
Scheduling Parallelizable Jobs Online to Maximize Throughput

Kunal Agrawal1, Jing Li2, Kefu Lu1, and Benjamin Moseley1

1 Washington University in St. Louis, St. Louis, MO 63130, USA,
kefulu@wustl.edu

2 New Jersey Institute of Technology, Newark, NJ 07102, USA

Abstract. In this paper, we consider scheduling parallelizable jobs online to maximize the throughput or profit
of the schedule. In particular, a set of n jobs arrive online and each job Ji arriving at time ri has an associated
function pi(t) which is the profit obtained for finishing job Ji at time t + ri. Each job can have its own arbitrary
non-increasing profit function. We consider the case where each job is a parallel job that can be represented as a
directed acyclic graph (DAG). We give the first non-trivial results for the profit scheduling problem for DAG jobs
and show O(1)-competitive algorithms using resource augmentation.

1 Introduction

Scheduling preemptive jobs online to meet deadlines is a fundamental problem and, consequently, the area has been
extensively studied. In a typical setting, there are n jobs that arrive over time. Each job Ji arrives at time ri, has
a deadline di, relative deadline Di = di − ri and a profit or weight pi that is obtained if the job is completed by
its deadline. The throughput of a schedule is the total profit of the jobs completed by their deadlines and a popular
scheduling objective is to maximize the total throughput of the schedule.

In a generalization of the throughput problem, each job Ji is associated with a function pi(t) which specifies the
profit obtained for finishing job Ji at ri+ t. It is assumed that pi can be different for each job Ji and that the functions
are arbitrary non-increasing functions. We call this problem the general profit scheduling problem.

In this work, we consider the throughput and general profit scheduling problems in the preemptive online setting
for parallel jobs. In this setting, the online scheduler is only aware of the job at the time it arrives in the system, and
a job is preemptive if it can be started, stopped, and resumed from the previous position later. We model parallel jobs
as a directed acyclic graph (DAG) where each job Ji is represented as an independent DAG. Each node in the DAG
is a sequence of instructions that are to be executed and the edges in DAG represent dependencies. A node can be
executed if and only if all of its predecessors have been completed. Therefore, two nodes can potentially be executed
in parallel if neither precedes the other in the DAG. In this setting, each job Ji arrives as a single independent DAG and
a profit of pi is obtained if all nodes of the DAG are completed by job Ji’s deadline. The DAG model can represent
parallel programs written in many widely used parallel languages and libraries, such as OpenMP [1], Cilk Plus [2],
Intel TBB [3] and Microsoft Parallel Programming Library [4].

Both the throughput and general profit scheduling problem have been studied extensively for sequential jobs. In
the simplest setting, each job Ji has work or processing time Wi to be processed on a single machine (processor). It
is known that there exists a deterministic algorithm which is O(δ)-competitive, where δ is the ratio of the maximum
to minimum density of a job [5,6,7,8]. The density of job Ji is pi

Wi
(the ratio of its profit to its work). In addition, this

is the best possible result for any deterministic online algorithm even in the case where all jobs have unit profit and
the goal is to complete as many jobs as possible by their deadline. In the case where the algorithm can be randomized,
Θ(min{log δ, log∆}) is the optimal competitive ratio [9,10]. Here ∆ is the ratio of the maximum to minimum job
processing time.

These strong lower bounds on the competitive ratio on any online algorithm makes it difficult to differentiate
between algorithms and to discover the key algorithmic ideas that work well in practice. To overcome this challenge,
the now standard form of analysis in scheduling theory is a resource augmentation analysis [11,12]. In a resource
augmentation analysis, the algorithm is given extra resources over the adversary and the competitive ratio is bounded. A
s-speed c-competitive algorithm is given a processor s times faster than the optimal solution and achieves a competitive
ratio of c. The seminal scheduling resource augmentation paper considered the throughput scheduling problem and
gave the best possible (1 + ε)-speed O( 1ε )-competitive algorithm for any fixed ε > 0 [12].

Since this work, there has been an effort to understand and develop algorithms for more general scheduling en-
vironments and objectives. In the identical machine setting where the jobs can be scheduled on m identical parallel



machines (processors), a (1 + ε)-speed O(1)-competitive algorithm is known for fixed ε > 0 [13]. This has been
extended to the case where the machines have speed scalable processors and the scheduler is energy aware [14]. In
the related machines and unrelated machines settings, similar results have been obtained as well [15]. In [16] similar
results were obtained in a distributed model.

None of this prior work consider parallel jobs. Parallel jobs modeled as DAGs have been widely considered in
scheduling theory for other objectives [17,18,19,20,21,22,23,24]. There has been an extensive study in the real-time
system community on how to schedule parallelizable DAG jobs by their deadlines. See [25,26,27,28,29,17,18,30,31]
for pointers to relevant work. These works consider different (yet similar) objectives, focusing on tests to determine if
a given set of reoccurring jobs can all be completed by their deadline, in contrast to optimizing throughput or profit.

Results: In this paper, we give the first non-trivial results for scheduling parallelizable DAG jobs online to maximize
throughput and then we generalize these results to the general profit problem. Two important parameters in the DAG
setting are the critical-path length Li of job Ji (its execution time on an infinite number of processors) and its total
work Wi (its uninterrupted execution time on a single processor). The value of max{Li,Wi/m} is a lower bound on
the amount of time any 1-speed scheduler takes to complete job Ji on m cores. We will focus on schedulers that are
aware of the values of Li and Wi when the job arrives, but are unaware of the internal structure of the job’s DAG.
That is, besides Li and Wi, the only other information a scheduler has on a job’s DAG is which nodes are currently
available to execute. We call such an algorithm semi-non-clairvoyant — for DAG tasks, this is a reasonable model for
the real world programs written in languages mentioned above since the DAG generally unfolds dynamically as the
program executes. We first state a simple theorem about these schedulers.

Theorem 1. There exists inputs where any semi-non-clairvoyant scheduler requires speed augmentation of 2 − 1/m
to be O(1)-competitive for maximizing throughput.

Roughly speaking, scheduling even a single DAG job in time smaller than Wi−Li
m + Li is a hard problem even

offline when the entire job structure is known in advance. This is captured by the classic problem of scheduling a
precedence constrained jobs to minimize the makespan. For this problem, there is no 2 − ε approximation assuming
a variant of the unique games conjecture [32]. In particular, in Section 4, we will give an example DAG where any
semi-non-clairvoyant scheduler will take roughly Wi−Li

m +Li time to complete, while a fully clairvoyant scheduler can
finish in time Wi/m. By setting the relative deadline to be Di = Wi/m = Li, every semi-non-clairvoyant scheduler
will require a speed augmentation of 2− 1/m to have bounded competitiveness.

With the previous theorem in place, we cannot hope for a (1+ε)-speedO(1)-competitive algorithm. To circumvent
this hurdle, one could hope to showO(1)-competitiveness by either using more resource augmentation or by making an
assumption on the input. Intuitively, the hardness comes from having a relative deadline Di close to max{Li,Wi/m}.
In practice, this is unlikely to be the case. We show that so long as Di ≥ (1 + ε)(Wi−Li

m + Li) then there is a
O( 1

ε6 )-competitive algorithm.

Theorem 2. If for every job Ji it is the case that (1 + ε)(Wi−Li
m + Li) ≤ Di, then there is a O( 1

ε6 )-competitive
algorithm for maximizing throughput.

We note that this immediately implies the following corollary without any assumptions on the input.

Corollary 1. There is a (2 + ε)-speed O( 1
ε6 )-competitive algorithm for maximizing throughput.

Proof. No schedule can finish a job Ji if its relative deadline is smaller than max{Li, Wi

m } and we may assume that
no such job exists. Using this, we have that (Wi

m +Li) ≤ 2Di. Consider transforming the problem instance giving the
algorithm and the optimal solution together 2 + ε speed. In this case, the condition of Theorem 2 is met since we can
view this as scaling the work in each node of the jobs by 2 + ε. This scales the work and critical-path length by 2 + ε.
The corollary follows by observing that in this case we are comparing to an optimal solution with 2 + ε speed which
is only stronger than comparing to an optimal solution with 1 speed. 2

We note that the theorem also immediately implies the following corollary for “reasonable jobs.”

Corollary 2. There is a (1 + ε)-speed O( 1
ε6 )-competitive for maximizing throughput if (Wi − Li)/m+ Li ≤ Di for

all jobs Ji.



This assumption on the deadlines is reasonable since, as we show in Section 4, there exists inputs for which even
the optimal semi-non-clairvoyant scheduler has unbounded performance if the deadline is smaller.

We go on to consider the general profit scheduling problem. We first make the following assumption, which is
that for all jobs Ji its general profit function satisfies pi(d) = pi(x

∗
i ), where 0 < d ≤ x∗i for some x∗i ≥ (1 +

ε)(Wi−Li
m + Li). This assumption states that there is no additional benefit for completing a job Ji before time x∗i ,

which is the natural generalization of our assumption in the throughput case. The function is arbitrarily decreasing
otherwise. Using this, we show the following.

Theorem 3. If for every job Ji it is the case that pi(d) = pi(x
∗
i ), where 0 < d ≤ x∗i for some value of x∗i ≥

(1 + ε)(Wi−Li
m + Li) then there is a O( 1

ε6 )-competitive algorithm for the general profit objective.

This gives the following corollary, just as for throughput.

Corollary 3. There is a (2 + ε)-speed O( 1
ε6 )-competitive algorithm for maximizing general profit.

2 Preliminaries

In the problem considered, there is a set J of n jobs {J1, J2, ..., Jn} which arrive online. The jobs are scheduled on
m identical processors. Job Ji arrives at time ri. Let pi(t) be an arbitrary non-negative non-increasing function for job
Ji. The value of pi(t) is the profit obtained by completing job i at time ri + t. Under some schedule, let ti be the time
it takes to complete Ji after its arrival. The goal is for the scheduler to maximize

∑
i∈[n] pi(ti).

A special case of this problem is scheduling jobs with deadlines. In this problem, each job Ji has a deadline di and
obtains a profit of pi if it is completed by this time. In this case, we let Di = di − ri be the relative deadline of the
job. To make the underlying ideas of our approach clear, we will first focus on proving this case and the more general
problem can be found in the Section 5.

Each job is represented by a Directed-Acyclic-Graph (DAG). A node in the DAG is ready to execute if all its
predecessors have completed. A job is completed only when all nodes in the job’s DAG have been processed. We
assume the scheduler knows the ready nodes for a job at any point in time, but does not know the entire DAG structure
a priori. Any set of ready nodes can be processed at once, but each processor can only execute one node at a time.

A DAG job has two important parameters. The total work Wi is the sum of the processing time of the nodes in job
i’s DAG. The span or critical-path-length Li is the length of the longest path in job i’s DAG, where the length of the
path is the sum of the processing time of nodes on the path. To show Theorem 2 we assume that (1+ε)(Wi−Li

m +Li) ≤
Di for all jobs Ji throughout the remainder of the paper.

3 Jobs with Deadlines

First, we give an algorithm and analysis proving Theorem 2 when jobs have deadlines and profits. To aid the reader,
a list of notation can be found in Tables 1, 2 and 3. Throughout the proof, we let CO denote the jobs that the optimal
solution completes by their deadline and let

∥∥CO∥∥ denote the total profit obtained by the optimal solution. Our goal
is to design a scheduler that achieves profit close to

∥∥CO∥∥. Throughout the proof, it will be useful to discuss the
aggregate number of processors assigned to a job over all time. We define a processor step to be a unit of time on a
single processor.

3.1 Algorithm

In this section, we introduce our algorithm S. On every time step, S must decide which jobs to schedule and which
ready nodes of each job to schedule. When a job Ji arrives, S calculates ni — the number of processors “allocated”
to Ji. On any time step when S decides to run Ji, it will always allocate ni processors to Ji. In addition, since S is
semi-non-clairvoyant, it is unable to distinguish between ready nodes of Ji; when it decides to allocate ni nodes to Ji,
it arbitrarily picks ni ready nodes to execute if more than ni nodes are ready.

We first state some observations regarding work and critical-path length.

Observation 1 If a job Ji has all of its r ready nodes being executed by a schedule with speed s on m processors,
where r ≤ m, then the remaining critical-path length of Ji decreases at a rate of s.



As mentioned earlier, we assume that the deadline for each job follows the condition that (1+ε)(Wi−Li
m +Li) ≤ Di

for some positive constant ε.
We define the following constants. Let δ < ε/2, c ≥ 1 + 1

δε and b = ( 1+2δ
1+ε )

1/2 < 1 be fixed constants. For each

job Ji, the algorithm calculates ni as (Wi−Li)
Di

1+2δ−Li
. The value of ni is the number of processors our algorithm will give to

job Ji if we decide to execute Ji on some time step.
Let xi := Wi−Li

ni
+ Li. By Observation 1 it is the case that if ni processors are given to job i for xi units of

time then the job will be completed regardless of the order the nodes are executed in. We will consider this to be
Observation 2.

Observation 2 Job Ji can meet its deadline if it is given ni dedicated processors for xi time steps in the interval
[ri, di].

We define the density of a job as vi = pi
xini

. Note that this is a non-standard definition of density. We define the
density as pi

xini
instead of pi

Wi
, because we will think of job i requiring xini processor steps to complete by Scheduler

S. Thus, this definition of density indicates the potential profit per processor step that S can obtain by executing Ji.
The scheduler S maintains jobs that have arrived but are unfinished in two priority queues. A priority queue Q

stores all the jobs that have been started by S. In the priority queue, the jobs are sorted according to the density from
high to low. Another priority queue P stores all the jobs that have arrived but have not been started by S. Jobs in P
are also sorted according to their densities from high to low.

Job Execution: At each time step t, S picks a set of jobs in Q to execute, in order from highest to lowest density.
If a job Ji has been completed or if its absolute deadline di has passed (di > t), S removes the job from Q. When
considering job Ji, if the number of unallocated processors is at least ni the scheduler assigns ni processors to Ji for
execution. Otherwise, it continues on to the next job. S stops this procedure when either all jobs have been considered
or when there are no remaining processors to allocate.

We introduce some notations to describe how jobs are moved from queue P to Q. A job Ji is δ-good if Di ≥
(1 + 2δ)xi. A job is δ-fresh at time t if di − t ≥ (1 + δ)xi. For any set T of jobs, let the set A(T, v1, v2) contains all
jobs in T with density within the range [v1, v2). We define N(T, v1, v2) =

∑
Ji∈A(T,v1,v2)

ni. This is the total number
of processors that S allocates to jobs in A(T, v1, v2). We will say that the set of job A(T, v1, v2) requires N(T, v1, v2)
processors.

Adding Jobs to Q: There are two types of events that may cause S to add a job to Q. These events occur when either
a job arrives or S completes a job. When a job Ji arrives, S adds it to queue Q if it satisfies the following conditions:

(1) Ji is δ-good;
(2) For all job Jj ∈ Q∪ {Ji} it is the case that N (Q ∪ {Ji}, vj , cvj) ≤ bm. In words, the total number of processors

required by jobs in Q ∪ {Ji} with density in the range [vj , cvj) is no more than bm.

If these conditions are met, then Ji is inserted into queue Q; otherwise, job Ji is inserted into queue P . When a
job is added to Q, we say that the job is started by S.

At the completion of a job, S considers the jobs in P from highest to lowest density. S first removes all jobs with
absolute deadlines that have already passed. Then S checks if a job Ji in P can be moved to queue Q by checking
whether job Ji is δ-fresh and condition (2) from above. If both the conditions are met, then Ji is moved from queue P
to queue Q.

Remark: Note that the Scheduler S pre-computes a fixed number of processors ni assigned to each job, which may
seem strange at first glance. This is because that ni is approximately the minimum number of dedicated cores job Ji
requires to complete by Di

1+2δ → Di, without knowing Ji’s DAG structure. In addition, as long as Ji can complete by
its deadline, it obtains the same profit pi. Therefore, there is no need to complete Ji earlier by executing Ji on more
dedicated cores. Moreover, by carefully assigning ni, we are able to bound the number of processor steps spent on job
Ji as shown in Lemma 3, which is critical for bounding the profit obtained by the optimal solution.

Outline of the Analysis of S: Our goal is to bound the total profit that S obtains. We first discuss some basic properties
of S in Section 3.2. In Section 3.3 be bound the total profit of all the jobs S starts by the total profit of jobs that S
completes. Then in Section 3.4 we bound the total profit of the jobs the optimal solution completes by the total profit
of jobs that S starts. Putting these two together, we are able to bound the performance of S.



3.2 Properties of the Scheduler

We begin by showing some structural properties for S that we will leverage in the proof. We first bound the number
of processors ni that S will allocate to job Ji.

Lemma 1. For every job Ji we have that ni ≤ b2m.

Proof. By assumption we know that Di ≥ (1 + ε)(Wi−Li
m + Li). The definition of ni gives the following.

ni =
Wi − Li
Di

1+2δ − Li
≤ Wi − Li

1+ε
1+2δ (

Wi−Li
m + Li)− Li

≤ 1 + 2δ

1 + ε
m = b2m

2

Lemma 2. Every job Ji is δ-good, i.e. xi(1 + 2δ) ≤ Di.

Proof. Note that Li ≤ 1
1+εDi by definition. Since ni = Wi−Li

D
1+2δ−Li

, we have xi(1 + 2δ) = (Wi−Li
ni

+ Li)(1 + 2δ) =

( Di
1+2δ − Li + Li)(1 + 2δ) ≤ Di. 2

The next lemma bounds the total number of processor steps occupied by a job.

Lemma 3. xini ≤ aWi, where a is 1 + 1+2δ
ε−2δ .

Proof. By definition we have

xini =Wi − Li + niLi ≤Wi +
Wi − Li
Di

1+2δ − Li
Li ≤Wi +

Wi − Li
Di

1+2δ −
Di
1+ε

( Di

1 + ε

)
≤Wi +

(Wi − Li)Di(1 + 2δ)

Di(ε− 2δ)
≤Wi +

Wi(1 + 2δ)

ε− 2δ
≤Wi

(
1 +

1 + 2δ

ε− 2δ

)
2

Observation 3 At any time and for any v > 0, the total number of processors required by all the jobs Ji that are in
queue Q and have density v ≤ vi < cv is no more than bm, i.e. N(Q, vi, cvi) ≤ bm.

Proof. Jobs are only added to queue Q when a new job arrives or a job completes. According to algorithm S, at both
times, a job is only added to Q when this condition is satisfied. 2

3.3 Bounding the Profit of Jobs S Completes by All Jobs Started by S

In this section, we bound the profit of jobs completed by S compared to the profit of all jobs it ever starts (adds to Q).
LetR denote the set of jobs S starts (that is, the set of jobs added to queueQ). Among the jobs inR, let C be the set of
jobs it completes and U be the set of jobs that are unfinished. We say job Ji (and its assigned processors) is v-dense,
if its density vi ≥ v. For any set A of jobs, define ‖A‖ as

∑
i∈A pi, the sum of the profits of jobs in the set.

Lemma 4. For a job Ji ∈ U = R \ C that was added to queue Q but does not complete by its deadline, S must have
run cvi-dense jobs for at least δxi time steps where Ji is in Q using at least (1− b)m processors at each such time.

Proof. Since Ji is at least δ-fresh when added to Q and it does not complete by its deadline, there are at least δxi time
steps where S is not executing Ji by Observation 2. In each of these the time steps, all the m processors are executing
vi-dense jobs.

By Observation 3, jobs in Q with density in range [vi, cvi) require at most N(Q, vi, cvi) ≤ bm processors to
execute. Therefore, for each of the δxi time steps, there are at least (1− b)m processors executing cvi-dense jobs. So
the total number processor steps where cvi-dense jobs are executing is at least δxi(1− b)m. 2

We now bound the profit of the jobs completed by their deadline under S by those started.

Lemma 5. ‖C‖ ≥ (ε− 1
(c−1)δ ) ‖R‖.



Proof. We use a charging scheme with credit transfers between the jobs. We give each job Ji ∈ R a bank account
Bi. Initially, all completed jobs (in C) are given pi credits and other jobs (in U ) have 0 credit. We will transfer
credits between jobs in C and jobs in U . We want to show that after the credit transfer, every job Ji in R will have
Bi ≥ (ε− 1

(c−1)δ )pi. This implies ‖C‖ ≥ (ε− 1
(c−1)δ ) ‖R‖.

Now we explain how credits are transferred. For each time step, a processor executing Ji will transfer vjnjδbm credits
from Bi to every job Jj in queue Q that has density vj ≤ vi

c .
For every job Jj ∈ U , Lemma 4 implies that there are at least δxj time steps where at least (1 − b)m processors

are executing cvj-dense jobs. By our credit transfer strategy Jj will receive at least vjnjδbm credits from each processor
in a time step. Therefore, the total credits Jj receives is at least

δxj(1− b)m(
vjnj
δbm

) = vjxjnj(
1− b
b

) = pi(
1− b
b

).

This bounds the total amount of credit each job receives. We now show that not too much credit is transferred out
of each job’s account. We bound this on a job by job basis. Fix a job Ji ∈ R and consider how many credits it transfers
to other jobs during its execution. By Observation 2, we know that Ji can execute for at most xi time steps on ni
dedicated processors before its completion.

The job Ji will transfer credit to all jobs in Q with density less than vi
c at any point in time where Ji is being

processed. These are the jobs in A(Q, 0, vic ). Fix an integer l ≥ 1 and consider the set of jobs A(Q, vi
cl+1 ,

vi
cl
) in Q that

have density within the range [ vi
cl+1 ,

vi
cl
). Note that the total number of processors required by them isN(Q, vi

cl+1 ,
vi
cl
) ≤

bm by Observation 3. Knowing that a job Jj in A(Q, vi
cl+1 ,

vi
cl
) has density vj ≤ vi

cl
by definition it is the case that the

total credits that Ji gives to jobs in A(Q, vi
cl+1 ,

vi
cl
) per processor assigned to Ji during any time step is at most∑

Jj∈A(Q,
vi
cl+1 ,

vi
cl

)

vjnj
δbm

≤
∑

Jj∈A(Q,
vi
cl+1 ,

vi
cl

)

vi
cl
nj

δbm
=

vi
δbmcl

∑
Jj∈A(Q,

vi
cl+1 ,

vi
cl

)

nj

=
vi

δbmcl
N(Q,

vi
cl+1

,
vi
cl
) ≤ vi

δbmcl
bm =

vi
δcl

.

This bounds the total credit transferred to jobs in A(Q, vi
cl+1 ,

vi
cl
) during a time step for each processor assigned to

Ji. We sum this quantity over all l ≥ 1 and all ni processors assigned to i to bound the total credit transferred from
job Ji during a time step. Recall that c > 1 by definition.

nivi
δ

∞∑
l=1

1

cl
=
(nivi

δ

) 1
c

1− 1
c

=
(nivi

δ

) 1

c− 1

Therefore, the total credits Ji transfers to all the jobs in A(Q, 0, vic ) over all times it is executed is at most
(xiniviδ ) 1

c−1 = pi
(c−1)δ due to the fact that a job will be executed for at most xi time steps in S’s schedule.

Now we put these two observations together. Each job receives at least pi 1−bb credit and pays at most pi
(c−1)δ . After

the credit transfer, the credits that a job Ji has is at least

pi
1− b
b
− pi

(c− 1)δ
= pi(ε−

1

(c− 1)δ
)

By our setting of c, this quantity is always positive. Therefore, we conclude that ‖C‖ ≥ (ε− 1
(c−1)δ ) ‖R‖. 2

3.4 Bounding the Profit of Jobs OPT Completes by All Jobs Started by S

In this section, we bound the profit of the jobs OPT completes by all of the jobs that S starts. Our high level goal is
to first bound the total amount of time OPT spends processing jobs that S does not complete by the time S spends
processing jobs. Then using this and properties of S we will be able to bound the total profit of jobs OPT completes.
At a high level, this follows since S focuses on processing high density jobs and OPT and S spend a similar amount of
time processing jobs. We begin by showing that if not too many processors are executing vi

c -dense jobs then all such
jobs must be currently executing.

Lemma 6. For any density vi and time, if there are less than b(1− b)m processors executing vi
c -dense jobs, then all

vi
c -dense jobs in queue Q are executing and N(Q, vic ,∞) < b(1− b)m.



Proof. By definition, there are at least m − b(1 − b)m > bm − b(1 − b)m = b2m processors executing jobs with
density less than vi

c . For the sake of contradiction, suppose there is a vi
c -dense job Jj that is not executing by S. By

Lemma 1 we know that nj ≤ b2m. Therefore, Jj would have been executed by S on the b2m processors that are
executing lower density jobs, a contradiction.

Now we know all all vic -dense jobs in queue Q are executing. By assumption they are using less than b(1 − b)m
processors and the lemma follows. 2

In the next lemma, we show that if not too many processors are running vi
c -dense jobs then when a job arrives or

completes, the schedule S will start processing a vi-dense job that is δ-fresh, for any density vi (if such a job exists).
In particular, the job Jj will pass condition (2) of for adding jobs to Q in the definition of S.

Lemma 7. Fix a density vi. At a time where a new job arrives or a job completes if there are less than b(1 − b)m
processors executing vi

c -dense jobs, then a δ-fresh vi-dense job Jj (arriving or in queue P ) will be added to Q by S
assuming such a job Jj exists.

Proof. By Lemma 6, we know that all vic -dense jobs in queue Q are executing on less than b(1− b)m processors. By
Lemma 1, we know that nj ≤ b2m. Therefore,

N(Q ∪ {Jj},
vi
c
,∞) < b(1− b)m+ b2m = bm

Consider any δ-fresh job Jj that is also vi-dense. Consider any job Jk where Jj ∈ A(Q ∪ {Ji}, vk, cvk). By
definition of Jj being vi-dense it must be the case that A(Q ∪ {Ji}, vk, cvk) ⊆ A(Q ∪ {Jj}, vic ,∞). The above
implies that N(Q∪ {Ji}, vk, cvk) ≤ N(Q∪ {Jj}, vic ,∞) ≤ bm. Thus, the condition (2) in our algorithm is satisfied.

2

For an arbitrary set of jobs E and any v ≥ 0 let TO(v, E) denote the total work processed by the optimal schedule
for the jobs in E that are v-dense. We similarly let TS(v, E) be the total number of processors steps S used for executing
jobs in E that are v-dense over all time. Now we are ready to bound the time that OPT spends on jobs that S never
adds to Q.

Lemma 8. Consider the jobs in J \ R, the jobs that are never added to Q. For all v > 0, TO(v,J \ R) ≤
1+2δ
δb(1−b)TS(

v
c ,J ).

Proof. Let {Ik = [sk, ek]} be the set of maximal time intervals where at least b(1 − b)m processors are running
v
c -dense jobs in S’s schedule. Notice that by definition

∑∞
k=1(ek − sk)b(1− b)m ≤ TS(

v
c ,J ).

Consider a job in Ji ∈ J \R that is both δ-good and v-dense and additionally arrives during [sk, sk+1). Note that
during the intervals [ek, sk+1], less than b(1− b)m processors are executing v

c -dense jobs. Lemma 7 implies that if Ji
arrives during [ek, sk+1] it will be added to Q. This contradicts the assumption that Ji ∈ J \ R. Therefore, Ji must
arrive during [sk, ek) and is in queue P at time ek.

Note that at time ek, the number of processors executing v
c -dense jobs decreases, so there must be a job that

completes at time ek. Again, by Lemma 7 if Ji is δ-fresh at time ek then it will be added to Q at this time. Again,
this contradicts Ji ∈ J \ R. Thus, the only reason that S does not add Ji to Q is because Ji is not δ-fresh at time ek.
Knowing that Ji is δ-good at ri and is not δ-fresh at ek, we have ek − sk ≥ ek − ri ≥ δxi.

At time ek, Ji is not δ-fresh, so di − ek < (1 + δ)xi <
1+δ
δ (ek − sk).

Let Kk be the set of v-dense jobs that arrive during [sk, sk+1) but are not completed by S. Because OPT can only
execute all jobs in Kk during [sk, di] on at most m processors, we get

TO(v,Kk) ≤(di − sk)m = ((di − ek) + (ek − sk))m ≤
1 + 2δ

δ
(ek − sk)m

This completes the proof, as

TO(v, U) =

∞∑
k=1

TO(v,Kk) ≤
∞∑
k=1

(
1 + 2δ

δ
)m(ek − sk) ≤

1 + 2δ

δ

1

b(1− b)
TS(

v

c
,J )

2



Using the previous lemma, we can bound the profit of jobs completed by OPT by the profit of jobs started by S.

Lemma 9. ∥∥CO∥∥ ≤ (1 + (1 +
1 + 2δ

ε− 2δ
)(1 +

1

εδ
)

1 + 2δ

δb(1− b)

)
‖R‖

.

Proof. We may assume WLOG that the adversary completes all jobs it starts. First we partition CO, the jobs that the
adversary completes, into COR and COS where COS = CO ∩R, that is, our algorithm started the job at some point. The
remaining jobs are placed in COR . Clearly

∥∥COS ∥∥ ≤ ‖R‖. Now it remains to bound
∥∥COR∥∥.

Consider every job in COR and let the set of densities of these jobs be {µ1, µ2, . . . , µm} from high to low and for
notational simplicity let µ0 = ∞ and µm+1 = 0. Recall the adversary completed all jobs it started. Thus for each
job with density µi, the adversary ran the job for a corresponding Wi processor steps. Let βi denote the number of
processor steps our algorithm takes to run jobs with densities within (µi−1

c , µic ].
We have TO(v,J \ R) ≤ 1+2δ

δb(1−b)TS(
v
c ,J ) from Lemma 8 for all densities v. Equivalently for any given density

v:

TO(v,J \R) =
v∑
i=1

Wi ≤
1 + 2δ

δb(1− b)

v∑
i=1

βi =
1 + 2δ

δb(1− b)
TS(

v

c
,J )

We then sum over all densities. The subtraction of densities is necessary to insure that each density is only counted
a single time.

m∑
v=1

(
(µv − µv+1)

v∑
i=1

Wi

)
≤

m∑
v=1

(
(µv − µv+1)

1 + 2δ

δb(1− b)

v∑
i=1

βi

)
The LHS can be simplified:

m∑
v=1

(
(µv − µv+1)

v∑
i=1

Wi

)
=

m∑
i=1

Wi

m∑
v=i

(µv − µv+1) =

m∑
i=1

Wi(µi − µm+1) =

m∑
i=1

Wiµi

The RHS similarly simplifies to 1+2δ
δb(1−b)

∑m
i=1 βiµi, leading to the inequality that

∑m
i=1Wiµi ≤

1+2δ
δb(1−b)

∑m
i=1 βiµi. Recall that densities such as µi are defined by µi = pi

xini
and xini ≤ aWi. Therefore:

m∑
i=1

Wiµi =

m∑
i=1

Wipi
xini

≥
m∑
i=1

Wipi
aWi

≥
m∑
i=1

pi

(1 + 1+2δ
ε−2δ )

=
1

(1 + 1+2δ
ε−2δ )

∥∥COR∥∥
And also, by the definition of βi, we know that

∑m
i=1 βi

µi
c ≤ ‖R‖.

Combining these results, we get:

1

(1 + 1+2δ
ε−2δ )

∥∥COR∥∥ ≤ m∑
i=1

Wiµi ≤
1 + 2δ

δb(1− b)

m∑
i=1

βiµi ≤
1 + 2δ

δb(1− b)
c ‖R‖

⇒
∥∥COR∥∥ ≤ (1 + 1 + 2δ

ε− 2δ

)(
1 + 2δ

δb(1− b)

)
c ‖R‖

⇒
∥∥CO∥∥ =

∥∥COR∥∥+ ∥∥COS ∥∥ ≤ (1 + (1 +
1 + 2δ

ε− 2δ
)(1 +

1

εδ
)

1 + 2δ

δb(1− b)

)
‖R‖

2

Finally we are ready to complete the proof, bounding the profit OPT obtains by the total profit the algorithm
obtains for jobs it completed.

Lemma 10. ∥∥CO∥∥ ≤ (1+(1+ 1+2δ
ε−2δ )(1+

1
εδ )

1+2δ
δb(1−b) )

ε− 1
(c−1)δ

‖C‖

Proof. This is just by combination of Lemma 5 and Lemma 9. 2

Therefore, we prove Theorem 2 by showing that scheduler S is O( 1
ε6 )-competitive for jobs with deadlines and

profits, when (1 + ε)(Wi−Li
m + Li) ≤ Di.



4 Examples

In this section, we will give some example DAGs to show why Theorem 2 is close to the best theorem we can
hope for using two examples. The first example, shown in Figure 1, shows the limitations of semi-non-clairvoyance.
In particular, a semi-non-clairvoyant scheduler does not know the structure of the DAG in advance since the DAG
unfolds dynamically. At any time step, the scheduler only knows the ready nodes available for execution. Given this
limitation, consider the DAG shown in Figure 1. This job has one sequential chain with length L = W

m , where W is
the total work of the job and m is the number of processors. The remaining W −W/m work are fully parallelizable
in a block and can also be done in parallel with the chain. Therefore, L is the span of the jobs.

Since a semi-non-clairvoyant scheduler cannot distinguish between ready nodes, it may make unlucky choices and
execute the entire block ofW −W/m =W −L ready nodes first in (W −L)/m time steps and then execute the chain
of L nodes sequentially — leading to a total time of (W −L)/m+L. On the other hand, a fully clairvoyant scheduler
can execute the entire DAG in W/m time. Therefore, a semi-non-clairvoyant scheduler needs at least 2− 1/m speed
augmentation to ensure that it can complete the DAG at the same time as OPT.

We now show another example DAG indicating that it would be reasonable to always set deadlines as D ≥
(W −L)/m+L if we do not know the structure of the DAG a priori. Figure 2 shows an example DAG, which consists
of a chain of L− ε nodes followed by W −L+ ε nodes that can run in parallel. Each node in the DAG takes ε time to
run, so the total work of the DAG is W and the span is L. For such a DAG, even a fully clairvoyant scheduler needs
L− ε+ W−L+ε

m = W−L
m + L− ε(1− 1

m ), which approaches to W−L
m + L when ε→ 0.

Notation Definition
OPT optimal schedule and also optimal objective
m the number of processors
Wi the total work of job Ji
Li the span of job Ji
Di relative deadline of job Ji
ri the arrival time of Ji
di the absolute deadline of Ji (that is, ri +Di)

A(T, v1, v2) all jobs in T with density within the range [v1, v2)
N(T, v1, v2) =

∑
Ji∈A(T,v1,v2)

ni, the total number
of processors required by A(T, v1, v2)

v-dense if Job Ji has density vi ≥ v

δ < ε/2
c ≥ 1 + 1

εδ

b = ( 1+2δ
1+ε

)1/2 < 1

a = 1 + 1+2δ
ε−2δ

Table 1: Notations and definitions throughout the paper

Notation Definition
pi the profit of job Ji
ni = (Wi−Li)

Di
1+2δ

−Li
, the number of processors allocated to Ji

xi = Wi−Li
ni

+ Li, the maximum execution time of Ji
vi = pi

xini
the density of Ji

δ-good job Ji has Di ≥ (1 + 2δ)xi
δ-fresh at time t, job Ji has di − t ≥ (1 + δ)xi

R the set of jobs started by S
C the set of jobs completed by S
U unfinished jobs by S (that is, R \ C)
CO the set of jobs completed by OPT
J the set of all jobs
TO(v, E) the total work processed by the optimal schedule

for the jobs in E that are v-dense
TS(v, E) the total number of processors steps S used

for executing jobs in E that are v-dense

Table 2: Notations and definitions specific to jobs with
deadlines

Notation Definition
pi(t) the profit of job Ji if the job with arrival time ri

completes by ri + t

ni = (Wi−Li)
x∗
i

1+2δ
−Li

, the number of processors allocated to Ji

xi = Wi−Li
ni

+ Li, the maximum execution time of Ji
vi = pi(Di)

xini
the density of Ji

Table 3: Notations and definitions specific to jobs with gen-
eral profit functions

Fig. 1: Example 1 Fig. 2: Example 2



5 Jobs with General Profit Functions

In this section, we focus on a more general case. In particular, each job Ji has a non-negative non-increasing profit
function pi(t) indicating its profit if the job with arrival time ri completes by ri + t. Our goal is to design a scheduler
that maximizes the profit to make it close to what the optimal solution can obtain, denoted as ‖O‖.

First, we present our scheduler S parameterized using a fixed constant 0 < ε < 1. Similar to Section 3.1, let
δ < ε/2, c ≥ 1 + 1

δε and b = ( 1+2δ
1+ε )

1/2 < 1 be fixed constants.
Upon the arrival of a job Ji, the scheduler S assigns a number of allocated cores ni, a relative deadline Di and

a set of time steps Ii to Ji (according to the assignment procedure described below). In each time step t in Ii, we
say that Ji is assigned to t. Scheduler S always executes the highest density jobs that is assigned to t. If S decides to
execute Ji in a time step, it will give ni processors to Ji. Let xi := Wi−Li

ni
+ Li. We define the density of a job as

vi =
pi(Di)
xini

= pi(Di)
Wi+(ni−1)Li . We now formally specify the algorithm of scheduler S for job assignment and execution.

Assigning cores, deadlines and slots to jobs: When a job Ji arrives, the scheduler will assign a relative deadline Di

and a set of time steps Ii with ni processors. These time steps are the only time steps in which Ji is allowed to run.
Recall (from Theorem 3) that we assume that the profit function stays the same until some value x∗i ≥ (Wi−Li

m +

Li)(1+ε). The number of assigned processors ni is calculated as ni = Wi−Li
x∗
i

1+2δ−Li
. The assignment forDi is determined

by searching all the potential deadlines D to find the minimum valid deadline. The set of time steps Ii is determined
using the chosen deadline Di.

For each potential relative deadline D > (1 + ε)Li, scheduler S checks whether it is a valid deadline by the
following steps. First, it selects a set of time steps I . Assuming D is assigned to Ji, then the density of Ji is v =

pi(D)
Wi+(ni−1)Li . For each time step t from ri to ri + D, let ‖I(t)‖ be the number of time steps that have already been
added to I before considering time step t. Let J(t) denote the set of jobs that are currently has time t among its
assignments. We only add t to the set I if it satisfies the following condition: For every job Jj ∈ J(t), it is the case that
N (J(t) ∪ {Ji}, vj , cvj) ≤ bm. In words, the total number of processors required by jobs in J(t) ∪ {Ji} with density
in the range [vj , cvj) is no more than bm.

I contains all the time steps during [ri, ri+Di) that can be assigned to Ji. If ‖I‖ ≥ (1+δ)
(
Wi−Li
ni

+ Li

)
, which

is at least δ times longer than the time Ji required to run on ni processors, then the deadline D is said to be valid. Note
that a valid assignment always exists by setting the deadline large enough.

Among all the valid assignments, S chooses the smallest valid deadline for Ji, which results in the highest profit.
Given this deadline Di, Ji will be assigned with the corresponding set Ii. Because Di is the minimum valid deadline,
the corresponding set Ii must satisfy ‖Ii‖ = (1 + δ)

(
Wi−Li
ni

+ Li

)
; otherwise, there must exist a shorter deadline

D that is also valid. Intuitively, with this assignment, Ji can complete by its deadline if no other jobs interfere. Note
that Ji may not be completed by its deadline as we will allow higher density jobs that arrive after Ji to be scheduled
during Ii.

Executing jobs: At each time step t, S picks a set of jobs in J(t) to execute in order from highest to lowest density,
where J(t) are the set of jobs that have been assigned to time step t. That is, jobs Ji where t ∈ Ii. When considering job
Ji, if the number of unallocated processors is at least ni, then the scheduler allocates ni processors to Ji. Otherwise,
it continues on to the next job in J(t). S stops this procedure when either all jobs have been considered or when there
are no remaining processors to allocate.

Remark: Unlike the scheduler for jobs with deadlines, here we try to complete a job Ji by a calculated deadline Di

that is as close to x∗i as possible. This is because the obtained profit decreases as the completion time increases but
there is no additional benefit for completing a job Ji before time x∗i . With a carefully designed deadline Di, we are
able to prove the performance bound of the scheduler. Similarly to Section 3, we start by stating the basic properties
of the scheduler S, followed by bounding the total profit obtained by S. However, the proofs that bound the profit of
jobs that are completed by OPT differ greatly from that for jobs with deadlines. This is because in addition to losing
the profit of jobs that do not complete by their assigned deadlines, scheduler S can also loses profit compared to OPT
if the completion time of a job under S is later than under OPT. By taking into account all these jobs, we are able to
bound the performance of S for jobs with general profit functions.



5.1 Properties of the Scheduler

We begin by showing some structural properties for S that we will leverage in the proof and can be obtained directly
from the algorithm of scheduler S. Note that these lemmas are similar to the lemmas shown in Section 3.2 if we replace
xi∗ with Di. We state them here again for completeness.

Lemma 11. For every job Ji we have that ni ≤ b2m, where b = ( 1+2δ
1+ε )

1/2.

Proof. By definition, we know that x∗i ≥ (1 + ε)(Wi−Li
m + Li). Therefore, we have

ni =
Wi − Li
x∗
i

1+2δ − Li
≤ Wi − Li

1+ε
1+2δ (

Wi−Li
m + Li)− Li

≤ 1 + 2δ

1 + ε
m = b2m

2

Lemma 12. Under scheduler S, we have xini ≤ aWi and vi ≥ pi(Di)
aWi

, where a = 1 + 1+2δ
ε−2δ .

Proof. By definition, x∗i > Li(1 + ε). Therefore, we have

xini =Wi − Li + niLi =Wi +
Wi − Li
x∗
i

1+2δ − Li
Li ≤Wi +

Wi − Li
x∗
i

1+2δ −
x∗
i

1+ε

( x∗i
1 + ε

)
≤Wi +

(Wi − Li)x∗i (1 + 2δ)

x∗i (ε− 2δ)
≤Wi

(
1 +

1 + 2δ

ε− 2δ

)
Therefore, we have vi =

pi(Di)
xini

≥ pi(Di)
aWi

. 2

Lemma 13. For every job Ji with the assignment ni, Di and Ii, Job Ji can meet its deadline Di, if it is executed by
S for at least xi time steps in Ii (on ni dedicated processors).

Lemma 14. For every job Ji, xi(1 + 2δ) ≤ x∗i .

Proof. Note that Li ≤ 1
1+εDi by requirement of potential assignment. Since ni = Wi−Li

x∗
i

1+ε−Li
, we have xi(1 + 2δ) =

(Wi−Li
ni

+ Li)(1 + 2δ) ≤ (
x∗
i

1+ε − Li + Li)(1 + 2δ) =
x∗
i

1+ε (1 + 2δ) ≤ x∗i . 2

Lemma 15. At any time step t during the execution and for any density range [v, cv), the total number of cores
required by all the jobs Ji ∈ J(t) (that have been assigned to t) with density v ≤ vi < cv is no more than bm, i.e.
N (J(t), vi, cvi) ≤ bm.

5.2 Bounding the Profit of Jobs S Completes

Similar to Section 3.3, we bound the profit of jobs completed by scheduler S compared to the profit of all jobs. Let
J denote the set of jobs arrived during the execution, C denote the set of jobs that actually complete before their
deadlines assigned by S, and U = J \C be the set of jobs that didn’t finish by their deadlines assigned by S. We say
job Ji (and its assigned processors during execution) is v-dense, if its density vi ≥ v. For any set A of jobs, define
‖A‖ as

∑
Ji∈A pi(Di), the sum of the profits of jobs in the set under S.

Lemma 16. For a job Ji ∈ J \C that does not complete by its deadline, the number of time steps in Ii where S runs
cvi-dense jobs using at least (1− b)m processors is at least δxi.

Proof. From Lemma 13, we know that job Ji can complete if it can execute for xi time steps by S. Also note that
according to the assignment process (1 + δ)xi = ‖Ii‖, where ‖Ii‖ is the number of time steps assigned to Ji during
[ri, ri+Di]. Since it does not complete by its deadline, there are at least δxi time steps in Ii where S does not execute
Ji. Consider each of these time steps t. According to Lemma 15, jobs in J(t) with density in range [vi, cvi) require at
most N (J(t), vi, cvi) ≤ bm processors to execute. Therefore, there must be at least (1 − b)m processors executing
cvi-dense jobs. Otherwise, S would execute all jobs in A (J(t), vi, cvi), which includes job Ji. 2

Lemma 17. ‖C‖ ≥ (ε− 1
(c−1)δ ) ‖J ‖.

The proof is similar to that of Lemma 5 and is omitted for brevity.



5.3 Bounding the Profit of Jobs OPT Completes

Similar to Section 3.4, we will now bound the profit of the jobs OPT completes. We are first going to consider the
number of processor steps OPT spends on jobs that S finishes later than OPT. For these jobs, we assume that S makes
no profit since the profit function may become 0 as soon as OPT finishes it. Our high level goal is to first bound the
total number of processor steps OPT spends on these jobs, which will allow us to bound OPT’s profit. This section of
the proof differ greatly from the throughput case.

We begin by showing that if not too many processors are executing vi
c -dense jobs then all such jobs must be

currently processed under S.

Lemma 18. Consider a job Ji and a time t∗ < Di. For any time step t ∈ [ri, ri + t∗] \ Ii (that is not added
to Ii by S), the total number of processors required by vi

c -dense jobs in J(t) must be more than b(1 − b)m, i.e.,
N(J(t), vic ,∞) > b(1− b)m.

Proof. Because t ∈ [ri, ri + t∗] \ Ii and t∗ < Di, we know that time step t is before Di.
Since t is not added to Ii, it must be the case that for some density vj ∈ ( vic , vi], the required condition is not true,

i.e., N (J(t) ∪ {Ji}, vj , cvj) > bm. Note that vj must be in the range ( vic , vi]. This is because without assigning Ji to
time step t it is true that N (J(t), vj , cvj) ≤ bm according to S, therefore Ji must have a density within the range of
[vj , cvj) in order to make impact.

By Lemma 11, we know that ni ≤ b2m. Thus, we have

N (J(t), vj , cvj) = N (J(t) ∪ {Ji}, vj , cvj)− ni > bm− b2m = b(1− b)m

Therefore, we obtain N(J(t), vic ,∞) ≥ N (J(t), vj , cvj) > b(1− b)m. 2

Let O be the set of jobs completed by OPT. For each job Ji ∈ O, let d be the difference between Ji’s completion
time and arrival time under OPT; the profit of Ji under OPT is pi(d). According to the assumption in Theorem 3, we
know that if d ≤ x∗i , then pi(d) = pi(x

∗
i ) for some x∗i ≥ (Wi−Li

m + Li)(1 + ε). Therefore, we can assume that OPT
assigns a relative deadline D∗i to Ji, where D∗i = max{d, x∗i }. Thus, OPT obtains a profit of pi(d) = pi(D

∗
i ).

Lemma 19. Consider a job Ji such thatDi assigned by scheduler S is larger than the deadlineD∗i assigned by OPT,
i.e., Di > D∗i , the number of time steps during [ri, ri +D∗i ) where scheduler S is actively executing vi

c -dense jobs on
at least b(1− b)m cores is at least δ

1+2δD
∗
i .

Proof. By definition of D∗i and Lemma 14, we know that D∗i ≥ x∗i .
Consider the number of time steps in time interval [ri, ri + D∗i ] that are added to Ii, it must be less than (1 +

δ)
(
Wi−Li
ni

+ Li

)
= (1 + δ)xi; otherwise, D∗i would be a valid deadline under scheduler S with higher profit.

Therefore, the number of time steps in [ri, ri+D
∗
i ]\Ii is more thanD∗i −(1+δ)xi ≥ D∗i − 1+δ

1+2δx
∗
i ≥ D∗i − 1+δ

1+2δD
∗
i =

δ
1+2δD

∗
i .

By Lemma 18, we know that for each time step t ∈ [ri, ri + D∗i ] \ Ii, the total number of processors required
by vi

c -dense jobs in J(t) must be more than b(1 − b)m. Therefore, there must be at least b(1 − b)m cores executing
vi
c -dense jobs under scheduler S at time step t and the number of such steps is at least δ

1+2δD
∗
i . 2

Among the jobs in O, let O1 be the set of jobs that the deadline Di assigned by scheduler S is no larger than that
assigned by OPT, i.e., Di ≤ D∗i < ∞. In other words, the obtained profit of these jobs under scheduler S is no less
than that under OPT, i.e., pi(Di) ≥ pi(D∗i ), since the profit function pi(t) is non-increasing. Let O2 be the remaining
jobs O2 = O \ O1. Let ‖X‖∗ be the total profit that OPT obtains from jobs in X and ‖X‖ be the total profit that S
obtains from jobs in X . For jobs in O1, we have ‖O1‖∗ ≤ ‖O1‖.

For an arbitrary set of jobs E and any v ≥ 0 let TO(v, E) denote the total work processed by the optimal schedule
for the jobs in E that are v-dense. Let βi denote the total number of time steps where S is actively processing job Ji.
By definition, we have βi ≤ xi

1+ε . We similarly let TS(v, E) be the summation of βini over all jobs i in E that are
v-dense. Note that this counts the total number of processor steps S executes jobs in E that are v-dense over all time.

Now we are ready to bound the time that OPT spends on jobs O2 that scheduler S obtains less profit than OPT.

Lemma 20. Consider a job Ji in O2, the deadline Di assigned by scheduler S is longer than deadline D∗i assigned
by OPT. For all v > 0, TO(v,O2) ≤ 2(1+2δ)

δb(1−b)TS(
v
c ,J ).



Proof. For any job Ji ∈ O2, we denote the lifetime of Ji under OPT as the time interval [ri, ri +D∗i ), where D∗i is
the deadline assigned by OPT. For any density v > 0, let l be the number of time steps of the union of the lifetimes of
all jobs in A(O2, v,∞). By definition, TO(v,O2) ≤ lm, since OPT can execute them on at most m processors.

Let M ⊆ O2 be the minimum subset of O2 that the union of the lifetimes of jobs in M covers the same time
intervals of jobs in O2. By the minimality of M , we know that at any time t, there are at most two jobs in M that cover
time t. Therefore, we can further partition M into two sets M1 and M2, where for any two jobs in M1 or any two jobs
in M2, their lifetimes do not overlap. By definition, either M1 or M2 has a union lifetime that is at least l/2 and we
assume WLOG it is M1.

Consider Ji ∈ M1 and let ki be the number of time steps during its lifetime [ri, ri + D∗i ) where scheduler S is
actively executing vi

c -dense jobs on at least b(1− b)m cores. By Lemma 19, we know k ≥ δ
1+2δD

∗
i . Therefore, during

[ri, ri +D∗i ) the number of processor steps where S is processing vi
c -dense jobs is at least b(1− b)m δ

1+2δD
∗
i .

LetK =
∑
M1

ki, be the total number of processor steps where S is processing v
c -dense jobs (since vi ≥ v) during

the intervals in M1. Thus, by definition,

K ≥ δb(1− b)
1 + 2δ

m
∑
Ji∈M1

D∗i >
δb(1− b)
1 + 2δ

m× l

2
≥ δb(1− b)

2(1 + 2δ)
TO(v,O2)

Clearly, by adding additional intervals that are not in M1, we have TS( vc ,J ) ≥ K > δb(1−b)
2(1+2δ)TO(v,O2), which

gives us the bound. 2

Lemma 21.

‖O‖∗ = ‖O1‖∗ + ‖O2‖∗ ≤
(
1 + (1 +

1 + 2δ

ε− 2δ
)(1 +

1

εδ
)
2(1 + 2δ)

δb(1− b)

)
‖J ‖

Proof. First, by the definition of O1 and O2, we have ‖O‖∗ = ‖O1‖∗ + ‖O2‖∗ and ‖O1‖∗ ≤ ‖O1‖ ≤ ‖J ‖. Now it
remains to bound ‖O2‖.

We have TO(v,O2) ≤ 2(1+2δ)
δb(1−b)TS(

v
c ,J ) from Lemma 20 for all densities v. The remaining proof for the lemma is

similar to that in Lemma 9, except for a different constant. Therefore, ‖O2‖∗ ≤ (1 + 1+2δ
ε−2δ )c

2(1+2δ)
δb(1−b) ‖J ‖. Taking the

summation of ‖O1‖∗ + ‖O2‖∗ completes the proof. 2

Finally we are ready to complete the proof, bounding the profit OPT obtains by the total profit the algorithm
obtains for jobs it completed.

Lemma 22.
∥∥CO∥∥ ≤ 1+ac

2(1+2δ)
δb(1−b)

ε− 1
(c−1)δ

‖C‖.

Proof. This is just by combination of Lemma 17 and Lemma 21. 2

6 Conclusion

Scheduling jobs online to maximize throughput is a fundamental problem, yet there has been little study of this topic
when jobs are parallelizable and represented as DAGs. We give the first non-trivial result showing that a scheduling
algorithm is provably good for maximizing throughput. In addition, we extend the result and give an algorithm for the
general profit scheduling problem with DAG jobs.

There are several directions for future work. First, we want to design and implement more practical schedulers
that have similar theoretical performance but are work-conserving and require fewer preemptions. Second, in this
paper we focus on semi-non-clairvoyant algorithms that do not have any knowledge of the internal structure of the
DAG. This lets us to provide very general results. However, it is possible that by using the internal structure one
could design algorithms with better performance for some special DAG structures. Finally, we are also interested in
exploring whether fully non-clairvoyant algorithms can have comparable performance for throughput.



References
1. OpenMP. OpenMP Application Program Interface v4.0, July 2013. http://http://www.openmp.org/

mp-documents/OpenMP4.0.0.pdf.
2. Intel. Intel CilkPlus, Sep 2013. https://www.cilkplus.org/.
3. James Reinders. Intel threading building blocks: outfitting C++ for multi-core processor parallelism. O’Reilly Media, 2010.
4. Colin Campbell and Ade Miller. A Parallel Programming with Microsoft Visual C++: Design Patterns for Decomposition and

Coordination on Multicore Architectures. Microsoft Press, 2011.
5. Sanjoy K. Baruah, Gilad Koren, Decao Mao, Bhubaneswar Mishra, Arvind Raghunathan, Louis E. Rosier, Dennis Shasha, and

Fuxing Wang. On the competitiveness of on-line real-time task scheduling. Real-Time Systems, 4(2):125–144, 1992.
6. Sanjoy K. Baruah, Gilad Koren, Bhubaneswar Mishra, Arvind Raghunathan, Louis E. Rosier, and Dennis Shasha. On-line

scheduling in the presence of overload. In Symposium on Foundations of Computer Science, pages 100–110, 1991.
7. Gilad Koren and Dennis Shasha. Dover: An optimal on-line scheduling algorithm for overloaded uniprocessor real-time

systems. SIAM J. Comput., 24(2):318–339, 1995.
8. Gerhard J. Woeginger. On-line scheduling of jobs with fixed start and end times. Theor. Comput. Sci., 130(1):5–16, 1994.
9. Bala Kalyanasundaram and Kirk Pruhs. Fault-tolerant real-time scheduling. Algorithmica, 28(1):125–144, 2000.

10. Gilad Koren and Dennis Shasha. MOCA: A multiprocessor on-line competitive algorithm for real-time system scheduling.
Theor. Comput. Sci., 128(1&2):75–97, 1994.

11. Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules. Communications of the ACM,
28(2):202–208, 1985.

12. Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM, 47(4):617–643, 2000.
13. Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Competitive algorithms for due date scheduling. Algorithmica, 59(4):569–582,

2011.
14. Kirk Pruhs and Clifford Stein. How to schedule when you have to buy your energy. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques, 13th International Workshop, APPROX 2010, and 14th International
Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, pages 352–365, 2010.

15. Sungjin Im and Benjamin Moseley. General profit scheduling and the power of migration on heterogeneous machines. In
Symposium on Parallelism in Algorithms and Architectures, 2016.

16. Brendan Lucier, Ishai Menache, Joseph Naor, and Jonathan Yaniv. Efficient online scheduling for deadline-sensitive jobs:
extended abstract. In 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’13, pages 305–314, 2013.

17. Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D. Gill. Parallel real-time scheduling
of dags. IEEE Trans. Parallel Distrib. Syst., 25(12):3242–3252, 2014.

18. Jing Li, Jian-Jia Chen, Kunal Agrawal, Chenyang Lu, Christopher D. Gill, and Abusayeed Saifullah. Analysis of federated and
global scheduling for parallel real-time tasks. In ECRTS 2014, pages 85–96, 2014.

19. Kunal Agrawal, Yuxiong He, Wen Jing Hsu, and Charles E. Leiserson. Adaptive task scheduling with parallelism feedback. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), 2006.

20. Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. Adaptive work stealing with parallelism feedback. In Proceedings of
the Annual ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), March 2007.

21. Yuxiong He, Wen-Jing Hsu, and Charles E. Leiserson. Provably efficient online non-clairvoyant adaptive scheduling. In
IPDPS, 2007.

22. Lin Ma, R.D. Chamberlain, and K. Agrawal. Performance modeling for highly-threaded many-core GPUs. In Proc. of Int’l
Conf. on Application-specific Systems, Architectures and Processors (ASAP), pages 84–91, June 2014.

23. Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. Scheduling parallel DAG jobs online to minimize average flow time.
In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pages 176–189, 2016.

24. Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence constraints. In Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms, SODA ’08, pages 491–500, 2008.

25. Sanjoy Baruah. Improved multiprocessor global schedulability analysis of sporadic DAG task systems. In 26th Euromicro
Conference on Real-Time Systems, ECRTS 2014, Madrid, Spain, July 8-11, 2014, pages 97–105, 2014.

26. Sanjoy Baruah. Federated scheduling of sporadic DAG task systems. In 2015 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2015, Hyderabad, India, May 25-29, 2015, pages 179–186, 2015.

27. Sanjoy Baruah. The federated scheduling of systems of conditional sporadic DAG tasks. In 2015 International Conference on
Embedded Software, EMSOFT 2015, Amsterdam, Netherlands, October 4-9, 2015, pages 1–10, 2015.

28. Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-Spaccamela. The global EDF scheduling of systems of conditional
sporadic DAG tasks. In 27th Euromicro Conference on Real-Time Systems, ECRTS 2015, pages 222–231, 2015.

29. Sanjoy Baruah. The federated scheduling of constrained-deadline sporadic DAG task systems. In Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition, DATE 2015, pages 1323–1328, 2015.

30. Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Analysis of global edf for parallel tasks. In ECRTS, 2013.
31. Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and Andreas Wiese. Feasibility analysis in the sporadic

dag task model. In ECRTS, 2013.
32. Ola Svensson. Conditional hardness of precedence constrained scheduling on identical machines. In Proceedings of the 42nd

ACM Symposium on Theory of Computing, STOC 2010, pages 745–754, 2010.

http://http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://www.cilkplus.org/

	Scheduling Parallelizable Jobs Online to Maximize Throughput

