
Higher-level implicit parallelism with
PASL

Umut Acar
Carnegie Mellon

University

Arthur Charguéraud
INRIA

Mike Rainey
INRIA

LaME 01.06.20131

1Thursday, July 4, 13

What is PASL?

• PASL is our Parallel Algorithm Scheduling
Library.

• It’s a test bed for new ideas relating to
implicit parallelism.

• It’s written in C++.

2

2Thursday, July 4, 13

How do we raise the level
of abstraction?

3

Generalize the implicit-threading model

Address performance

Primitives for creating and scheduling parallel
computations

Dynamic load balancing by work stealing with
private deques

Granularity control by Oracle Scheduling

3Thursday, July 4, 13

4

Primitives for creating and
scheduling parallel

computations

4Thursday, July 4, 13

The implicit-parallelism zoo

• spawn/sync

• futures

• parallel loops

• TBB flow graphs

• reducers / hyperobjects

5

• map-reduce

• clocks / phasers

• concurrent revisions

• etc.

5Thursday, July 4, 13

6

Computation DAGs
work span{

6Thursday, July 4, 13

Computation DAGs at
runtime

7

already executed

ready

suspendednot yet
created

7Thursday, July 4, 13

Almost-complete
programming interface

8

node* create_node(closure*)

void add_node(node*)

void add_edge(node*, node*)

8Thursday, July 4, 13

Edge capture

9

⇒n n

a

n calling a

k
k

(with continuation k)

transfer_outedges_to(a)

void transfer_outedges_to(node*)

9Thursday, July 4, 13

Encoding binary fork join

10

void fork_join(closure* a, closure* b, closure* j)
 node* na = create_node(a)
 node* nb = create_node(b)
 node* nj = create_node(j)
 transfer_outedges_to(nj)
 add_edge(na,nj)
 add_edge(nb,nj)
 add_node(na)
 add_node(nb)
 add_node(nj)

⇒fork_join
 as last

instruction

branches

join node

n

k
a b

k

j

n

10Thursday, July 4, 13

Encoding graph
traversal using a big join

11

big join

processed
node

⇒

a.k.a. async/
finish

parallelism
11Thursday, July 4, 13

Encoding futures

12

⇒ ⇒
future (producer)

consumer
demanding the

future be forced
become ready

future executed

12Thursday, July 4, 13

Four key ingredients for
efficiency

13

3. Number of incoming
edges (a.k.a. join counter)

join counter = 8

4. Continuation (list of
edges)

list of pointers

1. Granularity control 2. Dynamic load balancing
(work stealing)

13Thursday, July 4, 13

Small-arity joins with
atomic counters

14

⇒ ⇒
join counter = 2 join counter = 1 join counter = 0

fetch_and_add(-1)

14Thursday, July 4, 13

Big-arity joins

15

owner = core #4
counters =[23; -9; 97; 67; 20]

• use one counter per
processor:

• # edges added - # edges
removed

• periodic check by one
particular processor to see
if the sum is zero

15Thursday, July 4, 13

Representation of
nodes and edges

• We use an instrategy for representing the
number of incoming edges

• and an outstrategy for representing the list
of outgoing edges

16

node* create_node(closure*, instrategy*, outstrategy*)

16Thursday, July 4, 13

Summary

• distributed

• owner based

• optimistic

17

node* create_node(closure*, instrategy*, outstrategy*)
void add_node(node*)
void add_edge(node*, node*)
void transfer_edges_to(node*)

Dynamic DAGs, with per-node specification of edge
representation:

Find other examples of custom instrategies in paper, e.g.,

17Thursday, July 4, 13

18

Automatic granularity
control by Oracle

Scheduling

18Thursday, July 4, 13

Do we need to tame
DAG-related overheads?
• Yes:

• Parallel fib in PASL is typically 100x
slower than sequential fib.

• Parallel fib in PASL is no more than a few
percent slower.

• It’s not that bad, because we can ensure the
costs are well amoritzed by granularity
control.

19

19Thursday, July 4, 13

Taming DAG overheads

20

fat
sequentialized

leaves

20Thursday, July 4, 13

Oracle scheduling

21

void quicksort(int A[], int s , int e) {
 if (e - s < 2)
 return;
 int p = partition(A, s ,e);
 fork_join {
 quicksort (A, s , p);
 quicksort (A, p + 1, e);
 }
}

2. Make calls:
• parallel, if

combined run
time prediction
> t

• sequential,
otherwise

1. Pick a target leaf run time t.Idea:

21Thursday, July 4, 13

Our theoretical
contribution

• Suppose we have an oracle predicting run
times with error always less than certain
ratio.

• Then, the total cost of creating nodes is
well amortized.

• See paper for precise formal bound.

22

22Thursday, July 4, 13

Complexity annotations

23

void quicksort(int A[], int s , int e) {
 cost {
 int n = e - s;
 return n * log(n)
 }
 if (e - s < 2)
 return;
 int p = partition(A, s ,e);
 fork_join {
 quicksort(A, s , p);
 quicksort(A, p + 1, e);
 }
}

complexity annotation

23Thursday, July 4, 13

Runtime profiling

24

measure
execution

time e

Let r = e / n.

We use running average of past
few measurements of r to make
predictions.

Let n be asymptotic
complexity of a call.

24Thursday, July 4, 13

Summary

• A few issues:

• Outlier measurements increase error.

• Our approach assumes that average case
complexity matches worst case.

• Our approach works well for a wide range
of computations.

• Please see our paper for performance study.

25

25Thursday, July 4, 13

26

Dynamic load balancing by
work stealing with private

deques

26Thursday, July 4, 13

Scheduling parallel tasks

27

27Thursday, July 4, 13

Scheduling parallel tasks

set of cores

27

27Thursday, July 4, 13

Scheduling parallel tasks
pool of tasks

27

27Thursday, July 4, 13

Scheduling parallel tasks

27

• Goal: dynamic load balancing

• A centralized approach: does not scale up

• Popular approach: work stealing

• Our work: study implementations of work stealing

27Thursday, July 4, 13

Work stealing

28

28Thursday, July 4, 13

Work stealing
deque

28

28Thursday, July 4, 13

Work stealing

28

28Thursday, July 4, 13

Work stealing

28

pushpop pushpop pushpop

28Thursday, July 4, 13

Work stealing

28

28Thursday, July 4, 13

Work stealing

28

steal

28Thursday, July 4, 13

Work stealing

28

28Thursday, July 4, 13

Concurrent deques
• Deques are shared.

• Two sources of race:

• between thieves

• between owner and thief

• Chase-Lev data structure resolves
these races using atomic
compare&swap and memory
fences.

29

top

bot

pushpop

steals

29Thursday, July 4, 13

Concurrent deques

• Well studied: shown to perform well
both in theory and in practice ...

• Runtime overhead: In a relaxed
memory model, pop must use a memory
fence.

• Lack of flexibility: Simple extensions
(e.g., steal half) involve major challenges.

30

however, researchers identified two main limitations

30Thursday, July 4, 13

Previous studies of
private deques

31

Feeley 1992 Multilisp

Hendler & Shavit 2002 C

Umatani 2003 Java

Hirashi et al. 2009 C

Sanchez et al. 2010 C

Fluet et al. 2011 Parallel ML

31Thursday, July 4, 13

Private deques

• Each core has exclusive access
to its own deque.

• An idle core obtains a task by
making a steal request.

• A busy core regularly checks for
incoming requests.

32

steal request

pop &
send

pushpop

32Thursday, July 4, 13

Private deques

33

• no need for memory fence

• flexible deques (any data structure can be used)

• new cost associated with regular polling

• additional delay associated with steals

but

Addresses the main limitations of concurrent deques:

33Thursday, July 4, 13

Unknowns of private deques
• What is the best way to implement work

stealing with private deques?

• How does it compare on state of art
benchmarks with concurrent deques?

• Can establish tight bounds on the runtime?

34

34Thursday, July 4, 13

Unknowns of private deques
• What is the best way to implement work

stealing with private deques?

• How does it compare on state of art
benchmarks with concurrent deques?

• Can establish tight bounds on the runtime?

34

We give a receiver- and a sender-initiated algorithm.

We evaluate on a collection of benchmarks.

We prove a theorem w.r.t. delay and polling overhead.

34Thursday, July 4, 13

Receiver initiated

1 3 4

35

-1 -1-1

22

-1

35Thursday, July 4, 13

Receiver initiated

1 3 4

35

-1 -1-1

22

-1

35Thursday, July 4, 13

Receiver initiated

1 3 4

35

-1 -1-1

CAS

22

-1

35Thursday, July 4, 13

Receiver initiated

1 3 4

35

-1 -1

CAS

2

2 -1

35Thursday, July 4, 13

Receiver initiated

1 3 4

35

-1 -1

2

2 -1

35Thursday, July 4, 13

Receiver initiated

1 3 4

35

-1 -1

2

2 -1

35Thursday, July 4, 13

Receiver initiated

1 3 4

35

-1 -1

2

-1-1

35Thursday, July 4, 13

Receiver initiated

1 3 4

35

-1 -1

2

-1-1

35Thursday, July 4, 13

From receiver to
sender initiated

• Receiver initiated: each idle core targets
one busy core at random

• Sender initiated: each busy core targets one
core at random

• Sender initiated idea is adapted from
distributed computing.

• Sender initiated is simpler to implement.

36

36Thursday, July 4, 13

Sender initiated

1 3 4

37

...

2

...

37Thursday, July 4, 13

0

Sender initiated

1 3 4

37

...

2

37Thursday, July 4, 13

0

Sender initiated

1 3 4

37

...

CAS

2

37Thursday, July 4, 13

Sender initiated

1 3 4

37

...

CAS

2

37Thursday, July 4, 13

Sender initiated

1 3 4

37

...

2

37Thursday, July 4, 13

Sender initiated

1 3 4

37

...

2

37Thursday, July 4, 13

Sender initiated

1 3 4

37

...

2

...

37Thursday, July 4, 13

Analytical model

38

δ polling interval

F maximal number of forks in a path

P number of cores

T1 serial run time

T∞ minimal run time with infinite cores

TP parallel run time with P cores

38Thursday, July 4, 13

Our main analytical result

39

E [TP]  T1
P + P�1

P T1

E [TP]  T1
P + P�1

P T1 + O(cF)

E [TP] 
�
T1
P + P�1

P T1 + O(�F)
�
·
⇣
1 + O(1)

�

⌘

1

TP  T1
P + P�1

P T1

E [TP]  T1
P + P�1

P T1 + O(cF)

E [TP] 
�
T1
P + P�1

P T1 + O(�F)
�
·
⇣
1 + O(1)

�

⌘

1

Bound for greedy schedulers:

Bound for concurrent deques (ignoring cost of fences):

Bound for our two algorithms:

TP  T1
P + P�1

P T1

E [TP]  T1
P + P�1

P T1 + O(F)

E [TP] 
�
T1
P + P�1

P T1 + O(�F)
�
·
⇣
1 + O(1)

�

⌘

1

39Thursday, July 4, 13

Our main analytical result

39

E [TP]  T1
P + P�1

P T1

E [TP]  T1
P + P�1

P T1 + O(cF)

E [TP] 
�
T1
P + P�1

P T1 + O(�F)
�
·
⇣
1 + O(1)

�

⌘

1

TP  T1
P + P�1

P T1

E [TP]  T1
P + P�1

P T1 + O(cF)

E [TP] 
�
T1
P + P�1

P T1 + O(�F)
�
·
⇣
1 + O(1)

�

⌘

1

Bound for greedy schedulers:

cost of steals

Bound for concurrent deques (ignoring cost of fences):

Bound for our two algorithms:

TP  T1
P + P�1

P T1

E [TP]  T1
P + P�1

P T1 + O(F)

E [TP] 
�
T1
P + P�1

P T1 + O(�F)
�
·
⇣
1 + O(1)

�

⌘

1

39Thursday, July 4, 13

Our main analytical result

39

E [TP]  T1
P + P�1

P T1

E [TP]  T1
P + P�1

P T1 + O(cF)

E [TP] 
�
T1
P + P�1

P T1 + O(�F)
�
·
⇣
1 + O(1)

�

⌘

1

TP  T1
P + P�1

P T1

E [TP]  T1
P + P�1

P T1 + O(cF)

E [TP] 
�
T1
P + P�1

P T1 + O(�F)
�
·
⇣
1 + O(1)

�

⌘

1

Bound for greedy schedulers:

cost of steals

polling
overhead

Bound for concurrent deques (ignoring cost of fences):

Bound for our two algorithms:

TP  T1
P + P�1

P T1

E [TP]  T1
P + P�1

P T1 + O(F)

E [TP] 
�
T1
P + P�1

P T1 + O(�F)
�
·
⇣
1 + O(1)

�

⌘

1

cost of steals

39Thursday, July 4, 13

Performance study

• We implemented in PASL:

• our receiver-initiated algorithm

• our sender-initiated algorithm

• our Chase-Lev implementation

• We compare all of those implementations
against Cilk Plus.

40

40Thursday, July 4, 13

Benchmarks

• Classic Cilk benchmarks and Problem Based
Benchmark Suite (Blelloch et al 2012)

• Problem areas: merge sort, sample sort,
maximal independent set, maximal
matching, convex hull, fibonacci, and dense
matrix multiply.

41

41Thursday, July 4, 13

Performance results

42

Intel Xeon, 30 cores
polling period = 30µsec

m
at

m
ul

ci
lk

so
rt(

ex
pt

in
ts

eq
)

ci
lk

so
rt(

ra
nd

in
ts

eq
)

fib

m
at

ch
in

g(
eg

gr
id

2d
)

m
at

ch
in

g(
eg

rlg
)

m
at

ch
in

g(
eg

rm
at

)

M
IS

(g
rid

2d
)

M
IS

(rl
g)

M
IS

(rm
at

)

hu
ll(

pl
um

m
er

2d
)

hu
ll(

un
ifo

rm
2d

)

Shared deques
Recv.−init.
Sender−init.
Cilk Plus

no
rm

al
ize

d
ex

ec
ut

io
n

tim
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 r
un

 t
im

e

concurrent deques

sender init
receiver init

Cilk Plus

42Thursday, July 4, 13

Summary

• We presented two new private-deque
algorithms, evaluated them, and proved
analytical results.

• In the paper, we demonstrated the
flexibility of private deques by
implementing the steal half policy.

43

43Thursday, July 4, 13

Our papers
• Efficient primitives for creating and scheduling parallel

computations
By U. Acar, A. Charguéraud, and Mike Rainey
DAMP’12

• Oracle scheduling: controlling granularity in implicitly
parallel languages
By U. Acar, A. Charguéraud, and Mike Rainey
OOPSLA’11

• Scheduling parallel programs by work stealing with
private deques
By U. Acar, A. Charguéraud, and Mike Rainey
PPoPP’13

44

44Thursday, July 4, 13

http://www.mpi-sws.org/~mrainey/papers/damp2012_primitives.pdf
http://www.mpi-sws.org/~mrainey/papers/damp2012_primitives.pdf
http://www.mpi-sws.org/~mrainey/papers/damp2012_primitives.pdf
http://www.mpi-sws.org/~mrainey/papers/damp2012_primitives.pdf
https://sites.google.com/site/umutacar/
https://sites.google.com/site/umutacar/
http://www.chargueraud.org/
http://www.chargueraud.org/
http://www.mpi-sws.org/~mrainey/oracle_scheduling.pdf
http://www.mpi-sws.org/~mrainey/oracle_scheduling.pdf
http://www.mpi-sws.org/~mrainey/oracle_scheduling.pdf
http://www.mpi-sws.org/~mrainey/oracle_scheduling.pdf
https://sites.google.com/site/umutacar/
https://sites.google.com/site/umutacar/
http://www.chargueraud.org/
http://www.chargueraud.org/
https://sites.google.com/site/umutacar/
https://sites.google.com/site/umutacar/
http://www.chargueraud.org/
http://www.chargueraud.org/

