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ABSTRACT
The map-reduce paradigm is now standard in industry and
academia for processing large-scale data. In this work, we formal-
ize job scheduling in map-reduce as a novel generalization of the
two-stage classical flexible flow shop (FFS) problem: instead of a
single task at each stage, a job now consists of a set of tasks per
stage. For this generalization, we consider the problem of mini-
mizing the total flowtime and give an efficient 12-approximation in
the offline setting and an online (1 + ε)-speed O( 1

ε2
)-competitive

algorithm.
Motivated by map-reduce, we revisit the two-stage flow shop

problem, where we give a dynamic program for minimizing the
total flowtime when all jobs arrive at the same time. If there are
fixed number of job-types the dynamic program yields a PTAS; it
is also a QPTAS when the processing times of jobs are polynomi-
ally bounded. This gives the first improvement in approximation
of flowtime for the two-stage flow shop problem since the trivial 2-
approximation algorithm of Gonzalez and Sahni [29] in 1978, and
the first known approximation for the FFS problem. We then con-
sider the generalization of the two-stage FFS problem to the unre-
lated machines case, where we give an offline 6-approximation and
an online (1 + ε)-speed O( 1

ε4
)-competitive algorithm.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
Scheduling and resource allocation, Algorithm analysis, Approxi-
mation algorithms, On-line problems, Map-reduce, Flow-shops

1. INTRODUCTION
Map-reduce [9] has already established itself as the computing

paradigm of choice to process massive data. The underlying idea
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in map-reduce is elegant. The input data is viewed as a stream of
records comprising of key-value pairs. A map-reduce computation
consists of a map phase, consisting of map tasks, followed by a re-
duce phase, consisting of reduce tasks. Each map task runs on a
map machine and processes a portion of the input, outputting (pos-
sibly new) key-value pairs en route; the map tasks can be run in
parallel. In the reduce phase, the key-value pairs output by the map
machines are processed in parallel by reduce tasks, which run on
the reduce machines, under the guarantee that all the records with
the same key will be available together in one reduce machine. The
reduce phase of a job therefore cannot begin until the map phase
ends, i.e., all the map machines complete their work. Google’s
MapReduce and Apache Hadoop (hadoop.apache.org) are
two existing implementations of map-reduce; both these implemen-
tations have useful enhancements such as job priorities, queues,
batch processing, etc. The success of map-reduce as a parallel pro-
gramming model can be attributed to its simplicity and its ability
to hide low-level issues such as scheduling, failures, data locality,
network bandwidth, and machine availability, from the end user.

Although map-reduce is a distributed computational model, the
task-scheduling decisions are coordinated by a centralized job-
tracker process that runs in a “master node.” Designing new
scheduling policies has been one of the active research topics in
map-reduce because of the need to balance often contradictory
needs, e.g., system utilization, fairness, and response times. There
has been a great deal of empirical work demonstrating the value
of a well-designed job-scheduling scheme in finding a good trade-
off point among these different objectives [19, 34, 28, 35]. On
the other hand, there has been very little work from a theoretical
point of view. Wolf et al. [33] formalize the problem of alloca-
tion of slots among jobs by the Hadoop Fair scheduler (which is
the default in many implementations), and present heuristic allo-
cation schemes designed to optimize several scheduling metrics —
these heuristics come with theoretical guarantees only in an ideal-
ized model that assumes infinitesimal task times, linear relation of
processing times and allocated resources, no map-reduce depen-
dencies, and one-shot allocation of resources. Fischer, Su, and
Yin [11] show hardness results and present algorithms for the task-
assignment problem with costs that reflect data locality. None of
these papers presents theoretical guarantees for the underlying job-
scheduling problem in terms of the commonly studied metrics in
scheduling theory.

In this paper we study a scheduling model that captures the core
challenges in map-reduce scheduling. The problem here is to as-
sign jobs consisting of several map and reduce tasks to the available
map and reduce machines in the best possible manner. However,
it is tricky to adapt existing scheduling techniques to this setting
due to the following non-negotiable reasons: (i) there are multi-



ple map and reduce tasks in a job and multiple machines to which
they can be assigned, (ii) map tasks have to be assigned to map ma-
chines and reduce tasks have to be assigned to reduce machines1,
(iii) no reduce task can be run before all map tasks from this job
finish2, (iv) the schedule can be preemptive but non-migratory, i.e.,
a task should be run on a single machine since it is wasteful to ship
around partially processed data. It is also preferable to take data
locality into account during the assignment of tasks to machines.
Furthermore, both online and offline scenarios are relevant since
map-reduce implementations typically permit batch as well online
processing of jobs. Given that large map-reduce clusters are usually
shared among several users, the most natural metric is to minimize
the time between the arrival and the completion of a job, i.e., the
flowtime [27].

Problem formulation. We formulate the problem of map-reduce
scheduling by abstracting the above requirements and desiderata in
scheduling terms. In particular, we focus on multiple-task multiple-
machine two-stage non-migratory scheduling with precedence con-
straints; these constraints exist between each map task and reduce
task for a job. This essentially captures the properties (i)–(iv) out-
lined above. We allow preemption in all our settings, unless noted,
and focus on the objective of minimizing the total (equivalently,
average) flowtime.

At a high-level, we consider two job scenarios, namely, the of-
fline arrival of jobs and the online arrival. In the offline case, jobs
arrive together; the algorithmic focus is on optimizing the approx-
imation ratio. In the online case, jobs arrive over time and the
scheduler makes decisions without knowing the jobs that are yet
to arrive; the algorithmic focus is on optimizing the competitive ra-
tio. Orthogonally, we consider two processing-time configurations.
First, in the identical machines setting, all map machines have the
same speed and all reduce machines have the same speed. Sec-
ond, in the unrelated machines setting, the processing time for each
task is a vector, specifying the task’s running time on each of the
machines; this is aimed at capturing the data locality desideratum.
The unrelated machines model can also be used when different map
machines have different amounts of memory and each task carries
a minimum memory requirement to run. There is a large amount
of literature on the unrelated machines model in scheduling theory
and this is perhaps the most general machine model (see [14, 15, 4,
18, 32]).

Our results. Our main contribution is to model map-reduce
scheduling as a generalization of the two-stage flexible flow-shop
problem (FFS)3. The map-reduce scheduling problem generalizes
FFS by having a set of map tasks per job that need to be scheduled
on the map machines and a set of reduce tasks that are to be sched-
uled on the reduce machines. Our aim is to design schedules that
minimize the total flowtime. Our main results are in the identical
machines setting, where we obtain a 12-approximation algorithm
1This requirement does not follow immediately from the map-
reduce programming model. However map and reduce tasks have
typically different resource requirements and dividing a physical
machine into multiple virtual map and reduce machines helps bal-
ance the load; Hadoop follows this model. Our results also extend
to the case when a machine can execute both map and reduce tasks;
see Section 3.
2We ignore in our model the data-aggregation (shuffle) phase of
reduce that precedes the running of the user-code in reduce tasks,
and can start before maps finish.
3In FFS each job consists of two tasks and the first task can be
scheduled on a set of identical machines (say, map machines) and
the second task can be scheduled on a different set of identical ma-
chines (say, reduce machines); the first task must be completed be-
fore the second can be started.

Offline Online
Map-reduce, NP-hard, Ω(min{logP, logn/N}) [25],

Identical 12-approx. (1 + ε)-speed O( 1
ε2

)-comp.
machines (Corollary 3) (Corollary 8)

FFS, NP-hard, unbounded [14],
Unrelated 6-approx. (1 + ε)-speed O( 1

ε4
)-comp.

machines (Corollary 15) (Corollary 20)

Table 1: Summary of results on minimizing total flow-time. P
is the ratio of the largest task size to the smallest, N is the to-
tal number of machines, and n is the number of jobs. For the
FFS identical machines case, we obtain a QPTAS for polyno-
mial job sizes (Theorem 11) and a PTAS for fixed processing
times (Theorem 12).

for the offline case and a (1 + ε)-speed O(1/ε2)-competitive al-
gorithm for the online case where 0 < ε ≤ 1; the online result
assumes resource augmentation [21], which is necessary to circum-
vent lower bounds. It is important to note that in the offline setting,
we consider the case where all jobs arrive simultaneously; other-
wise, if jobs arrive over time, a constant approximation cannot be
achieved without resource augmentation [14].

Using the ideas developed for the identical machine case, we
consider the unrelated machines case. However, it seems difficult
to find good schedulers when there are multiple map and reduce
tasks per job. In an effort to find such algorithms, we consider a
natural generalization of FFS to the unrelated machines case while
each job still has one map and one reduce task. We obtain a 6-
approximation algorithm for the offline case and a (1 + ε)-speed
O(1/ε5)-competitive algorithm for the online case where 0 < ε ≤
1; these results can be found in Section 5.

The two-stage flow (not flexible) shop problem FlS is an impor-
tant special case of FFS, where there is only one map machine and
one reduce machine. FlS is known to be strongly NP-hard [13].
We give the first non-trivial approximation algorithm for FlS and
FFS offline. Specifically, we give a quasi-polynomial time approx-
imation scheme (QPTAS) when the largest job is polynomial-sized.
Our algorithm is also a polynomial time approximation scheme
(PTAS) in the case that there are a fixed number of processing times
for each job. This is the only approximation algorithm known for
FFS or FlS problems besides the trivial 2-approximation for FlS
shown in [29] over three decades ago.

Related work. The two stage flexible flow shop problem (FFS)
has been studied extensively; see [30, 23, 31, 16] for pointers to
recent work. In the map-reduce case, on the other hand, we have
multiple tasks per job per stage. We feel that beyond being practi-
cally important, the map-reduce scheduling problem is also a novel
generalization of FFS that has not been previously studied.

Almost all previous work on FFS has focused on the case where
all jobs arrive at the same time and the objective is to minimize the
maximum completion time of any job. For this problem a PTAS
was given in [16] for a fixed number of machines per stage and
extended in [31] to a variable number of machines. Johnson’s well-
known algorithm [20] is also optimal for FlSwhen minimizing the
maximum completion time. As mentioned, throughout this paper
we focus on minimizing the total flowtime. Little is known about
this objective for the FFS and FlS problems; there are no approxi-
mation algorithms known for FFS, while a trivial 2-approximation
was shown for FlS [29]. It was suggested by Schuurman and
Woeginger in the survey [31] that improving the 2-approximation
for FlS is an important open question.



Most of the algorithmic work on map-reduce that has been done
so far falls into one of the following three categories. The first
is the development of computational models that faithfully capture
the power and limitations of map-reduce, e.g., the work of Feldman
et al. [10] and Karloff et al. [24]. The second is the development
of map-reduce algorithms for several basic problems [24, 7]; prob-
lems such as MST, maximum cover, connectivity were shown to
have efficient map-reduce algorithms. The third is the development
of practical map-reduce-based heuristics to solve large-scale data
problems, especially in text processing, graph analysis, and ma-
chine learning; see, for example, [22, 26, 8].

A critique. Since our goal is to provide a simple formalization
of the scheduling problem in the map-reduce framework, we have
deliberately ignored many issues in real systems that often have a
large effect on the performance. We discuss some of these issues
here. In the real system, intermediate data is transferred from the
map machines to the reduce machines and thus the network band-
width forms a significant bottleneck. Data locality — running the
map tasks in the machines where data is located — is another im-
portant issue, as we mentioned earlier. Instead of modeling pro-
cessing times as function of the network topology, we chose to
model the effect of locality by the rather stylized unrelated machine
setting. We also do not model task and machine failures, another
important topic. In the map-reduce setting the dependence between
map and reduce-tasks is more subtle than what we have described
here due to the presence of the intermediate shuffle phase, which
happens in parallel with the map tasks. We assume preemption,
which is not yet a feature in Hadoop; interestingly, it is not hard to
show that an online algorithm will have a large competitive ratio if
preemption is not allowed without resource augmentation. Finally,
we assume that the scheduler is aware of the job sizes. These may
not be immediately available in practice, but in nearly all circum-
stances approximate job sizes can be determined based on historical
data [12, 33].

2. PRELIMINARIES
Job and task. A job consists of sets of tasks, where tasks in a
set can be run in parallel, but the sets themselves have to be run
sequentially. In the map-reduce setting, we assume that each job
has two sets of tasks, namely, a set of map tasks and a set of reduce
tasks, where no reduce task can be started until all map tasks for the
job are completed. Thus, the scheduling problem is precedence-
constrained.

Let J be the set of jobs and let J ∈ J denote a generic job. Let
{Jmi } and {Jri } be the set of map and reduce tasks of J , respec-
tively. When both these sets are singletons, we call this the single
task case; otherwise, it is the multiple task case. Let the function
p(·) be the processing time of a job or a task. In the case where the
processing time depends on the machine assignment, let px(·) be
the processing time of a job or a task on machine x. If a machine
runs a task J at speed s, then it needs p(J)/s time to complete the
task; unless otherwise noted, we assume all machines run at unit
speed. We also assume that the processing times of the tasks are
known to the algorithms.

To avoid being repetitive, throughout the paper, let b ∈ {m, r};
this will be used to capture both map- and reduce-related state-
ments for both machines and tasks, i.e., when b is used, it is
fixed to either m or r. Let Jb,∗ = arg maxi p(J

b
i ) be the

task with the maximum processing time in a set of tasks and let
J∗ = arg max{p(Jm,∗), p(Jr,∗)} be the task with the maximum
processing time. Let aJ be the arrival time of job J .

Schedule. Let σ be a schedule of jobs. Given σ, for any job or task,
let the function sσ(·) denote its starting time and the function fσ(·)
denote its completion time, both with respect to the schedule σ. We
also define sbσ(J) = mini sσ(Jbi ) and fbσ(J) = maxi f(J

b
i ), the

starting and finishing times for a set of tasks; thus, sσ(J) = smσ (J),
fσ(J) = frσ(J). Let Nm be the number of map machines, i.e.,
machines on which map tasks can be run and let Nr be the number
of reduce machines, i.e., machines on which reduce tasks can be
run. A schedule σ is called viable if for each job J : (i) all map
tasks of J are scheduled only on the map machines, (ii) all reduce
tasks of J are scheduled only on the reduce machines, and (iii)
every reduce task for job J is scheduled only after all map tasks for
job J are completed, i.e., fmσ (J) ≤ srσ(J). A schedule σ is called
non-migratory if each task is run only on one machine.

The flowtime of a job J with respect to a schedule σ is
flowσ(J) = fσ(J)− aJ ; let flowσ =

∑
J flowσ(J) be the total

flowtime. The total completion time of a schedule σ is
∑
J fσ(J).

When all jobs arrive at time 0, completion time is the same as flow-
time. We will consider two different scheduling metrics: mini-
mizing the total flowtime (equivalently, the average flowtime) and
minimizing the total completion time. For a time interval I , let |I|
denote its length.

3. MAP-REDUCE: IDENTICAL MA-
CHINES CASE

Consider the map-reduce scheduling problem when all the map
machines are identical, all the reduce machines are identical, and
each job can have multiple map tasks and multiple reduce tasks.
We will construct the map-reduce schedule out of two individual
schedules for the map and the reduce tasks. Let σm denote some
schedule on a single map machine of speed Nm for just the map
tasks. Likewise, ignoring the precedence constraints between map
and reduce, let σr denote some schedule for all the reduce tasks on
a single reduce machine of speed Nr .

3.1 Offline scheduling
We first construct a non-migratory schedule σ for the offline

setting where all jobs arrive at time 0. Our goal is to reduce the
precedence constrained map-reduce scheduling problem to simpler
scheduling problems. To do this, we will use σm and σr to assign
priorities to tasks and construct the final schedule σ using these
priorities.

THEOREM 1. Given schedules σm and σr , there is a viable
non-migratory schedule σ such that for all job J it holds that
fσ(J) ≤ 4 max{fmσm(J), frσr (J), p(J∗)}.

PROOF. We now describe the algorithm to construct σ. De-
fine wJ , the width of job J , as the maximum of map and re-
duce finish times of the job and the maximum task length, i.e.,
wJ = max{fmσm(J), frσr (J), p(J∗)}. Note that while width incor-
porates the maximum flowtime that J incurs in σr or σm, it also
incorporates the processing time of the largest task of job J ; this
will later be used to ensure that a unit speed scheduler can finish
the largest task of J in time wJ . The width of a job is its priority
and a smaller width means higher priority.

We first show a generic bound on the finish time of the task
in terms of when it is available for scheduling and its width. Let
aσ(Jbi ) be the earliest time that task Jbi is available to schedule by
our algorithm. As we will see later, if b = m, then aσ(Jbi ) = 0 and
if b = r, then the task will be available at time 2wJ .



Algorithm: Offline Schedule
Simulate the schedules σm on single Nm-speed and σr on a
single Nr-speed machine respectively
wJ ← max{fmσm(J), frσr (J), p(J∗)}
for each job J by wJ increasing do

for each map task Jmi of job J do
Assign Jmi to the least loaded map machine

end for
for each reduce task Jri of job J do

Let x be the earliest available reduce machine
if x is available before time wJ then

Idle x till time 2wJ
end if
Assign Jri to x

end for
end for

LEMMA 2. For any task Jbi , it is the case that fσ(Jbi ) ≤
aσ(Jbi ) + 2wJ .

PROOF. Assume that the statement is false and consider a task
Jbi where fσ(Jbi ) > aσ(Jbi ) + 2wJ . By definition, this task was
available from time aσ(Jbi ) and the hence schedule σ must have
been working on tasks with width at most wJ in the time interval
[aσ(Jbi ), fσ(Jbi )− p(J∗)]. By definition of width and the assump-
tion, we know fσ(Jbi ) − p(J∗) − aσ(Jbi ) > 2wJ − p(J∗) ≥ wJ .
Note that also by definition, σ uses Nb machines for this interval
and is busy. Therefore, the above tasks that have width at most wJ
represent strictly more than Nb · wJ volume of work. However,
the width of a job is at least the completion time of the job in σb.
This implies that σb must complete strictly more than a Nb · wJ
volume of work by time wJ . But this is a contradiction since σb
has a single machine of speed Nb.

To schedule the map tasks, the algorithm runs the Nm map tasks
with the smallest width across the identical machines, breaking ties
arbitrarily but consistently. Notice that any map task is scheduled
on a single machine since no task will be preempted. Further-
more, map tasks are scheduled only on map machines. By set-
ting aσ(Jmi ) = 0 for all tasks, Lemma 2 yields fσ(Jmi ) ≤ 2wJ .
Scheduling reduce tasks is less obvious since we have to ensure
that each reduce task is processed by only one machine. Consider
a reduce task Jri . Our algorithm will not consider scheduling this
task until time 2wJ . The algorithm then runs the set of at most Nr
reduce tasks that are available to schedule with minimum width.
By Lemma 2, it must be the case that all map tasks for a job J
are finished by time 2wJ . Hence, the reduce tasks of a job are
scheduled after the map tasks. Further, by definition of this algo-
rithm, after time 2wJ the only reduce tasks that become available
to schedule have width greater than wJ . This implies that the algo-
rithm will never preempt a reduce task. Thus this schedule assigns
each reduce task to only one machine. By once again appealing to
Lemma 2 with aσ(Jri ) = 2wJ yields fσ(Jri ) ≤ 4wJ . Combining
the bounds completes the proof.

We now show an application of the theorem.

COROLLARY 3. There exists a non-migratory 12-
approximation algorithm for flowtime (completion time) in
the offline, identical machines, multiple task, map-reduce setting.

PROOF. It is known that the algorithm Shortest Remaining
Processing Time (SRPT) is optimal for average flowtime on a

single machine where there is one task per job and no prece-
dence constraints. Knowing that on a single machine having
more than one task per job is irrelevant, we can use SRPT to
generate the two schedules σm and σr . Let flowσm denote
SRPT’s flowtime for the schedule σm and let flowσr denote
SRPT’s flowtime for the schedule σr . Let OPT be the opti-
mal schedule. Notice that flowOPT ≥ max{flowσm , flowσr}
and that flowOPT ≥

∑
J p(J

∗). Theorem 1 implies that
flowσ ≤ 4(flowσm + flowσr +

∑
J p(J

∗)) ≤ 12flowOPT.

This analysis can be extended to the case when map and reduce
machines are indistinguishable.

COROLLARY 4. There exists a non-migratory 12-
approximation algorithm for total flowtime (completion time)
in the offline, identical machines, multiple task, map-reduce setting
when tasks can be assigned to any machine.

3.2 Online scheduling
In this section, we consider a similar scheduling instance as in

Section 3.1 except, now jobs can arrive over time and the scheduler
must be online. Consider a fixed sequence of jobs. As before, our
plan is to construct a schedule σ by using σm and σr , which are
schedules of the map and reduce tasks on Nm and Nr machines
respectively.

In the online scheduling case, when there are no precedence con-
straints (no map-reduce phases), there are N identical machines,
each of the n jobs has only one task, and the ratio of the maximum
job size to the minimum job size is P , it is known that there is an
Ω(min{logP, logn/N}) lower bound on the competitive ratio for
flowtime [25]. Our scheduling model strictly generalizes this set-
ting, therefore this is also a lower bound on flowtime in our setting.
Thus, for an algorithm to be O(1)-competitive, resource augmen-
tation [21] is necessary. I.e., we assume that the schedule σ is given
Nm map machines each of speed (1 + ε) and Nr reduce machine
each of speed (1 + ε) where 0 < ε ≤ 1.

THEOREM 5. Given online schedules σr and σm, there is a vi-
able online non-migratory (1 + ε)-resource augmented schedule
σ such that fσ(J) ≤ aJ + 128

ε2
max{(max{fmσm(J), frσr (J)} −

aJ), p(J∗)}.

To construct the schedule σ, we will use the following algorithm,
which employs ideas from [3, 2, 6, 5]. The algorithm simulates
the schedules σm and σr , but needs to be more sophisticated than
the offline case, since online load balancing between the machines
will be necessary. For a job J , we will define its width to be wJ =
max{(max{fmσm(J), frσr (J)} − aJ), p(J∗)}. Our algorithm will
group tasks according to their width. A job J together with its tasks
is said to be in class k if wJ ∈ [2k, 2k+1). The algorithm will
maintain the total processing time (volume) of map jobs assigned
to a map machine x for each class k. Let Um,x=k (t) denote the total
processing time of tasks in class k assigned to map machine x by
time t. Likewise, let Ur,x=k (t) denote the total processing time of
tasks in class k assigned to reduce machine x by time t.

The idea behind the algorithm is to use the schedules σr and
σm to give priorities to the jobs, where the priority of a job is cap-
tured by its width. We group tasks geometrically according to their
width to balance the volume of work for a specific width across
the machines. Notice that the assignment is not based on the cur-
rent volume of unfinished work, but is based on the total volume
of jobs that were assigned to machines up until now. This algo-
rithm is online if σm and σr are online, since no task for some
job J is scheduled by the algorithm unless all tasks for job J are



Algorithm: Online Schedule(t)
Simulate the schedules σm and σr
if time t is the first time all map tasks for job J are finished
in σm and all reduce tasks for job J are finished in σr then

Let k be J’s class
for each map task Jmi of job J do

Assign Jmi to the map machine x where Um,x=k (t) =
miny U

m,y
=k (t)

Um,x=k (t)← Um,x=k (t) + p(Jmi )
end for

end if
if time t is the first time that all map tasks for job J are
finished in the new schedule σ then

Let k be J’s class
for each reduce task Jri of job J do

Assign Jri to the reduce machine x where Ur,x=k (t) =
miny U

r,y
=k (t)

Ur,x=k (t)← Ur,x=k (t) + p(Jri )
end for

end if
On each map and reduce machine run the task assigned to
that machine such that the job associated with the task has
minimum width.

completed in σm and σr . It can also been seen that the algorithm
is non-migratory, since each task is assigned to a single machine,
and viable. Thus, we only need to show the guarantee on the job
completion time.

Before we begin the analysis, we will introduce a fair bit of no-
tation. As before, let b ∈ {m, r}. Since we deal with viable
schedules, when we mean machine or task, it will be clear from
the context if it is map-related or reduce-related. For each time
t, a machine x, and class k we define several quantities. The no-
tation “≤ k” will indicate classes 1 to k. Thus, Ub,x≤k (t) is the
total volume of tasks in classes 1 to k assigned to machine x. Let
Rb,x=k(t) denote the remaining processing time of tasks in class k
on machine x. Let P b,x=k (t) denote the total volume of tasks in
class k machine x has processed up to time t. It can be noted that
P b,x=k (t) = Ub,x=k (t) − Rb,x=k(t). Each of the previously discussed
quantities refers to our algorithm. Let V ∗b=k(t) be the total remain-
ing volume of unsatisfied tasks in class k in the optimal solution’s
schedule at time t. Let V b=k(t) =

∑
xR

b,x
=k(t) be the total remain-

ing volume of tasks in class k in our algorithm solution’s schedule
at time t. We now state some basic facts about these quantities,
which will be used to show that our algorithm properly load bal-
anced jobs in each class; the proofs are an extension of those in [2,
6].

LEMMA 6. At any time t and any two machines x and y,
we have the following: (i) |Ub,x=k (t) − Ub,y=k (t)| ≤ 2k+1 and
|Ub,x≤k (t) − Ub,y≤k (t)| ≤ 2k+2; (ii) |P b,x≤k (t) − P b,y≤k (t)| ≤ 2k+2;
and (iii) |Rb,x≤k(t)−Rb,y≤k(t)| ≤ 2k+3.

PROOF. (i) The first inequality is true because the size of a task
that belongs to some job J has processing at mostwJ ≤ 2k+1. The
second inequality is immediate given the first.

(ii) For the sake of contradiction assume the statement is false.
Let t0 be the first time when |Pm,x≤k (t0)−Pm,y≤k (t0)| = 2k+2 and a
small constant δ such that |Pm,x≤k (t0 +δ)−Pm,y≤k (t0 +δ)| > 2k+2.
This can only occur if machine x processes a task of class ≤ k
during I = [t0, t0 + δ] while y processes some task of class > k.
Knowing that each machine always processes the task of minimum

width, the machine y must have no tasks in class ≤ k during I .
This shows that Um,y≤k (t0 + δ) = Pm,y(t0 + δ). Thus we have,

Um,y≤k (t0 + δ) = Pm,y(t0 + δ)

< Pm,x(t0 + δ)− 2k+2 ≤ Um,x≤k (t0 + δ)− 2k+2,

knowing that Pm,x≤k (t0 + δ) ≤ Um,x≤k (t0 + δ). However, then
we have that Um,y≤k (t0 + δ) < Um,x≤k (t0 + δ) − 2k+2, but this
is a contradiction to (i). The proof is similar for any two reduce
machines. (iii) We know that R(t) = U(t) − P (t). Combining
this with (ii), we have that

|Rm,x≤k (t)−Rm,y≤k (t)|
≤ |Um,x≤k (t)− Um,y≤k (t)|+ |Pm,x≤k (t)− Pm,y≤k (t)|

≤ 2 · 2k+2 = 2k+3.

The proof is similar for a reduce machine.

The remainder of the analysis differs from [2, 6]. We first con-
centrate on showing that each task for each job J is not completed
too long after aJ + wJ . To do this, our analysis will use the fact
that our algorithm is given resource augmentation over the sched-
ules σb. We now prove a generic bound on the time gap between
the dispatching of a task by our algorithm and its completion. Fix
k to be some class and fix b ∈ {m, r}. Let job J be the job in class
k such that fbσ(J)− aJ is maximized. Let task Jbi be the task for
job J that was finished last by our algorithm and let machine x be
the machine to which the task Jbi was assigned. Let the time tb be
the last time before time fbσ(J) that our algorithm processed a task
of class greater than k on machine x; this implies that machine x is
busy processing tasks of class ≤ k during [tb, f

b
σ(J)).

LEMMA 7. For any job J that is in some class k and arrived
after time tb − βJ , it is the case that fbσ(J)− tb ≤ (2k+4 + βJ)/ε
and therefore (fbσ(J)− aJ) ≤ (2k+4 + βJ)/ε, where βJ > 0.

PROOF. By definition of our algorithm, machine x processes a
total volume of (1 + ε)(fbσ(J)− tb) of work on tasks of class ≤ k
during [tb, f

b
σ(J)). This and Lemma 6(ii) show that any other ma-

chine y also processes a volume of (1 + ε)(fbσ(J) − tb) − 2k+3

on tasks of class ≤ k during [tb, f
b
σ(J)). Further, by definition

of time tb and our algorithm, the machine x has no tasks of class
≤ k at time tb. Thus by Lemma 6(iii) for any machine y we have
that Rb,y≤k ≤ 2k+3. Together this shows that the total volume pro-
cessed by our algorithm on machines during [tb, f

b
σ(J)) of jobs of

class ≤ k that were dispatched to machines after time tb is at most
Nb(1 + ε)(fbσ(J)− tb)−Nb2k+4.

Note that our algorithm does not process any task until the sched-
ule σb completes the task. Thus the schedule σb must process this
volume of work during the interval [tb − βJ , fbσ(J)]. This implies
thatNb(1+ε)(fbσ(J)−tb)−Nb2k+4 ≤ Nb(fbσ(J)−tb+βJ), since
the schedule σb has a single machine of speed Nb. However, this
implies that ε(fbσ(J)−tb) ≤ 2k+4 +βJ , completing the proof.

Now we apply Lemma 7 to the map tasks and show that our
algorithm completes all map tasks in a relatively short amount of
time when compared to σm. To do this, recall that a map task as-
sociated with some job J is dispatched by our algorithm by time
aJ + wJ . For this case, set b = m. The definition of tm im-
plies aJ + wJ ≥ tm. It must be the case that job J arrived after
time tm − 2k+1 since the job is of class ≤ k and therefore has
width ≤ 2k+1. Hence, Lemma 7 with βJ = 2k+1 yields that
(fmσ (J)− aJ) ≤ 2k+5/ε ≤ (32/ε)wJ .



Next, we would like to to show the same thing about reduce
tasks. First set b = r. Recall the reduce task is dispatched
by our algorithm at time fmσ (J), the time that all map tasks
of J are completed. From the above argument we have
(fmσ (J) − aJ) ≤ (32/ε)wJ ≤ 2k+6/ε. Thus
aJ ≥ fmσ (J) − 2k+6/ε ≥ tr − 2k+6/ε. Ap-
pealing to Lemma 7 with βJ = 2k+6/ε yields

(frσ(J) − aJ) ≤ 2k+4+2k+6/ε
ε

≤ 2k+7/ε2 ≤ (128/ε2)wJ .
This completes the proof of Theorem 5.

3.2.1 An application of Theorem 5
Using SRPT to generate the schedules σm and σr we can show

the following.

COROLLARY 8. There exists a non-migratory (1 + ε)-speed
O( 1

ε2
)-competitive algorithm for average flowtime in the online,

identical machines, multiple task, map-reduce setting where 0 <
ε ≤ 1.

PROOF. It is well know that the online algorithm SRPT is op-
timal for average flowtime in a standard scheduling instance when
there is a single machine. We use SRPT to generate the two sched-
ules σm and σr . The rest of the proof follows from Theorem 5 and
the proof of Corollary 3.

Considering a simple extension of the previous analysis gives
a scheduler that is competitive with resource augmentation when
there is no separation between map and reduce machines. When
considering this setting, simple extensions of the previous analysis
lose a factor of 2 in this speed. This is because it is difficult for the
scheduler to decide how to prioritize between map and reduce tasks
on a single machine.

REMARK 1. There exists a non-migratory (2+ε)-speedO( 1
ε2

)-
competitive algorithm for average flowtime in the online, identi-
cal machines, multiple task, map-reduce setting when tasks can be
scheduled on any machine where 0 < ε ≤ 1.

Chekuri et al. [5] introduce another model of resource augmen-
tation where the online algorithm is provided with (1 + ε) as many
1-speed machines. It is not hard to see that section’s results hold in
this setting as well.

4. FLOW SHOP: PTAS AND QPTAS
In the section we describe our approximation scheme when each

job consists of one map task and one reduce task. For the ease of
presentation, we assume that there is only one map machine and
only one reduce machine; later, we will show how to extend this to
the multiple machine case. Our dynamic programming algorithm
and proof follow the ideas presented in [1]. We begin by assuming
that the processing time of a task is polynomially bounded and we
give a quasi-PTAS in this case; this problem is NP-hard even under
this assumption [13]. The analysis extends to the case where there
is a fixed number of jobs types; our algorithm yields a PTAS in
this case. Since there is only one map and one reduce task per job,
we let Jb denote job J’s map or reduce task, where b ∈ {m, r} .
We assume preemption is not allowed and unlike the other offline
settings we consider, we will allow jobs to arrive over time, but we
focus on the objective of total completion time. Recall that this is
the same as flowtime if jobs arrive at time 0.

The approximation schema that we present is a dynamic pro-
gram. We first apply a number of structural modifications to the
input — these are all inspired by [1], where they have shown to be
useful in the problem instance before applying a dynamic program.

The core intuition in the design of the dynamic program is the use
of Johnson’s celebrated algorithm [20] that optimizes makespan as
a subroutine to verify feasibility.

Structural modifications. In this section we give an informal de-
scription of the various structural modifications applied to the prob-
lem in preprocessing. Appendix A outlines the formal lemma state-
ments and proofs corresponding to these modifications.

Let 0 < ε ≤ 1/2. For an arbitrary integer x, define Rx =
(1+ε)x. We partition the time interval (0,∞) into disjoint intervals
of the form Ix = [Rx, Rx+1); we will use Ix to refer to both the
interval and the size, Rx+1−Rx, of the interval. We will often use
the fact that Ix = εRx, i.e., the length of the interval is ε times its
start time.

We apply the preprocessing in a number of steps, while causing
only a (1+ε) factor loss to the optimal value for each step. Each ar-
rival time is rounded to be of the form Rx for some x (Lemma 21).
Each task processing time is also rounded to be a power of (1 + ε)
(Lemma 21). With another (1 + ε) factor loss (Lemma 22), we en-
sure that the task Jm is not started before aJ + εp(Jm), and task
Jr before max(fm(Jm), εp(Jr)). As a result of these modifica-
tions, Lemma 24 shows that no task crosses too many intervals. We
define time to be stretched by a factor of 1 + ε when we multiply
each interval endpoint by a factor of 1 + ε; this again causes the
OPT to degrade by another factor of at most 1 + ε.

We say that a job with its map task running in interval ImJ
and reduce task in interval IrJ is small if p(Jm) ≤ εImJ and
max(p(Jm), p(Jr)) ≤ εIrJ . Otherwise the task is large. If a task
has a processing time (1 + ε)x we say it is of type x. We call a
job J to be of type (x, y) if Jm is of type x and Jr is of type y.
Sets of jobs are denoted as vectors, e.g., a vector s of counts sxy
corresponding to each of the types (x, y). For any two sequences
a and b, define a � b if axy ≤ bxy for all (x, y). All sequences s
that we consider will satisfy 0 � s.

Algorithm. Our algorithm is a dynamic program that creates the
schedule interval-wise. The crucial observation is that given a set
of map-reduce tasks, we can test the feasibility of scheduling these
jobs in an interval by using Johnson’s algorithm [20] for minimiz-
ing makespan in a two-stage two-machine flowshop. Our algorithm
also guesses the last 25

ε10
tasks that will be completed in the optimal

schedule and does not consider these tasks in the dynamic program.
At time Rt, let n be the set of all jobs that have arrived up until

now and let c denote the set of completed jobs. Define a job to be
partially done if the map task is completed. Let p denote the set of
partially done jobs at Rt. The dynamic program at iteration t will
select a set of tasks to be scheduled in some interval It+1. This
set could consist of both the tasks of a job, only the map task of a
job, or a reduce task whose corresponding map task has been com-
pleted. If a reduce task is scheduled in an interval and the map task
for this job was scheduled in an earlier interval, we will implicitly
incorporate a map task of length zero to precede this reduce. We
now describe the algorithm.

(1) Assume the arrival time of each job to be max(aJ ,
p(Jm)

ε2
).

Also assume that the reduce task of J is not available before
p(Jr)/ε2 (and of course, before completing the corresponding map
task).

(2) If n jobs have arrived up until time interval It, define
C[c,p,n, t] be the total completion time when scheduling all tasks
in c completely and just the map tasks for jobs in p − c during
[0, Rt+1). Since the tasks in p − c are not completed, we do not
include their completion time in the total. If n does not correspond
to the number of arrived jobs, or if c � p � n is not satisfied, then



C[c,p,n, t] =∞. We also define C[0,0,0,−1] = 0. We use the
following dynamic program for all but the last 25

ε10
that we guessed.

(3) Suppose It+1 = [Rt+1, Rt+2) be the current interval. Let v
be the sequence of new jobs that arrive at the beginning of this in-
terval. Let q,m, and r be such that m + q � n + v − p and r �
p− c. Intuitively, q denotes the set of jobs for which we are going
to schedule both the map and the reduce tasks in It+1, m the set of
jobs for which we are going to schedule only the map task, and r
the set of jobs for which we schedule only the reduce. Given these
sets our algorithm would like to schedule the tasks in q + m + r
during the interval It+1. We verify the feasibility of this schedule
using Johnson’s algorithm [20] for optimal makespan in two-stage
two machine setting. Define the scheduling cost for this interval
to be Q(q,m, r, It+1) = Rt+2

∑
ij(qij + rij) if Johnson’s algo-

rithm returns a feasible schedule and Q(q,m, r, It+1) = ∞ else.
Notice that this cost function assumes that completion time of the
jobs scheduled in interval It+1 is Rt+2. This is because each task
completed during It+1 is finished before timeRt+2. We justify this
in the analysis by showing that this increases the schedule’s cost by
at most a (1 + ε) factor. Thus, the dynamic program computes

C[c,p,n + v, t+ 1] =

min
q,m,r

C[c− q− r,p−m− q− r,n, t] +Q(q,m, r, It+1).

(4) After all jobs are scheduled using the dynamic program, enu-
merate the possible ways to finish the final 25

ε10
jobs that were

guessed.

Let P = maxJ p(J
∗) be the processing time of the largest task

and T =
∑
J p(J

m) + p(Jr) be an upper-bound on the sched-
ule length. The time taken by the above procedure is given by
nO(log1+ε(P )) log T for fixed ε. As a first step in establishing our
claims, we motivate our algorithm with the following lemma whose
proof follows the proof of Lemma 3.1 in [1].

LEMMA 9. If in the optimal solution, all jobs are small, then
the above algorithm gives a (1 + 3ε)-approximate solution.

PROOF. Let R(I) denote the starting point of interval I . If the
jobs are small in the optimal solution, then from Lemma 22 it fol-
lows that sm∗ (J) ≥ R(ImJ ) =

ImJ
ε
≥ p(Jm)/ε2. Also, similarly,

sr∗(J) ≥ R(IrJ) ≥ p(Jr)/ε2. Hence, changing the arrival times
does not matter for the optimal solution. Also, since each job is
small for the interval, by stretching each interval by a factor of
(1 + ε) we ensure that all jobs finish completely inside their in-
terval (Lemma 25). Given this condition, we first claim that the
dynamic program computes a (1 + ε) approximation to the optimal
solution. Consider the C[c,p,m,n, t− 1] that corresponds to the
optimal algorithm’s choice of c,p,m up until interval It−1 — by
inductive hypothesis this is a 1 + ε approximation. If the optimal
solution chooses the task sets from the jobs in q∗ + m∗ + r∗ to
schedule in this interval It = [Rt, Rt+1), then it incurs at least
Rt
∑
ij(q
∗
ij + r∗ij). By looking at all possible assignments, our al-

gorithm makes a choice such that the resulting minimum value of
C is at most (1 + ε) of the value incurred by the OPT at the end of
It. This is because Johnson’s algorithm ensures that the tasks are
scheduled within the interval It. Further, a task’s completion time
is at most Rt+1 if the task was scheduled during It. Hence at the
end of the dynamic program, we still have a (1+ ε) approximation.

Since stretching the time by a factor of (1 + ε) increases the
total completion time by the same factor, and we pay another
(1 + ε) in the dynamic program. Overall we have a (1 + 3ε) factor
approximation.

Let th = 2ε10OPT be a threshold time. Notice that in the op-
timal solution there are at most 1

2ε10
jobs that are completed after

time th. The goal of the next lemma is to show that large jobs
can be postponed. To do this, we show that there is an approxi-
mate optimal solution where either a job is small or it is done after
time th. To prove the lemma, we consider shifting large jobs in the
optimal solution to intervals where the jobs are small. We create
room for these jobs by expanding the interval lengths by a factor
of (1 + O(ε)). We also show that shifting the large jobs does not
effect the value of the optimal solution by more than a factor of
(1 + O(ε)). The proof of the lemma is quite technical since we
have to be careful on how map and reduce tasks for the same job
are shifted.

LEMMA 10. There exists a (1 + 13ε)-approximate optimal
schedule in which, for each job J , sm∗ (J) ≥ min( p(J

m)

ε2
, th) and

sr∗(J) ≥ min(max(fm∗ (J), p(Jr)/ε2), th).

PROOF. The proof argument is similar to that of Lemma 3.2
in [1]. Fix some job J . Let Im = [Rm, Sm) be the interval the
Jm is processed during and Ir = [Rr, Sr) be the interval Jr is
processed during. If J is small, then p(Jm) ≤ εIm ≤ ε2Rm ≤
ε2sm∗ (J). Also, for the reduce job, sr∗(J) ≥ fm∗ (J). Furthermore,
by the smallness of J , p(Jr) ≤ εIr ≤ ε2Rr ≤ ε2sr∗(J). Hence, if
J is small both the conditions are satisfied.

The two cases we need to worry about are i)
max(p(Jr), p(Jm)) > εIr and ii) p(Jm) > εIm. To han-
dle both of these cases, we will show how jobs in the optimal
solution can be shifted to satisfy the lemma.

We handle case (i) first. The first subcase (i.A) is p(Jr) > εIr .
Let s = log1+ε(

1
ε6

). We move the map and reduce task of J to
the interval I ′ = Ir + s = [R′, R′′). In this case, if sm(J) and
sr(J) denotes the new starting point of the map and reduce tasks,
then similar to the argument in Lemma 3.2 of [1], we have that
p(Jm) ≤ sm∗ (J)/ε ≤ ε5R′ ≤ ε5sm(J). We can show similarly
p(Jr) < ε5sr(J). We now need to show that we can fit the shifted
jobs in this interval. Since p(Jr) > εIr , there are at most 1

ε
such

jobs from interval Ir that move into interval I ′, where each of then
requires a total time of p(Jm) + p(Jr) < 2ε4I ′. Hence, the to-
tal time required by these shifted jobs in interval I ′ is 2ε3I ′. By
stretching time by a (1 + 2ε) factor, we can easily accommodate
these jobs. Hence the condition is fulfilled.

The only case where the above construction will not work is
when there is a single task (either in map or reduce machine) that
spans the entire interval I ′. Then, we use Lemma 25 to say that we
could as well insert this εI ′ space at the beginning of the crossing
job. That is, shift the single crossing task and place the space before
the task. If the new interval is I ′′, as at most log1+ε

1
ε

intervals are
crossed by the job, I ′′ = εI , and thus each of p(Jm) and p(Jr)
are at most ε2I ′′ and are small.

For the second subcase (i.B), p(Jm) > εIr . We again move
the entire job to I ′ = Ir + s. Now, we need to justify as before
that there are small number of such jobs being shifted to I ′. In
this case, since both the map and reduce happen by the interval Ir

and the interval lengths are geometrically increasing, the total time
taken by such jobs is at most Ir/ε and thus there can be at most
1
ε2

of such jobs. After shifting to the interval I ′, such jobs take up
at most 1

ε2
· 2ε3I ′ ≤ 2εI ′. The case where there is a single task

covering I ′ can be handled similar as before.
Next, we handle case (ii). The first subcase (ii.A) is when I ′ =

Im + s ≤ Ir . In this case, only the map task is moved to the
interval I ′.

In case (ii.B), I ′ = Im + s > Ir . In this case, we move both the
map and the reduce to the interval I ′. The number of jobs shifted



to interval I ′ can be bounded now by 1
ε

by the fact that p(Jm) >
εIm. Hence, again by stretching time by a 1 + 2ε factor, we can
accommodate all jobs.

Now we bound the cost of the solution after performing these
shifting operations. We might need to expand by schedule twice
by factors of 1 + 2ε because of the two cases – this increases the
cost by a factor of 1 + 2ε. By doing the shift, we increase the
completion time of any job ending in Rx to at most Rx+s+1 ≤
(1+ε)Rx

ε6
factor, and there are at most 2

ε2
jobs being shifted overall.

The last interval from which jobs are being shifted ends at th. Thus,
the total completion time of the shifted jobs is∑

Rx<th

2

ε2
(1 + ε)Rx

ε6
≤ 2th

ε8

∑
i≥0

1

(1 + ε)i

≤ 2th
ε8

(1 + ε)2

ε

≤ ε(1 + ε)2OPT < 2εOPT,

since th = 2ε10OPT. Since we stretched time by a 1 + ε factor for
rounding processing times, 1 + ε factor for Lemma 22, and 1 + 2ε
factor for this lemma, and added a 2ε cost, we have a 1+13ε factor
approximation overall.

By combining the Lemmas 9 and 10, we now show how to get
a (1 + O(ε)) approximation. Note that if sm∗ (J) ≥ p(Jm)

ε2
and

sr∗(J) ≥ max(fm∗ (J), p(Jr)/ε2), then the job J is small when
run. By the Lemma 10, we have a (1 + 13ε) approximate solu-
tion for these jobs. Now suppose we fix the positions of the last
25
ε10

tasks. Given the fixed position of these non-small tasks, the
dynamic program will still find a (1 + 3ε) approximate solution
to the current OPT, and hence a (1 + 13ε)(1 + 3ε) ≤ (1 + 50ε)
approximate solution overall assuming ε ≤ 1/2. Hence, if we run
this dynamic program, at the end of time th = 2ε10OPT, the num-
ber of jobs left is at most (1 + 50ε) 1

2ε10
≤ 25

ε10
. Hence, all tasks

scheduled by the dynamic program finish by time th and the last
jobs were enumerated.

THEOREM 11. For the offline case with arrival times, and
one map and one reduce task per job on identical machines,
there exists a 1 + O(ε) approximate algorithm that runs in time
n
O( 1

ε10
)
(nlog1+ε(P ) log T + 25

ε10
!).

Notice that this theorem gives a quasi-polynomial time algorithm
when maximum processing time a task is polynomially bounded.
Now consider the case where there are a constant δ number of tasks
types. In this case, the dynamic program needs to enumerate over
each of the task types. Thus, for this case we have the following
theorem.

THEOREM 12. For the offline case with arrival times, one map
and one reduce task per job on identical machines and there are δ
task types, there exists a 1 +O(ε) approximate algorithm that runs
in time nO( 1

ε10
)
(nδ log T + 25

ε10
!).

The final case we consider is when there are multiple map and
reduce machines. Notice that in the dynamic program, Johnson’s
algorithm was used to actually schedule the tasks assigned to an
interval. This is the only part of the analysis where we used the fact
that there was a single machine at each stage. We can consider the
case where there are multiple map and reduce machines by using
the PTAS for maximum completion time in the two stage flexible
flow shop problem to determine how to schedule tasks within an
interval [31]. By stretching time by another factor of (1 + ε) it can
be ensured that this PTAS is able to fit all jobs into an interval.

Lastly we remark that although the run-time of the (Q)PTAS
might seem daunting at first sight, Hepner and Stein [17] have al-
ready demonstrated how a related algorithm can be implemented in
practice.

5. FLEXIBLE FLOW SHOP: UNRELATED
MACHINES CASE

In this section we consider the most general multiple machine
scheduling model known as the unrelated machines model. In the
unrelated machines model, the processing time of a task depends on
the machine to which the task is assigned. In general, for x 6= y,
px(·) and py(·) may be uncorrelated. In fact, the processing time
of a task may be ∞ on some machines, capturing the case where
a task cannot be assigned to a specific machine, e.g., when there is
not enough memory on a machine to run a specific task.

Due to the generality of the unrelated machines model, it seems
difficult to find an algorithm that performs well when there are mul-
tiple map and reduce tasks per job. Working towards the goal of
finding good algorithms for multiple task instances, we consider
the single task case in this section. This is the FFS problem gener-
alized to unrelated machines.

Let σm be a non-migratory schedule on the unrelated map ma-
chines for only map jobs and let σr be a non-migratory schedule
on the unrelated reduce machines for only reduce jobs. Unlike the
identical machine cases, these two schedules are not on a single
machine, but rather they are on the original set of machines.

We assign each job J width wJ = max{fσm(J), fσr (J)}. No-
tice that in this case, the width of a job only depends on the simu-
lated schedules and does not include the maximum processing time
of task.

5.1 Offline scheduling
First we address the case where the scheduler is offline and all

jobs arrive at time 0.

THEOREM 13. Given σm and σr , there is a non-migratory vi-
able schedule σ such that all tasks for job J are completed by time
2 max{fσm(J), fσr (J)}.

Our algorithm simulates the schedules σm and σr . The algo-
rithm assigns each map (reduce) task to the same machine it was
processed on in the schedule σm (σr). A map machine runs the
task with shortest width assigned to it. At any time, a reduce ma-
chine only runs a reduce task whose corresponding map task is
complete. The algorithm always runs the reduce task with smallest
width amongst the reduce tasks which are available to schedule. It
is easy to check that this schedule is non-migratory and viable. To
bound the completion time of the tasks, first we consider the map
tasks. Since there is only one map and one reduce task per job, we
drop the index of the tasks. Thus, Jb denotes the task for job J and
fσ(Jb) denote the time the task of job J is completed in σ. Again,
we give a generic bound on the completion times of tasks based
on their earliest availability and width. Recall that for a task Jb,
b ∈ {m, r}, aσ(Jb) is the earliest time when the task is available
to the schedule σ.

LEMMA 14. For any task Jb, fσ(Jb) ≤ aσ(Jb) + wJ .

PROOF. For the sake of contradiction, assume that the lemma is
false. Consider a task Jb where fσ(Jb) > aσ(Jb) +wJ . We know
that this task has been available to schedule since time aσ(Jb). By
definition of our algorithm, this implies that the machine task Jb is
assigned to has been busy processing jobs with width at most wJ
during [aσ(Jb), fσ(Jb)]. By definition of our algorithm and width,



the schedule σb must processes strictly more than a wJ volume of
work on this machine by time wJ , a contradiction.

By using the fact aσ(Jm) = 0 for all map tasks, we have that
for any map task Jm, fσ(Jm) ≤ wJ . Similarly, the completion
time of a reduce task is bounded by using the above lemma that
aσ(Jr) = maxJm∈J fσ(Jm) ≤ wJ . We have now bounded the
completion times of the jobs. Using Theorem 13, we can construct
an approximation algorithm for average flowtime in the scheduling
setting.

COROLLARY 15. There exists a non-migratory 6-
approximation algorithm for flowtime (completion time) in
the offline, unrelated machines, single task, map-reduce setting.

PROOF. Skutella in [32] gave a 3
2

-approximation algorithm for
minimizing the total completion time on unrelated machines where
there is one task per job, no precedence constraints and all jobs ar-
rive at time 0. Since there are only one map and one reduce task
per job in our scheduling instance, in the scheduling instances the
schedules σm and σr consider there is one task per job. Thus,
the algorithm of Skutella can be used to construct the sched-
ules σm and σr . Since flowOPT ≥ 2

3
max{flowσm , flowσr},

Let Fσ denote the total flow Theorem 13 implies that
flowσ ≤ 2(flowσm + flowσr ) ≤ 6flowOPT.

5.2 Online scheduling
We now consider the case when jobs arrive over time in an online

fashion. In the online unrelated machines setting, even when there
are no precedence constraints and all jobs consist of one task, it is
known that no online algorithm has bounded competitive ratio for
the objective of flowtime [14]. Thus, like in the identical machines
setting, we resort to resource augmentation.

THEOREM 16. Given online non-migratory schedules σm and
σr , there is a viable online non-migratory (1 + ε)-resource-
augmented schedule σ such that all tasks for job J are completed
by time aJ + 4

ε2
(max{fσm(J), fσr (J)} − aJ).

Our algorithm simulates the schedules σm and σr similarly to
the offline algorithm. It is easy to check that the scheduler is online,
non-migratory, and viable.

We first present a common lemma that we will use in bounding
both the map and the reduce finish times.

LEMMA 17. Let α > 0. Suppose that task Jb, b ∈ {m, r}, is
available for scheduling by our schedule σ at time aJ+αwJ . Then
it is the case that fσ(Jb) ≤ aJ + 2α

ε
wJ .

PROOF. Let x be the machine (map or reduce) that the task Jb

is assigned to. Let time tb be the earliest time such that every task
processed during [tb, fσ(Jb)] has width at most wJ on machine
x. By the given condition, we know that task Jb is available to
schedule at time aJ + αwJ . Knowing that our algorithm always
schedules the task with minimum width on each machine, we have
that tb ≤ aJ + αwJ .

We also claim that any task scheduled during [tb, fσ(Jb)] arrived
at earliest tb − αwJ . This is because any task J ′ scheduled during
[tb, fσ(Jb)] has width wJ′ ≤ wJ , and hence by given assumption
has arrival time aJ′ ≥ tb − αwJ′ ≥ tb − αwJ .

Our algorithm has speed 1 + ε, thus the algorithm processes
(1 + ε)(fσ(Jb) − tb) volume of work in total during [tb, fσ(Jb)].
All of the tasks processed by our algorithm during [tb, fσ(Jb)]
must be processed on the interval [tb − αwJ , fσ(Jb)] by the
schedule σb on machine x itself. This is because all of the

tasks processed by σ during [tb, fσ(Jb)] arrived no earlier than
tb − αwJ by the previous argument. Further, our algorithm
assigns any task to the same machine the schedule σb pro-
cessed the task on. Therefore it must be the case that (1 +
ε)(fσ(Jb) − tb) ≤ fσ(Jb) − tb + αwJ . This implies that
fσ(Jb) ≤ tb + α

ε
wJ ≤ aJ + αwJ + α

ε
wJ ≤ aJ + 2α

ε
wJ since

ε < 1.

We now use the above Lemma to deduct the following two corol-
laries. The first corollary is obtained from the above Lemma, com-
bined with the fact that by construction of our algorithm, the map
task Jm is available to σ at time aJ + wJ .

COROLLARY 18. For any map task Jm it is the case that
fσ(Jm) ≤ aJ + 2

ε
wJ .

Similarly, using the above corollary, the reduce task Jr is avail-
able when all the corresponding maps are finished, and hence at
time aJ + 2

ε
wJ . Using this bound in Lemma 17, we have the fol-

lowing corollary.

COROLLARY 19. For any reduce task Jr it is the case that
fσ(Jr) ≤ aJ + 4

ε2
wJ .

5.2.1 Application of Theorem 16
First we consider the objective of total flowtime. As mentioned,

it is known that no algorithm has bounded competitive ratio with-
out resource augmentation [14]. Since our algorithm only uses ε
resource augmentation, our algorithm is constant competitive when
given the minimum advantage over the adversary.

COROLLARY 20. There exists a non-migratory (1 + ε)-speed
O( 1

ε4
)-competitive online algorithm for average flowtime in the on-

line, unrelated machines, single task, map-reduce setting.

PROOF. In a recent breakthrough result Chadha et al. showed a
(1 + ε)-speed O( 1

ε2
)-competitive online non-migratory algorithm

for average flowtime in the unrelated machine setting when there
is one task per job and no precedence constraints [4]. Using this
algorithm we can generate the schedules σm and σr . The result of
Chadha et al. implies that OPT ≥ Ω(ε2) max{flowσm , flowσr}.
Theorem 16 shows that flowσ ≤ 4

ε2
(flowσm + flowσr ). Thus,

flowσ ≤ O( 1
ε4

)flowOPT.
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APPENDIX
A. FLOW SHOP: PTAS AND QPTAS

STRUCTURAL LEMMAS
In this section we state a few structural lemmas for our PTAS.

These lemmas are adopted from [1] and the proofs are almost iden-
tical.

LEMMA 21 ([1]). With 1+ε loss we can assume that all pro-
cessing and arrival times are integer powers of 1 + ε.

LEMMA 22 ([1]). With 1 + O(ε) loss, we can ensure that
a job arrives after εp(Jm) and a reduce task starts later than
p(Jm) + εp(Jr). Further, the arrival of jobs occur only at Rx
for some x.

PROOF. The same as in [1]. The second part follows by the
1 + ε stretch and since the reduce task cannot start earlier than map
completion.

DEFINITION 23. We say that a task crosses an interval Ix if its
execution overlaps with Ix but it is not contained in Ix completely.

LEMMA 24 ([1]). Each task crosses at most s =
dlog1+ε

(
1 + 1

ε

)
e intervals.

PROOF. The proof follows the same idea as in [1]. Suppose
that a task of job J starts in interval Ix = [Rx, Rx+1). Since
Rx ≥ sb(J) for both b = {m, r}, i.e., both map and reduce tasks
and sb(J) ≥ εpb(J) by Lemma 22, we have Ix = εRx ≥ ε2pb(J).
The s intervals following x sum in size to Ix/ε2 ≥ pb(J).

LEMMA 25 ([1]). With 1+ε loss we can restrict our attention
to schedules in which no small task crosses an interval.


