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Granularity control is a balancing act

… …

Parallelize all 
fork points

…

Sequentialize all 
fork points

More practical: 
somewhere in 

between

…

…

…

Strategies for executing fork-join programs



State of the art

• Expect the programmer to solve the problem by tuning the 
program.


• Goal: minimum-size parallel task is large enough.


• Tuning is an exponential search problem.


• Result is platform dependent code.


• Tuning generic/templated code is impractical.
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template <F,A,B> 
void map(F f, A* a, B* b, int n) 
  parallel-for (i=0; i<n; i++) 
    b[i] = f(a[i])

map(toUpperCase, a, b, n)
map(someExpensiveComputation, a, b, n)

No single usable setting of 
grain for all call sites!
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Granularity control:

Prediction of running time 
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(depends on predicting 
execution time, requires some 

programmer annotation)

Lazy Scheduling:

 Delay creating a task until it’s 
needed to realize parallelism

(requires sophisticated 
compiler/runtime support; 

cannot switch irreversibly to 
serial)

Reduce the number of tasks created 
(i.e., prune excess parallelism) 

Reduce the cost of each 
task creation

(useful, but not sufficient)

Our Oracle-Guided 
Granularity Control: 


a runtime technique that, 
for a large, well-defined 

class of fork-join programs, 
and any input, ensures 

provably small overheads 
and good utilization.



Series-parallel guard

spguard(Fcost, Fpar, Fseq)

Behavior of spguard: determine automatically, at run time, whether to 
run sequential or parallel body.

Our goal: lift the burden of tuning by transferring to the runtime.

We propose: 

Abstract-cost function 
e.g., n * log(n), n2

Parallel body Sequential body

(a single, new programming construct)

(some code that is 
semantically equivalent 

to the parallel body)



Example: parallel mergesort
Seq parallelMergesort(Seq x) { 
  Seq r 
  spguard([&] { 
    int n = size(x)  
    return n * log(n) 
  }, [&] {   
    if size(x) < 2 
      r = x  
    else 
      (x1, x2) = splitInHalves(x) 
      r1 = spawn parallelMergesort(x1) 
      r2 =       parallelMergesort(x2) 
      sync 
      r = concat(r1, r2)  
  }, [&] { 
    r = sequentialSort(x)  
  }) // end spguard 
  return r 
}

Abstract-cost function

Parallel body

Sequential body



How does it predict when to sequentialize?

𝜅 Marginal profitable task size (e.g., 25-500 µsec)

Our desired task size:



How does it predict when to sequentialize?

𝜅 Marginal profitable task size (e.g., 25-500 µsec)

Our desired task size:

spguard(Fcost, Fpar, Fseq)

cost  = Result of cost function (i.e., cost = Fcost())

work = Execution time across all parallel paths of body, (i.e., Fpar()or Fseq()).

Consider an execution of

For such an execution, let:



How does it predict when to sequentialize?

𝜅 Marginal profitable task size (e.g., 25-500 µsec)

Our desired task size:

spguard(Fcost, Fpar, Fseq)

cost  = Result of cost function (i.e., cost = Fcost())

work = Execution time across all parallel paths of body, (i.e., Fpar()or Fseq()).

Consider an execution of

For such an execution, let:

costmax

After it executes, we update the internal state of the spguard:

which represents the largest observed cost such that work ≤ 𝜅.  
,



How does it predict when to sequentialize?

𝜅 Marginal profitable task size (e.g., 25-500 µsec)

Our desired task size:

spguard(Fcost, Fpar, Fseq)

cost  = Result of cost function (i.e., cost = Fcost())

work = Execution time across all parallel paths of body, (i.e., Fpar()or Fseq()).

Consider an execution of

For such an execution, let:

costmax

After it executes, we update the internal state of the spguard:

which represents the largest observed cost such that work ≤ 𝜅.  
,

Sequentialize iff:  cost ≤ 2 * costmax



Challenge: predicting when to sequentialize
spguard(Fcost, Fpar, Fseq)

𝜅 Marginal profitable task size (e.g., 25-500 µsec)

cost

Too large to sequentialize

Too small to sequentialize

Time

Point at which 
work > 𝜅

cost  = Result of cost function (i.e., cost = Fcost())

work = Execution time across all parallel paths of an execution of the spguard

Convergence of costmax :



Cost model and bound

Work 

w = total # of vertices

Span 

s = length of critical 
path

Work

w = 21

Span s = 10Critical path

E[tp] ≤ w/p + O(s)

Work-stealing bound (Blumofe & Leiserson)

For any fork-join program, the running time tp on p cores, 
including the load balancing operations, but excluding 

task-creation overheads, is bounded as follows:



Bound for Oracle-Guided Granularity Control

w Work (total # vertices)

s Span (critical-path length)

tp Running time of the 
program on p cores

Work stealing: E[tp] ≤ w/p +                           O(s)

1. (e.g., 5%) 2. (e.g., 20x)

E[tp] ≤ w/p + (τ/𝜅 * w/p) +  O(𝜅/τ * s) + O(log2 𝜅)Our bound:

3. Overhead 
introduced by 

granularity 
controller

τ Cost of creating a fiber

𝜅 Amount of per-task work targeted

We extend the model to take into 
account task-creation costs:

(e.g., to ensure 5% per-task 
overhead, set 𝜅 = 20τ)



C++ library implementation
• Our library provides:


• the spguard construct 


• helper functions for frequently used cost functions


• parallel-for loops and data-parallel operations, e.g., map, reduce, prefix-
scan, filter, etc.


• Our library uses Cilk Plus spawn/sync as basis, but is compatible with any 
fork-join language or library.


• We ported 8 benchmark codes from the Problem Based Benchmark Suite 
(PBBS), a collection representing irregular workloads.


• We needed to write only 24 explicit cost functions; the rest could use the 
default, which is linear complexity.
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Benchmarking results

Execution 
time: ours 
vs original 

PBBS 
code 


(lower is 
better)

40-core Intel machine with 1TB RAM

Our spguard automatically delivers similar or better results to manually controlled code.
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Thanks!


