mike Rainey
Indiana University

& Inria

Granularity control is a balancing act

… …

Parallelize all
fork points

…

Sequentialize all
fork points

More practical:
somewhere in

between

…

…

…

Strategies for executing fork-join programs

State of the art

• Expect the programmer to solve the problem by tuning the
program.

• Goal: minimum-size parallel task is large enough.

• Tuning is an exponential search problem.

• Result is platform dependent code.

• Tuning generic/templated code is impractical.

Limitations of manual granularity control

parallel-for (i=0; i<n; i++)
 b[i] = toUpperCase(a[i])

Limitations of manual granularity control

parallel-for (i=0; i<n; i++)
 b[i] = toUpperCase(a[i])

int grain = 5000 // picked by tuning

parallel-for (i=0; i<(n+grain-1)/grain; i++)
 for (j=i*grain; j<min(n, (i+1)*grain); j++)
 b[j] = toUpperCase(a[j])

“sequential
alternative”

Limitations of manual granularity control

parallel-for (i=0; i<n; i++)
 b[i] = toUpperCase(a[i])

int grain = 5000 // picked by tuning

parallel-for (i=0; i<(n+grain-1)/grain; i++)
 for (j=i*grain; j<min(n, (i+1)*grain); j++)
 b[j] = toUpperCase(a[j])

“sequential
alternative”

template <F,A,B>
void map(F f, A* a, B* b, int n)
 parallel-for (i=0; i<n; i++)
 b[i] = f(a[i])

map(toUpperCase, a, b, n)
map(someExpensiveComputation, a, b, n)

No single usable setting of
grain for all call sites!

Related work & contribution

Main approaches to taming task-creation overheads

Related work & contribution

Main approaches to taming task-creation overheads

Reduce the number of tasks created
(i.e., prune excess parallelism)

Reduce the cost of each
task creation

(useful, but not sufficient)

Related work & contribution

Main approaches to taming task-creation overheads

Lazy Scheduling:

 Delay creating a task until it’s
needed to realize parallelism

(requires sophisticated
compiler/runtime support;

cannot switch irreversibly to
serial)

Reduce the number of tasks created
(i.e., prune excess parallelism)

Reduce the cost of each
task creation

(useful, but not sufficient)

Related work & contribution

Main approaches to taming task-creation overheads

Granularity control:

Prediction of running time

to throttle task creation

(depends on predicting
execution time, requires some

programmer annotation)

Lazy Scheduling:

 Delay creating a task until it’s
needed to realize parallelism

(requires sophisticated
compiler/runtime support;

cannot switch irreversibly to
serial)

Reduce the number of tasks created
(i.e., prune excess parallelism)

Reduce the cost of each
task creation

(useful, but not sufficient)

Related work & contribution

Main approaches to taming task-creation overheads

Granularity control:

Prediction of running time

to throttle task creation

(depends on predicting
execution time, requires some

programmer annotation)

Lazy Scheduling:

 Delay creating a task until it’s
needed to realize parallelism

(requires sophisticated
compiler/runtime support;

cannot switch irreversibly to
serial)

Reduce the number of tasks created
(i.e., prune excess parallelism)

Reduce the cost of each
task creation

(useful, but not sufficient)

Our Oracle-Guided
Granularity Control:

a runtime technique that,
for a large, well-defined

class of fork-join programs,
and any input, ensures

provably small overheads
and good utilization.

Series-parallel guard

spguard(Fcost, Fpar, Fseq)

Behavior of spguard: determine automatically, at run time, whether to
run sequential or parallel body.

Our goal: lift the burden of tuning by transferring to the runtime.

We propose:

Abstract-cost function
e.g., n * log(n), n2

Parallel body Sequential body

(a single, new programming construct)

(some code that is
semantically equivalent

to the parallel body)

Example: parallel mergesort
Seq parallelMergesort(Seq x) {
 Seq r
 spguard([&] {
 int n = size(x)
 return n * log(n)
 }, [&] {
 if size(x) < 2
 r = x
 else
 (x1, x2) = splitInHalves(x)
 r1 = spawn parallelMergesort(x1)
 r2 = parallelMergesort(x2)
 sync
 r = concat(r1, r2)
 }, [&] {
 r = sequentialSort(x)
 }) // end spguard
 return r
}

Abstract-cost function

Parallel body

Sequential body

How does it predict when to sequentialize?

𝜅 Marginal profitable task size (e.g., 25-500 µsec)

Our desired task size:

How does it predict when to sequentialize?

𝜅 Marginal profitable task size (e.g., 25-500 µsec)

Our desired task size:

spguard(Fcost, Fpar, Fseq)

cost = Result of cost function (i.e., cost = Fcost())

work = Execution time across all parallel paths of body, (i.e., Fpar()or Fseq()).

Consider an execution of

For such an execution, let:

How does it predict when to sequentialize?

𝜅 Marginal profitable task size (e.g., 25-500 µsec)

Our desired task size:

spguard(Fcost, Fpar, Fseq)

cost = Result of cost function (i.e., cost = Fcost())

work = Execution time across all parallel paths of body, (i.e., Fpar()or Fseq()).

Consider an execution of

For such an execution, let:

costmax

After it executes, we update the internal state of the spguard:

which represents the largest observed cost such that work ≤ 𝜅.
,

How does it predict when to sequentialize?

𝜅 Marginal profitable task size (e.g., 25-500 µsec)

Our desired task size:

spguard(Fcost, Fpar, Fseq)

cost = Result of cost function (i.e., cost = Fcost())

work = Execution time across all parallel paths of body, (i.e., Fpar()or Fseq()).

Consider an execution of

For such an execution, let:

costmax

After it executes, we update the internal state of the spguard:

which represents the largest observed cost such that work ≤ 𝜅.
,

Sequentialize iff: cost ≤ 2 * costmax

Challenge: predicting when to sequentialize
spguard(Fcost, Fpar, Fseq)

𝜅 Marginal profitable task size (e.g., 25-500 µsec)

cost

Too large to sequentialize

Too small to sequentialize

Time

Point at which
work > 𝜅

cost = Result of cost function (i.e., cost = Fcost())

work = Execution time across all parallel paths of an execution of the spguard

Convergence of costmax :

Cost model and bound

Work

w = total # of vertices

Span

s = length of critical
path

Work

w = 21

Span s = 10Critical path

E[tp] ≤ w/p + O(s)

Work-stealing bound (Blumofe & Leiserson)

For any fork-join program, the running time tp on p cores,
including the load balancing operations, but excluding

task-creation overheads, is bounded as follows:

Bound for Oracle-Guided Granularity Control

w Work (total # vertices)

s Span (critical-path length)

tp Running time of the
program on p cores

Work stealing: E[tp] ≤ w/p + O(s)

1. (e.g., 5%) 2. (e.g., 20x)

E[tp] ≤ w/p + (τ/𝜅 * w/p) + O(𝜅/τ * s) + O(log2 𝜅)Our bound:

3. Overhead
introduced by

granularity
controller

τ Cost of creating a fiber

𝜅 Amount of per-task work targeted

We extend the model to take into
account task-creation costs:

(e.g., to ensure 5% per-task
overhead, set 𝜅 = 20τ)

C++ library implementation
• Our library provides:

• the spguard construct

• helper functions for frequently used cost functions

• parallel-for loops and data-parallel operations, e.g., map, reduce, prefix-
scan, filter, etc.

• Our library uses Cilk Plus spawn/sync as basis, but is compatible with any
fork-join language or library.

• We ported 8 benchmark codes from the Problem Based Benchmark Suite
(PBBS), a collection representing irregular workloads.

• We needed to write only 24 explicit cost functions; the rest could use the
default, which is linear complexity.

ra
nd

om

ex
po

ne
nt

ia
l

al
m

os
t s

or
te

d

ra
nd

om

ra
nd

om
 p

ai
r

ex
po

ne
nt

ia
l

dn
a

et
ex

t

w
ik

is
am

p

ku
zm

in

on
 c

irc
le

ku
zm

in

pl
um

m
er

in
 s

qu
ar

e

ku
zm

in

ha
pp

y

xy
zr

gb

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

sa
mpleso

rt

radixs
ort

su
ffix

arra
y

co
nve

xh
ull

nearestn
eighbors

delaunay

rayc
ast

Benchmarking results

Execution
time: ours
vs original

PBBS
code

(lower is
better)

40-core Intel machine with 1TB RAM

Our spguard automatically delivers similar or better results to manually controlled code.

Conclusion
Formal bounds for scheduling fork join

Prediction-based methods

Lazy-scheduling methods

Brent ’74, Arora et al ’98, Blumofe &
Leiserson ’99, Agarwal et al ’07, Acar et
al ‘11

Oracle-Guided Granularity
control extends these results

with analytical bounds on
scheduling overheads for fork-

join programs.

Oracle-Guided Granularity
Control is the first in this class

to have a state-of-the-art
implementation and be backed

by end-to-end bounds.

Oracle-Guided Granularity
Control can be implemented
as a library and can switch

irrevocably to serial algorithms,
unlike this class of algorithms.

Weening ’89, Pehoushek et al ’90, Lopez
et al ’96, Duran et al ’08, Acar et al ’16,
Iwasaki et al ’16, Shintaro et al ‘16

Mohr et al ’91, Feeley ’93, Goldstein et al
’96, Frigo et al ’98, Imam et al ’14,
Tzannes et al ’14, Acar et al ‘18

Conclusion
Formal bounds for scheduling fork join

Prediction-based methods

Lazy-scheduling methods

Brent ’74, Arora et al ’98, Blumofe &
Leiserson ’99, Agarwal et al ’07, Acar et
al ‘11

Oracle-Guided Granularity
control extends these results

with analytical bounds on
scheduling overheads for fork-

join programs.

Oracle-Guided Granularity
Control is the first in this class

to have a state-of-the-art
implementation and be backed

by end-to-end bounds.

Oracle-Guided Granularity
Control can be implemented
as a library and can switch

irrevocably to serial algorithms,
unlike this class of algorithms.

Weening ’89, Pehoushek et al ’90, Lopez
et al ’96, Duran et al ’08, Acar et al ’16,
Iwasaki et al ’16, Shintaro et al ‘16

Mohr et al ’91, Feeley ’93, Goldstein et al
’96, Frigo et al ’98, Imam et al ’14,
Tzannes et al ’14, Acar et al ‘18

Thanks!

