
Breaking 1 − 1/e Barrier for Non-preemptive
Throughput Maximization

Sungjin Im1, Shi Li2, and Benjamin Moseley3

1 University of California, Merced, CA 95344. sim3@ucmerced.edu
2 University at Buffalo, NY 14260. shil@buffalo.edu.

3 Washington University in St. Louis, MO, 63130. bmoseley@wustl.edu

Abstract. In this paper we consider one of the most basic scheduling
problems where jobs have their respective arrival times and deadlines.
The goal is to schedule as many jobs as possible non-preemptively by
their respective deadlines on m identical parallel machines. For the last
decade, the best approximation ratio known for the single machine case
(m = 1) has been 1 − 1/e − ε ≈ 0.632 due to [Chuzhoy-Ostrovsky-
Rabani, FOCS 2001 and MOR 2006]. We break this barrier and give an
improved 0.644-approximation. For the multiple machines case, we give
an algorithm whose approximation guarantee becomes arbitrarily close to
1 as the number of machines increases. This improves upon the previous
best 1−1/(1+1/m)m approximation due to [Bar-Noy et al., STOC 1999
and SICOMP 2009], which converges to 1−1/e as m goes to infinity. Our
result for the multiple-machine case extends to the weighted throughput
objective where jobs have different weights, and the goal is to schedule
jobs with the maximum total weight. Our results show that the 1 − 1/e
approximation factor widely observed in various coverage problems is not
tight for the non-preemptive maximum throughput scheduling problem.

1 Introduction

Scheduling jobs with arrival times and deadlines is a fundamental problem in
numerous areas of computer science and other fields. Due to this, there has been a
large amount of research focusing on the topic. However, relatively little is known
when jobs must be scheduled non-preemptively. Nonetheless, non-preemptive job
scheduling occurs frequently in practice for a variety of reasons including because
jobs cannot be stopped during execution due to practical constraints or because
overhead costs are prohibitively large.

A central problem in the scheduling literature is determining how to schedule
jobs by their deadline. In many cases when jobs have deadlines, not all jobs
can be scheduled by their deadline. In these situations an alternative goal is to
complete as many jobs as possible by their deadline. In this paper, we consider
this problem a.k.a. throughput maximization. There are m identical machines
and n jobs. Each job j has size pj , arrival/release time rj , and deadline dj ; all
these quantities are assumed to be integers in [0, T]. The goal is to schedule as
many jobs as possible by their deadline non-preemptively on the m machines.

Non-preemptive scheduling means that once a job starts being processed at
time sj on a machine, then the job must be scheduled until time sj + pj on the
machine. A machine can process at most one job at a time. To highlight the
non-preemptive aspect of the problem, we will call this problem the Job Interval
Scheduling (JIS). Not surprisingly, JIS has various applications in practice. For
examples, see [10,6,8,13].

It was shown by Garey and Johnson that this problem is NP-Hard [9]. Bar-
Noy et al. [4] showed that there is an algorithm achieving an approximation ratio
1 − 1/(1 + 1

m)m. The approximation ratio gets better when m becomes larger.
In particular, the ratio is 1/2 if m = 1 and converges to 1 − 1/e as m tends to
infinity.

Later Chuzhoy et al. [7] gave a (1 − 1/e − ε)-approximation algorithm for
a discrete version of this problem. In this version, we are explicitly given a
set of intervals Ij in (0, T] (which may have different lengths) for each job j. To
schedule the job, we need to select an interval from the set Ij . A schedule is valid
if the intervals selected for all the scheduled jobs are disjoint. In this problem,
adding more machines does not add more generality to this problem 4. We will
refer to the problem we consider as the continuous variant to distinguish it from
this work. It seems that the discrete version generalizes the continuous version
of the problem we consider: for each job with j with arrival time rj , deadline dj
and processing time pj , the set of intervals for j is all sub-intervals of (rj , dj] of
length pj with integer end-points. However, there is a small caveat: the number
of intervals can be exponential in n. It was not known how to handle this tricky
issue using the algorithm of [7]. Thus, when T is not polynomially bounded by
n, the

(
1− 1/(1 + 1

m)m
)
-approximation due to [4] remains the state-of-art for

this problem; in particular, a 1/2-approximation is the best known when m = 1
[4,1,16].

Our Results: In this paper, we improve upon the state-of-art approximations
for JIS for both the single-machine and multiple-machine cases. First, we show
that for constant m, there is a 0.6448 > (1− 1/e)-approximation for JIS.

Theorem 1. For some α0 > 0.6448 > 1 − 1/e and any ε > 0, there exists an
(α0 − ε)-approximation algorithm for the (unweighted) Job Interval Scheduling

(JIS) problem with running time nO(m/ε5).

To complement the result, we give a second algorithm whose approximation
ratio approaches 1 as the number m of machines goes to infinity, improving
upon the previous 1 − 1/e limit. Thus, we can make our approximation ratio
better than 1− 1/e for any m: we run the first algorithm if m is at most a small
constant; we run the second algorithm if m is large. Indeed, our second algorithm
works for the more general weighted version of the problem, provided that T is
polynomially bounded by n. In this version, each job i has some positive weight

4 Suppose there are m machines. Then, in our new instance, the time horizon is
(0,mT], which can be viewed as the concatenation of m horizons of length T . If
job can be scheduled in (A,B] ⊆ (0, T] in the original instance, it can be scheduled
in (iT +A, iT +B] for every i = 0, 1, · · · ,m− 1 in the new instance.

wi and the goal is to maximize the total weight of the jobs completed by their
deadline. We remark that for the unweighted version, we do not require T to be
polynomially bounded.

Theorem 2. For any ε > 0, there exists a
(

1−O
(√

(logm)/m
)
− ε
)

-

approximation for unweighted JIS on m machines. If T = poly(n), there exists

a
(

1−O
(√

(logm)/m
))

-approximation for weighted JIS on m machines.

Our Techniques: Our result in Theorem 2 will follow from a simple rounding
procedure based on the naive LP relaxation for the problem. We scale down a
naive LP solution by (1 − ε), apply a standard rounding technique to obtain a
tentative schedule. Then we convert the tentative schedule to one that is feasible
by removing jobs in a greedy manner. We show that the probability that a job
is removed from the tentative schedule is exponentially small in m. Another
technical contribution from this result is a method to solve the naive LP for
unweighted JIS when T is not bounded, that only sacrifices a (1 − ε)-factor in
the LP value. This was not known previously.

Our main technical contribution is in obtaining an α0 − ε ≈ 0.6448-
approximation stated in Theorem 1. The algorithm is based on a slightly different
variation of the configuration LP used in [7]. We highlight our algorithmic ideas
as follows assuming m = 1.

Chuzhoy et al. considered a configuration LP to obtain an approximation
ratio 1−1/e−ε ≈ 0.632 [7]; it is known that a naive LP has an integrality gap of
2 when m = 1 [4,16]. The configuration LP considered in [7] is fairly natural and
builds on “blocks” of jobs: a block is a window (a time interval) together with k
jobs scheduled in it, for some fixed k. It is straightforward to construct the set
of blocks from an integral schedule: take the window in which the first k jobs
are scheduled, take the window in which the second k jobs are scheduled, and so
on. [7] used an involved preprocessing step to guess the windows where a block
of k jobs are scheduled in some optimum solution. Then for each window corre-
sponding to where a block of k jobs are scheduled in an optimum solution, there
are variables encoding which k jobs are scheduled inside it. In our configuration
LP, we do not guess where blocks are scheduled in an optimum solution. Rather,
we have variables for blocks of k jobs that are scheduled and, when allowing
the blocks to be scheduled fractionally, we ensure that at most one fractional
block covers every time point. Thus, instead partitioning time based on guessing
where blocks are in an optimum solution, we partition the time horizon (0, T]
using the fractional blocks obtained from the configuration LP. We remark that
this novelty is not essential in obtaining the improved approximation ratio; the
improved approximation ratio could be obtained using the involved preprocess-
ing step and the configuration LP in [7]. However, our configuration LP yields
the following byproducts: (1) our configuration LP can handle the case when
T is super polynomial; (2) we can reduce the dependence of running time on ε

from double exponential to single exponential; (3) we can obtain the improved
(α0 − ε)-approximation for any constant m 5.

Now we state some intuition on how the configuration LP can help give a
better approximation. Suppose we know the time steps when the optimal solution
schedules k additional jobs, t1, t2, t3, · · · . (Since we do not know, we need to lose
1 − ε factor in the approximation ratio and k needs to be a large constant.)
Then, we only need to consider windows W = {(t1, t2], (t2, t3], (t3, t4], · · · }; let’s
call this the optimal partition. The configuration LP gives a distribution over
sets of k jobs scheduled in each window. By randomly choosing one set of k
jobs for each window, we can easily show a (1− 1/e)-approximation following a
standard analysis for the maximum coverage problem.

To improve the (1−1/e)-approximation, we use a second rounding procedure,
which works only for the continuous version of JIS. Suppose each (rj , dj] is
exactly the union of some windows in W; in other words, rj = ti and dj = ti′

for some i < i′. The rounding procedure is based on individual jobs as opposed
to individual windows as in the first rounding procedure. We assign each job to
one of the windows according to how much the job is assigned to each individual
window in the LP solution. Here a crucial observation is that the job can be
scheduled anywhere in such windows – the only constraint we have to ensure
is that we do not assign too much volume of jobs to the same window. With
an additional preprocessing step of removing “big” jobs, we can show that such
a bad overflow event rarely occurs, and this leads to a (1 − ε)-approximation.
Since each (rj , dj] may not be aligned with the partition W, we do not get this
(1 − ε)-approximation in general. Among all the windows in W that intersect
(rj , dj], the first one and the last one are special, since we can not schedule j
anywhere inside these two windows. However, if the fraction of the job j assigned
to these two windows is large, then we observe that, in fact, the first rounding
algorithm can give better than a 1 − 1/e factor for the probability we schedule
job j. Thus, taking the best solution given by these two rounding procedures
will lead to an approximation ratio better than 1− 1/e.

Removing Dependency on T : As mentioned above, in our problem, the contin-
uous version of JIS, the 1

2 -approximation was the best known polynomial time
algorithm for the single machine case [4]. Interestingly, we also use the configu-
ration LP to remove the dependency on T . This is somewhat counter-intuitive
since the configuration LP is more complicated than the standard LP which is a
special case of the configuration LP where each block has only one job. Thus it
will seem that using the configuration LP is in the opposite direction to reduce
the number of LP variables to obtain a true polynomial time algorithm. One of
our key observations is that if a set of k jobs are very flexible, that is, can be
scheduled seamlessly in “many” places, then such a block can be added later.
Then we show one job can be kicked out to schedule k additional jobs. A similar

5 As mentioned before, [7] focuses on the discrete version of JIS while our work does
on the continuous version. The approach in [7] does not seem to easily extend to
give a better than 1 − 1/e-approximation for multiple machines.

configuration LP is used in the

(
1−O(

√
logm
m)

)
-approximation to reduce the

dependence on T , although only the naive LP is needed when T = poly(n).

Related Work: A simple greedy algorithm that schedules a job with the earliest
deadline is known to be a 1

2 -approximation for the single machine case [1,16].
There are 1

2 -approximations known for the weighted throughput objective in the
multiple machines setting [4,5]. [2] considered JIS when the algorithm is given
resource augmentation and gave an O(1)-speed 1-approximation. If preemption
is allowed, it is known that if m = 1 then there exists a polynomial time optimal
algorithm [3]. When m ≥ 2 then the problem becomes NP-Hard [11]. To see
why the problem is hard, note that if all jobs have the same release time and
deadline then finding the minimum number of machines to schedule the jobs on
is effectively the bin packing problem. The problem has also been considered in
the online setting [14,12].

Organization: To deliver the main ideas of our (α0−ε) ≈ 0.6448-approximation
for JIS stated in Theorem 1, in Section 2, we first present our result assuming
that the number of machines, m is a constant and T = poly(n); recall that
(0, T] is the time horizon we are considering. In Appendices A and B, we prove
Theorem 1 for the general case. Specifically, in Appendix A we first extend the
(α0− ε)-approximation to the case when T is super-polynomial in n and m = 1,
and then in Appendix B to the case when T is super-polynomial in n and m ≥ 2.
We prove Theorem 2 in Section 3 under the assumtion that T is polynomially
bounded and remove the assumption in Appendix C.

2 Proof of Theorem 1 when m = O(1) and T = poly(n)

Our algorithm is based on a configuration LP relaxation for the problem. We
will then use this relaxation to partition the time horizon into disjoint windows.
We remark that this step can replace the involved preprocessing step of [7].
With the definition of windows in place, we can run the rounding procedure of
[7]; this will give us (1 − 1/e − ε)-approximation for the unweighted case. To
obtain the improved (α0 − ε) approximation ratio, we run a different rounding
procedure and choose the better solution from the two procedures. This will give
us Theorem 1 when T = poly(n).

2.1 Linear Programming

We define a block as a triple B = (LB , RB ,JB) where LB and RB are two integer
time points such that 0 ≤ LB < RB ≤ T , and JB is a subset of jobs that can be
scheduled in the interval (LB , RB] non-preemptively on m machines. We assume
that B is associated with a specific schedule where jobs in JB are scheduled in
(LB , RB] on m machines. The size of block B is defined as the number of jobs
in JB , which is denoted as wB . We say that B has block window (LB , RB].

Let k = d3/εe and ∆ = 2mk5; recall that ε is a parameter that stands for
the proximity to the desired approximation factor. The integer programming for

JIS is defined as follows. We only consider the blocks B with either wB = ∆, or
RB = T and wB < ∆ in the IP; for simplicity we omit this constraint.

max
∑
B

wB · xB (LPconf)∑
B:LB<t≤RB

xB ≤ 1 ∀t ∈ [T] (1)

∑
B:j∈JB

xB ≤ 1 ∀j ∈ J (2)

xB ∈ {0, 1} ∀B

In the above IP, Constraint (1) ensures that block windows are disjoint, and
Constraint (2) requires each job to be scheduled at most once. Note that the
number of constraints in (1) is polynomially bounded when T = poly(n) – as
mentioned earlier, we discuss how to handle non-polynomially bounded T in
later sections.

It is easy to see that any solution to the IP gives a valid schedule. On the
other hand, not every schedule can be converted to a feasible IP solution when
m > 1. Thus the IP may not give the optimum throughput. However we show
that the loss is small. To see this, fix an optimal schedule. Given the optimum
schedule, we sort all the jobs according to their completion time. Let L = 0
initially. In each iteration, we take the first ∆ jobs J ′ from the sequence and let
R be the completion time of the ∆-th job; if there are less than ∆ jobs in the
sequence, we let J ′ be all the jobs in the sequence and let R = T . We create a
block B = (L,R,J ′) and set xB = 1. Then, we remove all jobs whose starting
time is before R from the sequence. Then let L = R and start a new iteration.
The process ends when the sequence becomes empty. It is easy to see that the
blocks we created have disjoint windows. Moreover, if |J ′| = ∆, we remove at
most ∆ + m − 1 jobs from the sequence: other than the ∆ jobs in J ′, we may
remove at most m − 1 extra jobs who are scheduled intersecting the interval
(R − 1, R]. If |J ′| < ∆ in the last iteration, we only remove |J ′| jobs from
the sequence. Thus, the value of the IP is at least ∆

∆+m−1 times the optimum

throughput.6

The LP is obtained by relaxing the constraints xB ∈ {0, 1} to xB ≥ 0. Note

that the running time of solving the LP is nO(∆) = nO(m/ε5). Let {x∗B} denote
the optimal solution to the above LP. Let OPTLP =

∑
B wBx

∗
B denote the

optimal LP objective.

2.2 Preprocessing

In the preprocessing step, we break the time horizon (0, T] into a set W of
disjoint intervals, which we call base windows to distinguish them from jobs
windows and block windows. We also construct a new solution {x′B}. The main

6 It is worth noting that this is where we crucially use the assumption that jobs have
uniform weights.

goal is two-fold: (i) to preserve most of the LP objective and (ii) to make each
block window completely contained in a base window; this makes the rounding
procedures more applicable.

We now formally show how to break (0, T] into base windows and obtain {x′B}
from {x∗B}. Note that the blocks in the support of {x∗B} can overlap with one
another. To create {x′B}, we iteratively cut at the time point when an additional
1/k fraction of blocks end in {x∗B}. Formally, we associate each integer time-
point t ∈ (0, T] with a weight et =

∑
B:RB=t x

∗
B , which is the sum of x∗B over

all blocks B ending at time t. Let L = 0 and W = ∅ initially. Each iteration
works as follows. Let R be the first time point such that

∑R
t=L+1 et ≥ 1/k, or

let R = T if no such time point exists – note that the sum is counted from time
L+ 1. Create a base window (L,R] and add it to W. Let L = R and start a new
iteration. The procedure terminates when L = T .

Once we defined the base windows W, for every B with x∗B > 0, we cut
B into multiple blocks at the boundaries of the base windows. Formally, for
every base window (L,R] that intersect (LB , RB], we create a block B′ =
(max {L,LB} ,min {R,RB} ,J ′) where J ′ is the set of jobs in JB whose schedul-
ing intervals are contained in (L,R]. For all these created blocks B′, we let
x′B′ = x∗B . Notice that the jobs across the boundaries of base windows are
deleted in this process. After that, we delete big jobs from each created block
B′: a job j in JB′ is said to be big compared to B′ if pj ≥ (RB′ − LB′)/k3.7

We have constructed a set W of disjoint base windows and derived a new
fractional solution {x′B} from {x∗B} that satisfies the following properties. All
the blocks B in the description are restricted to the ones with x′B > 0.

Properties of {x′B}:

1. For every block B, the block window (LB , RB] is fully contained in some
base window in W.

2. No job j in JB is big compared to B. That is, for all k ∈ JB it is the case
that pj < (RB′ − LB′)/k3.

3. If OPTLP ≥ ∆, then
∑
B′ wBx

′
B ≥ (1− ε/3)OPTLP.

4. For all windows (L,R] ∈ W,
∑
B:(LB ,RB]⊆(L,R] x

′
B ≤ 1 + 1/k.

5. For all jobs j,
∑
B:j∈JB

x′B ≤ 1.

Properties (1), (2) and (5) are very easy to check. To see Property (4) holds,
consider a base window (L,R] ∈ W. We know that at most 1 fractional block
intersects R due to the Constraints (1). Due to the way we defined base windows,
at most 1/k fractional block can end during (L,R− 1].

Property (3) is the most non-trivial one. Observe that there are at most m
fractional jobs across the boundary of two adjacent base windows. Each time
(except for the last one) we build a base window, we collected at least 1/k frac-
tional blocks, and thus ∆/k fractional jobs. So the total number of boundaries is
at most OPTLP/(∆/k) = kOPTLP/∆. Thus the total jobs we discarded due to

7 This is another place where we rely on the assumption that jobs have uniform
weights.

“boundary crossing” is at most kmOPTLP/∆. Also at most mk3 fractional big
jobs are discarded from each base window. Thus at most mk3×(kOPTLP/∆+1)
fractional big jobs are removed. If opt ≥ ∆ and k ≥ 3, the total number of frac-
tional big jobs removed is at most 2mk4OPTLP/∆ = OPTLP/k ≤ εOPTLP/3.
Hence Property (3) follows. If the condition OPTLP ≥ ∆ is not satisfied, we can
simply guess the optimal solution using enumeration.

2.3 The First Rounding Procedure

In this subsection, we show how to round {x′B} to obtain an improved approxima-
tion. As mentioned before, we have two rounding procedures. The first rounding
is an independent rounding that samples a block from the set of blocks contained
in each base window W. Formally, for each base window (L,R] ∈ W, we sample

a block B with (LB , RB] ⊆ (L,R] with probability
x′
B

1+1/k . This is well defined

due to Property (4) – it says that there are only (1 + 1/k) fractional blocks to
be considered for each base window. If a job is scheduled more than once, we
keep only one scheduling of the job. This completes the description of the first
rounding.

A standard analysis for independent rounding can only show that each job
can be scheduled with probability at least (1− 1/e)/(1 + 1/k) times the fraction
by which the job is scheduled. To derive an improved approximation better
than 1 − 1/e, we need to do a more careful analysis. Let’s focus on each job j.
Consider the set of base windows that intersect (rj , dj]. We call the first and the
last of these base windows the boundary base windows. All these base windows
except the boundary ones are completely contained in (rj , dj]. Job j may appear
in multiple base windows, more precisely in blocks contained in multiple base
windows. Let aj be the fraction by which job j is scheduled in boundary base
windows, scaled down by 1 + 1/k. There may be only one boundary window for
j, but it only helps the approximation ratio, hence for simplicity, let’s proceed
with our analysis assuming that there are two boundary base windows for every
job. Now we turn our attention to non-boundary windows. Observe that in every
non-boundary base window in which j is scheduled, we can schedule j anywhere
inside it. Let bj be the fraction by which job j is scheduled in non-boundary
base windows, scaled down by 1 + 1/k.

We show that the first rounding schedules j with probability at least:

1− (1− aj/2)2e−bj (3)

Let’s take a close look at why this is the case. Let a, a′ be the fractions by
which job j is scheduled on the two boundary base windows, scaled down by
1 + 1/k. Likewise, let b(u) be the fraction by which job j is scheduled on a
non-boundary base window u, scaled down by 1 + 1/k. Note that

∑
u b(u) = bj .

Then, j is scheduled with probability at least 1− (1− a)(1− a′)
∏
u(1− b(u)) ≥

1 − (1 − a)(1 − a′)
∏
u e
−b(u) = 1 − (1 − a)(1 − a′)e−bj ≥ 1 − (1 − aj/2)2e−bj

where we use the well-known inequality ex ≥ 1 + x.

2.4 The Second Rounding Procedure

The second rounding makes use of the flexibility of non-boundary base windows.
This rounding procedure completely ignores the boundary base windows, and
assigns jobs individually. Consider each job j together with its non-boundary
base windows. The fractional solution x′B tells us how much job j can be sched-
uled in each of its base windows, and we randomly assign the job to one of them
exactly as the fractional solution suggests. Then what is the probability that job
j cannot be scheduled since a lot of jobs are assigned to the same base window?
We can show such a probability is tiny by scaling down the assignment probabil-
ity slightly and using the fact that all jobs are small compared to base windows.
We show that each job j is successfully scheduled with probability at least

(1− ε/3)bj (4)

Formally, the second rounding algorithm is as follows. Let fj,W be the
amount by which job j is assigned to a base window W , i.e. fj,W :=∑
B:(LB ,RB]⊆W,j∈JB

x′B . Then bj is
∑
W fj,W /(1 + 1/k), where W is over all

non-boundary base windows of j. Consider each job j. We assign job j to one of
its non-boundary base windows W with probability fj,W /(1 + 1/k). Let J (W)
be the set of jobs selected to be scheduled in the base window W . We sched-
ule these jobs greedily on m machines within W . Since each job j in J (W)
can be scheduled anywhere within the window, and all jobs in J (W) are small
compared to W , the greedy packing is pretty good.

Lemma 1. Consider a base window W = (L,R]. If the total size of jobs in
J (W) is no greater than (1 − 1/k3)m(R − L), then all jobs in J (W) can be
scheduled on m machines within the window W .

Proof. The proof immediately follows from the fact that all jobs in J (W) have
sizes no greater than (R − L)/k3 (Property (2)), and all jobs can in J (W) can
be scheduled everywhere inside W . ut

If the total size of jobs in J (W) is greater than (1−k3)m, we simply discard
all jobs in J (W). Our goal is to show that this bad event happens with low
probability. The following observation is immediate.

Lemma 2. The total size of jobs in J (W) is at most m(R − L)/(1 + 1/k) in
expectation.

Proof. Notice that
∑
B:t∈(LB ,RB] x

′
B ≤ 1 for every t ∈ (L,R]. Thus,∑

B:(LB ,RB]⊆(L,R](RB − LB)x′B =
∑
t∈(L,R]

∑
B:t∈(LB ,RB] x

′
B ≤ (R − L). Since

we can schedule at most m(RB − LB)x′B volume of jobs in B, the total volume
of jobs scheduled in B is at most m(R−L); here the volume of a job j refers to
pj times the fraction by which the job is scheduled. The claim follows since we
scaled down the assignment probability down by a factor of 1 + 1/k. ut

This claim, together with the fact that all jobs are small compared to the base
window, will allow us to show that the bad event happens with a low probability.
To show this, fix a base window W = (L,R). The upper bound in the following
lemma easily follows from a well known concentration inequality.

Lemma 3. For any window W = (L,R), the total size of jobs in J (W) is at
most (1− 1/2k)(R− L) with probability at least 1− ε/3.

Proof. Let Xj be pj if job j is in J (W), and otherwise 0. Note that Xj ≤
(R − L)/k3. Let Z =

∑
j Xj . By Lemma 2, we know that µ := E[Z] ≤ m(R −

L)/(1 + 1/k) ≤ (1− 0.9/k)m(R−L) when k is large enough. By adding enough
dummy random variables, we may assume µ = (1 − 0.9/k)m(R − L); this only
increases Pr[Z ≥ (1− 1/2k)m(R− L)]. By Theorem 3 in Appendix E, we have

Pr[Z ≥ (1− 1/2k)m(R− L)] ≤ exp
(
− (0.4/k)2/(1− 0.9/k)2 × (1− 0.9/k)m(R− L)

3(R− L)/k3

)
= exp

(
− 0.16km

3(1− 0.9/k)

)
≤ exp(−k/20),

which is at most ε/3 when ε is small enough. ut
If the total size of jobs assigned to the base window (L,R] is at most (1 −

1/2k)m(R − L) ≤ (1 − 1/k3)m(R − L), then all these jobs can be scheduled in
(L,R] on m machines. Further, this happens with probability at least (1− ε/3)
due to Lemma 3. Since a job is assigned to one of a non-boundary window with
probability bj , the probability that job j is scheduled due to the second rounding
is at least (1− ε/3)bj . This shows the probability claimed in (4).

2.5 Combining the Two Rounding Procedures
Finally, we take the better between the two rounding solutions. That is, we take
the maximum of the two lower bounds, (3) and (4). The following lemma lower
bounds (3) by a linear combination of aj and bj , which follows by approximating
ex by a piecewise linear function and performing some case analysis. The proof
is deferred to Appendix D.

Lemma 4. For all aj, bj such that 0 ≤ aj + bj ≤ 1,
(
1− (1− aj/2)2e−bj

)
≥

λ1aj + λ2bj where λ1 = 0.69 and λ2 = 0.62.

Then the expected number of jobs we schedule is at least

(1− ε/3) max
{∑

j

(
1− (1− aj/2)2e−bj

)
,
∑
j

bj

}
≥ (1− ε/3) max

{
λ1
∑
j

aj + λ2
∑
j

bj ,
∑
j

bj

}
≥ (1− ε/3)

λ1
λ1 − λ2 + 1

(
∑
j

aj +
∑
j

bj).

Let α0 = λ1

λ1−λ2+1 ≥ 0.6448. Notice that
∑
j aj +

∑
j bj is the total number

of jobs scheduled by the solution {x′B}, scaled down by 1+1/k, which is at least
(1 − 1/k)(1 − ε/3)OPTLP, due to the Property (3). Noticing that OPTLP is
at least ∆

∆+m−1 ≥ (1− ε/3) times the optimum throughput, our approximation
ratio is at least (1− ε/3)(1− 1/k)(1− ε/3)(1− ε/3)α0 ≥ (1− 4ε/3)α0 ≥ α0 − ε.
This proves Theorem 1.

3 1 − O
(√

(1/m) lnm
)
-approximation for JIS

In this section our goal is to prove Theorem 2. For convenience, we consider
weighted JIS with T = poly(n). In Appendix C, we show how to handle the
unweighted case when T is super-polynomial in n.

We start by describing our algorithm which works by rounding the naive
LP relaxation for the problem. The relaxation is the following. Let xj,t denote
whether job j is started at time t. This variable is defined if rj ≤ t ≤ dj − pj .

max
∑
j

∑
t

wjxj,t (LPnaive)

∑
j

min{dj−pj ,t−1}∑
t′=max{rj ,t−pj}

xj,t′ ≤ m ∀t ∈ [T];
∑
t

xj,t ≤ 1 ∀j ∈ J

where xj,t ≥ 0 for all j ∈ J , t ∈ [rj , dj − pj]. The first constraint ensures that at
most m jobs are scheduled at any point in time. The second constraints ensure
that each job is scheduled at most once.

Our algorithm works as follows. After solving the LP, we round the solution.
For each job, we do randomized rounding. Each job j selects a starting time t to
be scheduled with probability (1− ε)xj,t, and j is not scheduled with probability
1 − (1 − ε)

∑
t xj,t where ε < 1 is a parameter depending on m which will be

fixed later. This is the tentative schedule, which could be infeasible. Then we
order the jobs by their starting times in the tentative schedule. Consider a job
j, whose starting time is t in the tentative schedule. Then we schedule job j at
time t whenever we can. It is easy to see that we can schedule j if and only if
the time slot (t, t+ 1] is covered by less than m already-assigned jobs.

To bound the quality of the solution, our goal is to bound the probability
that a job is scheduled.

Lemma 5. Each job j is scheduled with probability at least (1 −
ε)
(

1− exp
(
−m ε2

3(1−ε)

))∑
t xj,t.

Proof. Consider any fixed job j. We condition on the event that we chose to
tentatively schedule j at time t; this happens with probability (1 − ε)xj,t. We
then bound the probability that j is removed from the tentative schedule. For this
to happen, there must be at least m jobs i 6= j with tentative scheduling intervals
covering (t, t+1]. Let Xi be an indicator random variable that is 1 if the tentative
interval for job i covers (t, t+1] and 0 otherwise. Then Z :=

∑
i 6=j Xi ≥ m if job

j is removed from the tentative schedule. Also notice that µ := E[
∑n
i=1Xi] ≤

(1 − ε)m because at most m jobs are fractionally scheduled at time (t, t + 1],
and we schedule i at t′ with probability (1− ε)xi,t′ . By adding dummy random
variables, we assume µ := (1− ε)m; this only increases Pr[Z ≥ m].

Since ε < 1, we have

Pr[Z ≥ m] ≤ exp
(
−
(

ε

1− ε

)2

(1− ε)m/3
)

= exp
(
− ε2m

3(1− ε)

)
.

Thus, the probability that j is tentatively scheduled at t and is not re-

moved from the tentative scheduling is at least (1− ε)
(

1− exp
(
− ε2m

3(1−ε)

))
xj,t.

Adding this over all t, job j is scheduled with probability at least (1 −
ε)
(

1− exp
(
− ε2m

3(1−ε)

))∑
t xj,t. ut

We set ε =
√

2 lnm
m . Then exp

(
− ε2m

3(1−ε)

)
≤ m−2/3 and (1 −

ε)
(

1− exp
(
− ε2m

3(1−ε)

))
≥ 1 −

√
2 lnm
m − m−2/3 = 1 − O

(√
logm
m

)
. This im-

plies the second half of Theorem 2.

References

1. Adler, M., Rosenberg, A.L., Sitaraman, R.K., Unger, W.: Scheduling time-
constrained communication in linear networks. Theory of Computing Systems
35(6), 599–623 (2002)

2. Bansal, N., Chan, H.L., Khandekar, R., Pruhs, K., Stein, C., Schieber, B.: Non-
preemptive min-sum scheduling with resource augmentation. In: FOCS. pp. 614–
624 (2007)

3. Baptiste, P.: An O(n4) algorithm for preemptive scheduling of a single machine to
minimize the number of late jobs. Oper. Res. Lett. 24(4), 175–180 (1999)

4. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Approximating the throughput of
multiple machines in real-time scheduling. SIAM Journal on Computing 31(2),
331–352 (2001)

5. Berman, P., DasGupta, B.: Improvements in throughout maximization for real-
time scheduling. In: Proceedings of the thirty-second annual ACM symposium on
Theory of computing. pp. 680–687. ACM (2000)

6. B lażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling com-
puter and manufacturing processes. Springer Science & Business Media (2013)

7. Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job
interval selection problem and related scheduling problems. Math. Oper. Res. 31(4),
730–738 (2006)

8. Fischetti, M., Martello, S., Toth, P.: The fixed job schedule problem with spread-
time constraints. Operations Research 35(6), 849–858 (1987)

9. Garey, M.R., Johnson, D.S.: Two-processor scheduling with start-times and dead-
lines. SIAM J. Comput. 6(3), 416–426 (1977)

10. Hall, N.G., Magazine, M.J.: Maximizing the value of a space mission. European
journal of operational research 78(2), 224–241 (1994)

11. Hong, K.S., Leung, J.Y.T.: Preemptive scheduling with release times and deadlines.
Real-Time Systems 1(3), 265–281 (1989)

12. Koren, G., Shasha, D.: Dˆover: An optimal on-line scheduling algorithm for over-
loaded uniprocessor real-time systems. SIAM Journal on Computing 24(2), 318–339
(1995)

13. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A., Shmoys, D.: Sequencing and schedul-
ing: Algorithms and complexity. Hanbooks in Operations Resarch vol. 4 (1993)

14. Lipton, R.J., Tomkins, A.: Online interval scheduling. In: SODA. pp. 302–311
(1994)

15. McDiarmid, C.: Concentration. In: Probabilistic methods for algorithmic discrete
mathematics, pp. 195–248. Springer (1998)

16. Spieksma, F.C.: On the approximability of an interval scheduling problem. Journal
of Scheduling 2(5), 215–227 (1999)

A Proof of Theorem 1 when m = 1 and T is large

In this section, we remove the dependency of running time on T for the (α0− ε)-
approximation algorithm in Section 2. Since the case m = 1 is simpler, we
consider this case first, and defer the case where m ≥ 2 to Appendix B.

For some technicality issue, we need to modify the definition of a block
slightly. A block B is defined as a triple (LB , RB , σB), where LB < RB are
integers and σB is a sequence of some distinct jobs in J (instead of a subset as
in the previous definition). Let σB(h) denote hth job in the ordering σB . B is
a block if σB can be scheduled inside (LB , RB] on m = 1 machine: this means
we can schedule the set of jobs in σB in (LB , RB] according to the order σB .
The size of a block, denoted as wB , is the length of σB . By abusing notation,
sometimes we also use σB to denote the set of jobs in the sequence σB . The
initial LP we are considering is exactly the same as LPconf in Section 2, except
that we change JB to σB in Constraint (2). As before, we only consider blocks
B with either wB = ∆ := 2mk5 = 2k5, k = d3/εe, or RB = T .

It is easy to see that the whole algorithm in Section 2 works for this new
LP since our new LP can only be stronger. To remove the dependence on T , we
shall decrease the number of interesting blocks. We say a block B is minimal if
both (LB + 1, RB , σB) and (LB , RB − 1, σB) are not blocks. A minimal block
B is said to be tight if RB − LB =

∑
j∈σB

pj , otherwise loose. For a tight block
B, jobs in σB must be scheduled in (LB , RB] without gaps. We first show that
there are not so many loose minimal blocks to consider in the following lemma.

Lemma 6. The number of loose minimal blocks of size s is at most s2ns, for
any positive integer s.

Proof. Focus on a loose minimal block B and a schedule of σB in (LB , RB]. Since
B is minimal, σB(1) is started at L and σB(∆) is completed at R. Since the block
is loose, there is an idle time slot in (LB , RB], i.e, no jobs are executed in the time
slot. Consider the first idle slot and the set of jobs in σB scheduled before this
slot. We then try to shift the scheduling intervals for these jobs to right by one
slot. Shifting will make the scheduling invalid since B is a minimal block. This is
because some job j in the set has completion time equal to its deadline. Similarly,
find the last idle slot in (LB , RB] and try to shift the scheduling intervals for
jobs scheduled after this time slot to left. There must be a job j′ whose starting
time equals its arrival time. For fixed σB , j and j′, LB and RB are determined.
There are at most ns different sequences σB and s2 different (j, j′) pairs. Thus,
there are at most s2ns different non-tight minimal blocks. ut

Fix a sequence σ of jobs, and consider the set of integers L such that (L,L+∑
j∈σ pj , σ) is a tight block. It is easy to see that the set is an interval. Let L1

be the smallest such L and L2 be the largest such L. We say the sequence σ is
flexible if L2 − L1 ≥ 2n

∑
j∈σ pj .

In the preprocessing step, we guarantee that there is no flexible sequence of
length ∆ + 1. This is done greedily: whenever there is a flexible sequence σ of

length ∆ + 1, we remove all the ∆ + 1 jobs in σ from J . Let F denote the set
of removed flexible sequences.

Lemma 7. Let σ be a flexible sequence of length ∆+ 1 and J ′ = J \ σ. Given
any schedule of a subset of jobs, A in J ′, we can find a schedule of A∪σ except
one job.

Proof. Given a schedule of A, we try to insert the sequence σ to the scheduling
with the least overlap. Let P =

∑
j∈σ pj and L1 and L2 be the smallest and

largest L such that (L,L + P, σ) is a tight block. Since σ is flexible, we have
L2 − L1 ≥ 2nP . Focus on the window [L1, L2 + P] of the schedule; σ can be
scheduled in any sub-window of [L1, L2 + P] of length P . If some job takes at
least P time slots in this window, we can then remove the job and schedule σ
in the P time slots. Since we removed one job from A to schedule jobs in σ, the
lemma follows. Otherwise, since there are less than n jobs in J ′, there must be
an idle interval of length P during [L1, L2 + P]. In this case, we can insert all
jobs in σ without kicking out any job from A. ut

Once we find a schedule for J ′, we can repeatedly add flexible sequences to
the schedule following the process in the above lemma. The resulting approxima-

tion ratio is at least αopt′+∆|F|
opt′+(∆+1)|F| for the original instance defined by J where

opt′ is the optimum value for the instance defined by J ′. The approximation
guarantee is at least α when α ≤ ∆

∆+1 . From now on, we assume there are no
flexible sequences of length ∆+ 1 in J .

We now construct a set B of blocks of length ∆ from J . Initially B is the
set of loose minimal blocks of size ∆. For every σ of length at most ∆, we add
a block (L, T, σ) to B, where L is the largest L such that (L, T, σ) is a block (if
no such L exists, nothing is added for this σ).

For any sequence σ of length ∆+1, we shall add some blocks to B as follows.
Let P =

∑
j∈σ pj be the total size of jobs in σ. Let L1 (L2) be the smallest

(largest) integer L such that (L,L + P, σ) is a tight block (in case L1 and L2

is not well-defined, we do not do anything for this σ). Let σ′ be the sequence
obtained from σ by removing the largest job. For every L ∈ [L1, L2 + P] that is

a multiple of Q :=
⌈

P
2(∆+1)

⌉
, let R be the smallest integer such that σ′ can be

scheduled in [L,R]; if such R exists, then add a block (L,R, σ′) to B. For every
R ∈ [L1, L2 + P] that is a multiple of Q, let L be largest integer such that σ′

can be scheduled in [L,R]; if such L exists, we add the block (L,R, σ′) to B.

Lemma 8. The number of blocks in B is at most 10∆n∆+1.

Proof. By Lemma 6, the initial size of B is at most ∆2n∆. For each σ of length
at most ∆, we added at most 1 block (L, T, σ) to B. Now for each σ of length

∆ + 1, we inserted at most 2
⌈
L2+1+P−L1

Q

⌉
≤ 2

(
(L2+1+P−L1)·2(∆+1)

P + 1
)
≤

2(4n(∆+ 1) + 1) ≤ 9∆n blocks for large enough ∆ and n. The second inequality
used the fact that σ is not flexible. Thus, the size of B is at most ∆2n∆+n∆+1+
n∆ × 9∆n ≤ 10∆n∆+1 for large enough n. ut

We solve the LP, with the restriction that only blocks in B can take positive
x value. Since |B| is at most 10∆n∆+1, the LP can be solved in nO(∆) running
time. We complete this section by showing that the set |B| suffices to give a
good relaxation. The following lemma shows that this process of removing the
dependency on T only loses a 1− 1/(∆+ 1) = 1−O(ε5) approximation factor.
It is easy to see that allowing a block to have size ∆+ 1 as well as ∆ only helps
the analysis. The general m will be handled in Appendix B.

Lemma 9. The value of the LP is at least ∆
∆+1opt.

Proof. Consider the optimum schedule for the instance and divide the set of
scheduled jobs into blocks of size ∆ + 1. If the last block (L,R, σ) has size at
most ∆, we can replace it with the block (L′, T, σ) ∈ B (Notice that L′ ≥ L).
Now consider each block (L,R, σ) of size ∆ + 1 constructed from the optimum
solution. Let σ′ be the sequence of ∆ jobs obtained from σ by removing the
largest job. We shall find a block (L′, R′, σ′) ∈ B such that (L′, R′) ⊆ (L,R).
This suffices to prove the lemma.

We find an arbitrary minimal block (L′′, R′′, σ′) such that (L′′, R′′) ⊆ (L,R).
If (L′′, R′′, σ′) is loose, then (L′ = L′′, R′ = R′′, σ′) is in B. It remains to consider
the case that (L′′, R′′, σ′) is tight. Then R′′ − L′′ ≤ ∆

∆+1 (R − L) since R′′ − L′′
is the total size of jobs in σ′, R− L is at least the total size of jobs in σ, and σ′

is obtained from σ by removing the largest job. Then L′′ − L+R−R′′ ≥ R−L
∆+1 ,

implying either L′′ − L ≥ Q :=
⌈

R−L
2(∆+1)

⌉
or R − R′′ ≥ Q. We consider the case

L′′−L ≥ Q (the other case is analogous). There is a L′ ∈ [L,L′′] such that L′ is
a multiple of Q. Then (L′, R′, σ′) is a block where R′ is the smallest time such
that σ′ can be scheduled during (L′, R′). By our construction, we have added a
block (L′, R′, σ′) with R′ ≤ R′′ ≤ R to B. ut

B (α0 − ε)-approximation for Unweighted JIS when
m ≥ 2 is a Constant and T is Super-polynomial in n

In this section, we describe our (α0 − ε)-approximation for JIS on constant
m ≥ 2 machines when T is super-polynomial in n. The algorithm works by
combining ideas similar to those we developed in Section 2 and A. Since we have
m machines, we need m sequences to define a block: a block B = (LB , RB , σB),
where LB < RB are integers in [0, T] and σB is a set of m sequences that can
be scheduled in (LB , RB]. The jobs in the m sequences are all distinct, and the
sequences may have different number of jobs. We call such a σB a sequence tuple.
We use σiB to denote the i-th sequence in σB and σiB(h) to denote the h-th job in
the i-th sequence in σB . Recall that a sequence σiB can be scheduled in (LB , RB]
if all jobs in the sequence can be scheduled during (LB , RB] on a single machine
according to the order σiB . The size of a block is the total number of jobs in the
m sequences.

Let k = d1/εe and ∆ = 2mk5. Our LP is the same as LPconf , except JB in
Constraint (2) is changed to

⋃
i∈[m] σ

i
B . We only consider blocks B with either

wB = ∆, or RB = T and wB < ∆+m; we will impose additional restrictions on
the set of blocks considered in the LP to reduce the running time.

We say a block B is minimal if both (LB+1, RB , σB) and (LB , RB−1, σB) are
not blocks. A block B = (LB , RB , σB) is tight if RB−LB = maxi∈[m]

∑
j∈σi

B
pj ,

otherwise loose. Using essentially the same argument as in Lemma 6, we can
prove that the number of loose minimal blocks B of size s is at most s2ns.

Then we define the flexibility of a sequence tuple σ in a similar way as in
Section A. Let P = maxi∈[m]

∑
j∈σi pj , L1 (L2) be the smallest (largest) L such

that (L,L+P, σ) is a tight block. Then, we say σ is flexible if L2−L1 ≥ 2nP . We
can derive a result similar to Lemma 7: when adding σ to the existing schedule,
we do it machine by machine; we can add σi to the i-th machine while kicking
out at most one job. Since we kick out at most m jobs to schedule ∆+m new jobs
in σ, removing flexible sequences is not an issue if the approximation ratio we
are aiming at is at most ∆

∆+m . Thus, we can assume there is no flexible sequence
tuple of size ∆+m.

We briefly discuss the running time of finding a flexible sequence tuple σ of
size ∆ + m. Firstly, we enumerate all sequence tuple σ of size ∆ + m, which
can be obviously done in time nO(∆). Let P = maxi∈[m]

∑
j∈σi pj . Let’s focus

on each σi. We will find an interval [Li1, L
i
2] such that all jobs in σi can be

schedulable in (t, t + P] on a single machine for any time Li1 ≤ t ≤ Li2. Then,
we will set (L1, L2) = (maxi∈[m] L

i
1,mini∈[m] L

i
2). Now we show how to find Li1.

Since the ordering of jobs in σi is fixed, if the first job’s starting point τ is given,
then it is easy to find R(τ), the earliest time point we finish all jobs in σi by
trying to schedule jobs as early as possible. Now imagine that we increase τ by
one. Then the following three events can happen: (1) R(τ) remains the same;
(2) R(τ) increases by 1; or R(τ) becomes ∞, meaning that there’s no feasible
schedule for σi starting at time τ . Notice that R(τ)− τ can only decrease unless
(3) happens. We would like to find in polynomial time the earliest τ such that
R(τ)− τ ≤ P , and the time τ such that R(τ + 1) =∞. These two τ times will
define (Li1, L

i
2). To speed up this process, we only need to focus on the first two

chunks of jobs in the current schedule of σi – here by a chunk we mean a set
of jobs scheduled consecutively with no gaps. Let’s try to move the first chunk
to the right. Then, one of the jobs in the first chunk may hit the deadline, or
the first chunk may be merged with the second. The number of these discrete
events is linear in the number of jobs in σi. Hence we can compute (Li1, L

i
2) in

polynomial time.

We now discuss how we construct a set B of blocks. First all loose minimal
blocks of size ∆ are added to B. Then for every sequence tuple σ of size at most
∆ + m − 1, let L be the largest number such that (L, T, σ) is a block if such L
exists, and add the block to B. So far the size of B is nO(∆).

Then, focus on sequence tuples σ of size ∆+m. Let P = maxi∈[m]

∑
j∈σi pj

be the maximum total size of jobs in any sequence. Let L1 (L2) be the smallest
(largest) integer L such that (L,L+P, σ) is a tight block (in case L1 and L2 is not
well-defined, we do not do anything for this σ). For each non-empty sequence σi,
we remove the largest job; if we removed less than m jobs, we remove more jobs

arbitrarily until we removed exactly m jobs. Let σ′ be the new sequence tuple

(it has size ∆). For every L ∈ [L1, L2 + P] that is a multiple of Q :=
⌈

P
2(∆+m)

⌉
,

let R be the smallest integer such that (L,R, σ′) is a block; if such R exists, then
add (L,R, σ′) to B. For every R ∈ [L1, L2 + P] that is a multiple of Q, let L be
largest integer such that (L,R, σ′) is a block; if such L exists, we add (L,R, σ′)
to B. By the same argument as in Section A, the size of B is nO(∆).

It now remains to show that solving the LP with the blocks in B loses only
little compared to the optimum. Consider the optimum schedule for the instance
and divide the set of scheduled jobs into blocks of size ∆ + m (some jobs may
be dropped, but the number is small). If the last block (L,R, σ) has size at most
∆ + m− 1, we can replace it with the block (L′, T, σ) ∈ B; notice that L′ ≥ L.
Now consider each block (L,R, σ) of size ∆+m constructed from the optimum
solution. We remove the largest job from each non-empty sequence in σ; remove
more jobs if needed so that the number of removed jobs is exactly m. Let σ′ be
the new sequence tuple of size ∆. It is sufficient to find a block (L′, R′, σ′) ∈ B
such that (L′, R′) ⊆ (L,R).

We find an arbitrary minimal block (L′′, R′′, σ′) such that (L′′, R′′) ⊆ (L,R).
If (L′′, R′′, σ′) is loose, then (L′ = L′′, R′ = R′′, σ′) is in B. It remains to consider
the case that (L′′, R′′, σ′) is tight. Then R′′ − L′′ ≤ ∆+m−1

∆+m (R− L). Then L′′ −
L+ R − R′′ ≥ R−L

∆+1 , implying either L′′ − L ≥ Q :=
⌈

R−L
2(∆+m)

⌉
or R − R′′ ≥ Q.

We consider the case L′′ − L ≥ Q (the other case is analogous). There is a
L′ ∈ [L,L′′] such that L′ is a multiple of Q. Then (L′, R′, σ′) is a block where R′

is the smallest time such that all sequences in σ′ can be scheduled during (L′, R′].
By our construction, we have added a block (L′, R′, σ′) with R′ ≤ R′′ ≤ R to B.

C Handling Large T in the
(
1 − O

(√
logm
m

))
-

approximation for Unweighted JIS

In this section, we show how to handle large T in the

(
1−O

(√
logm
m

))
-

approximation in Section 3. Though the algorithm in Section 3 is for weighted
JIS, we can only handle large T when the jobs are unweighted. Define a block
B = (LB , RB , σB) as in Section A: LB < RB are integers in [0, T] and σB is
a sequence of different jobs that can be scheduled on (LB , RB] on 1 machine.
The size wB of B is the number of jobs in σB . The LP we are considering is the

following. We only consider blocks B with either wB = ∆ := d1/εe or RB = T .

max
∑
B

wB · xB∑
B:LB<t≤RB

xB ≤ m ∀t ∈ [T]

∑
B:j∈σB

xB ≤ 1 ∀j ∈ J

xB ≥ 0 ∀B

Notice that the difference between this LP and LPconf in Section 2 (other than
the difference between sequences and sets): in the above LP, the jobs in a block
need to be schedulable on 1 machine, and we require each time point to be
covered by at most m blocks. In contrast, in LPconf , the jobs in a block need
to be schedulable on m machines and we require each time point to be covered
by at most 1 block. We note that the more complicated blocks used in LPconf

that encode schedules on m machines was only needed to a get a better than
(1− 1/e)-approximation.

It is not hard to see that the value of the above LP is at least the optimum
throughput. To reduce the running time, we apply the same process as in Sec-
tion A. We first remove flexible sequences of length ∆ + 1 and then construct
the set B of blocks. By the same argument, we can prove that, the LP with the
restriction that only blocks in B are considered, has value at least ∆

∆+1 times the
optimum throughput. Notice that a fractional solution to the above LP yields
a solution to the naive LP. Then, we can run the algorithm in Section 3. The

final approximation ratio is 1 − O
(√

logm
m

)
− ε. This proves the first part of

Theorem 2.

D Proof of Lemma 4

Proof (of Lemma 4). Fix j. For notational convenience, drop j from the sub-
scripts. Our goal is to show 1 − (1 − a/2)2e−b ≥ 0.69a + 0.62b for all a, b ≥ 0
such that a+ b ≤ 1.

We observe that we can assume w.l.o.g. that either a = 0 or a + b = 1. To
see this, fix b. So, we have 0 ≤ a ≤ 1 − b. Notice that it suffices to show the
inequality when (a/2 − 1)2e−b + 0.69a is maximized, which occurs when either
a = 0 or a = 1−b. Consider the easier case a = 0. Then, the inequality simplifies
to 1− 0.62b ≥ e−b which is true for all 0 ≤ b ≤ 1.04.

We now consider the other case when a = 1− b. By a simple calculation, the
inequality simplifies to

eb(0.28b+ 1.24) ≥ (b+ 1)2 (5)

To show this, we lower bound eb by the following piecewise linear function.

g(b) =

e1/3(b− 1/3) + e1/3 ≥ 1.3956b+ 0.9304 if b ∈ [0.00, 0.45)

e0.45(b− 0.45) + e0.45 ≥ 1.5683b+ 0.8625 if b ∈ [0.45, 0.55)

e0.60(b− 0.60) + e0.60 ≥ 1.8221b+ 0.7288 if b ∈ [0.55, 0.60)

e0.65(b− 0.65) + e0.65 ≥ 1.9155b+ 0.6704 if b ∈ [0.60, 0.67)

e0.67(b− 0.67) + e0.67 ≥ 1.9542b+ 0.6448 if b ∈ [0.67, 0.70)

e0.70(b− 0.70) + e0.70 ≥ 2.0137b+ 0.6041 if b ∈ [0.70, 0.85)

e0.85(b− 0.85) + e0.85 ≥ 2.3396b+ 0.3509 if b ∈ [0.85, 1.00]

Plugging in Eq. (5) each linear function in the right-hand-side and rearrang-
ing terms, it suffices to show that

−0.609232b2 − 0.008944b+ 0.154192 ≥ 0 if b ∈ [0.00, 0.45); b0 ≈ −0.0073403

−0.560876b2 + 0.186192b+ 0.0695 ≥ 0 if b ∈ [0.45, 0.55); b0 ≈ 0.165983

−0.489812b2 + 0.463468b− 0.096288 ≥ 0 if b ∈ [0.55, 0.60); b0 ≈ 0.473108

−0.46366b2 + 0.562932b− 0.168704 ≥ 0 if b ∈ [0.60, 0.67); b0 ≈ 0.607052

−0.452824b2 + 0.603752b− 0.200448 ≥ 0 if b ∈ [0.67, 0.70); b0 ≈ 0.666651

−0.436164b2 + 0.666136b− 0.250916 ≥ 0 if b ∈ [0.70, 0.85); b0 ≈ 0.763630

−0.344912b2 + 0.999356b− 0.564884 ≥ 0 if b ∈ [0.85, 1.00]; b0 ≈ 1.448711

where b0 denotes the value of b ∈ (−∞,∞) that minimizes
each of the quadratic functions (the global optimum). Hence the
quadratic functions are minimized (from top to bottom) when
b = 0.45, 0.55, 0.6, 0.562932/0.46366/2, 0.7, 0.666136/0.436164/2, 0.85 over
their respective domains. For such values of b, the functions are valued at

−0.609232 ∗ 0.452 − 0.008944 ∗ 0.45 + 0.154192 = 0.02679772

−0.560876 ∗ 0.552 + 0.186192 ∗ 0.55 + 0.0695 = 0.00224061

−0.489812 ∗ 0.6 + 0.463468 ∗ 0.6− 0.096288 = 0.00546048

−0.168704− 0.5629322

−0.46366 ∗ 4
> 0.0021

−0.452824 ∗ 0.72 + 0.603752 ∗ 0.7− 0.200448 = 0.00029464

−0.250916− 0.6661362

−0.436164 ∗ 4
> 0.0034

−0.344912 ∗ 0.852 + 0.999356 ∗ 0.85− 0.564884 = 0.03536968,

which are all positive, as desired. This completes the proof. ut

E Concentration Inequalities

The following concentration inequality is a restatement of Theorem 2.3 in [15].

Theorem 3. Let Z be the sum of n independent random variables where each
random variable takes value in [0,K]. Let µ = E[Z]. Then for any λ ∈ [0, 1], we
have

Pr
[
Z ≥ (1 + λ)µ

]
≤ e−λ

2µ/3K .

	Breaking 1 - 1/e Barrier for Non-preemptive Throughput Maximization
	Introduction
	Proof of Theorem 1 when m = O(1) and T = poly(n)
	Linear Programming
	Preprocessing
	The First Rounding Procedure
	The Second Rounding Procedure
	Combining the Two Rounding Procedures

	1-O((1 / m) lnm)-approximation for JIS
	Proof of Theorem 1 when m = 1 and T is large
	(0-)-approximation for Unweighted JIS when m 2 is a Constant and T is Super-polynomial in n
	Handling Large T in the (1-O(logmm))-approximation for Unweighted JIS
	Proof of Lemma 4
	Concentration Inequalities

