
A Tutorial on Amortized Local Competitiveness in Online Scheduling

Sungjin Im∗ Benjamin Moseley†

Computer Science Department
University of Illinois Urbana-Champaign

Kirk Pruhs‡

Computer Science Department
University of Pittsburgh

May 3, 2011

1 Introduction

Recently the use of potential functions to analyze online scheduling algorithms has become popular [19, 7,
29, 13, 31, 4, 30, 3, 21, 15, 14, 28, 12, 2, 5, 6, 9, 11, 23, 33, 24,8, 17, 16, 25, 1, 20, 26, 22, 18]. These
potential functions are used to show that a particular online algorithm is locally competitive in an amortized
sense. Algorithm analyses using potential functions are sometimes criticized as seeming to be black magic
as the formal proofs do not require, and commonly do not contain, any discussion of the intuition behind
the design of the potential function. Sometimes, as in the case for the first couple uses of potential functions
in the online scheduling literature, this is because the authors arrived at the potential function by trial and
error, and there was not a cohesive underlying intuition guiding the development. However, now that tens of
online scheduling papers have used potential functions, one can see that a “standard” potential function has
emerged that seems to be applicable to a wide range of problems. The use of this standard potential function
to prove amortized local competitiveness can no longer be considered to be magical, and is a learnable
technique. Our main goal here is to give a tutorial teaching this technique to readers with some modest prior
knowledge of scheduling, online problems, and the concept of worst-case performance ratios.

Online Scheduling:We consider online scheduling problems where jobs/tasks arrive at a server (e.g. a web
server, a database server, an operating system, etc.) over time. Throughout this paperN will denote the total
number of jobs and jobs are indexedJ1, J2, . . . , JN . If there is more than one unfinished task at a particular
time, then the online schedulerA must determine which task to process. In the scheduleA(I) that results
on inputI , each job (or more strictly speaking the client that submitted the job) has a resulting quality of
service. For example, the most common quality of service measure for a job is the flow/response timeFi

which is the difference between timeCi, when jobJi is completed, and timeri, when jobJi arrived in the
system. One can then measure the quality of the schedule by combining the quality of service measures
of the jobs in some way. For example, the most common quality of service measure for a schedule is the
average flow time,

∑

i∈[N ] Fi/N .

Competitiveness:An online schedulerA does not have knowledge of the future and, due to this, in most
settings it is not possible for the online scheduler to guarantee that the resulting schedule is optimal for the
quality of service measure under consideration. Thus one generally seeks an algorithm guaranteeing that

∗Partially supported by NSF grants CCF-0728782 and CCF-1016684.
†Partially supported by NSF grants CCF-0728782 and CCF-1016684.
‡Supported in part by NSF grant CCF-0830558 and an IBM FacultyAward.

ACM SIGACT News 1 September 2003 Vol. 34, No. 3



the degradation in the quality of service measure relative to some benchmark is modest/minimal/bounded.
The most obvious benchmark is the optimal scheduleOPT (I). For a minimization problem, an algorithm
is said to bec-competitive, or have competitive ratioc, if

max
I

Ga(I)

Go(I)
≤ c

where in this settingGa(I) and Go(I) refer to the value of the scheduling objective in the algorithm’s
schedule and the optimal solution’s, respectively. The paper that is perhaps most responsible for popularizing
this line of online scheduling research is [34]. For surveyssee [38, 37].

In many settings, it is not possible for the scheduler to havebounded competitiveness relative to the
optimal schedule. In such cases, a commonly used weaker benchmark than the optimal schedule is the
optimal schedule on a slightly slower processor. An algorithmA is s-speedc-competitive if the algorithm is
c-competitive given a processors times faster than the optimal solution’s processor. This iscalled resource
augmentation analysis, and was introduced in [27], and the standard terminology was later coined in [36]. To
understand the motivation for resource augmentation analysis, note that it is common for systems to possess
the following (informally defined)threshold property: The input or input distributions can be parameterized
by a loadλ, and the system is parameterized by a capacityµ. The system then has the property that its QoS
would be very good when the loadλ is at most 90% of the system capacityµ, but degrades unacceptably if
λ exceeds 110% ofµ. Figure 1 gives such an example of the QoS curve for a system that has this kind of
threshold property. Figure 1 also shows the performance of an online algorithmA and an optimal algorithm
is similar in the sense that they have close thresholds. Notice however that the competitive ratio ofA relative
to the optimal is very large when the load is near capacityµ. Another natural way of comparison would be
to compare the performance ofA to the optimal with the load that iss times the load thatA is given. Notice
that multiplying the load by a factor ofs is equivalent to slowing the system down by a factor ofs. Hence
we would like to compareA with ans times faster processor to the optimal schedule.

λ
µ

Optimal

Load

A
Performance

Figure 1: QoS curves of an scalable online algorithmA and the optimal algorithm for a system with the
threshold property.

The informal notion of an online scheduling algorithmA being “reasonable” is then generally formalized
asA having bounded competitiveness for some small constant speed augmentations. Usually the ultimate
goal is to find an algorithm where the speed augmentation required to achieveO(1)-competitiveness is
arbitrary close to one. Such an algorithm is calledscalable. Intuitively, a scalable algorithm performs very
close to the optimal schedule, since it would guarantee a system capacity arbitrarily close to the optimal
capacity, while also ensuring that the QoS remains comparable (within a constant factor).

It is instructive to note the similarities and differences between results obtained from competitive analy-
sis and analogous results in the queuing theory literature.For example, we will show later that the algorithm

ACM SIGACT News 2 September 2003 Vol. 34, No. 3



Shortest Job First (SJF) is scalable, more precisely(1 + ǫ)-speedO(1/ǫ)-competitive, for the objective of
average flow time. A standard result from the queuing theory literature is that for anM |M |1 queue the
average flow time for SJF (or any scheduler) with a unit speed processor is at most1ǫ if the load is at most
1 − ǫ [32]. Both results can be interpreted as stating that if the system is not too heavily loaded then the
performance of the scheduler should be reasonable. In the case of competitive analysis the measure of
reasonable is relative and, in the queuing theory analysis,the measure of reasonable is absolute.

1.1 Notation

Consider an objective and a problem instance. Fix an algorithm for this problem and an optimal solution.
Throughout this paperA will denote the algorithm. LetA(t) andO(t) denote the unsatisfied jobs at timet

in the algorithm’s and optimal solution’s queue, respectively. The total number of jobs is denoted asN . The
completion time of jobJi is Ca

i andCo
i in the algorithm’s schedule and optimal schedule, respectively. The

arrival time of jobJi is ri. The work/size of jobJi is pi. If the jobs have weights thenwi denotes the weight
of job Ji anddi = wi

pi
is the density ofJi. Let Ga(I) andGo(I) denote the algorithm’s objective and the

optimal objective. The(I) will be dropped when the instance is clear. The value ofpa
i (t) andpo

i (t) denote
the remaining work of jobJi in the algorithm’s schedule at timet and the optimal schedule, respectively.

1.2 Objective Functions

As mentioned, the goal of the scheduler is to optimize the quality of service that the jobs receive. Recall that
the flow time of a jobJi is Ca

i − ri, the total time the job waits to be satisfied in the system. Oneof the most
popular objectives considered is minimizing the total (equivalently average) flow time

∑

i∈[N ](C
a
i − ri).

This objective is equivalent to minimizing
∫ ∞

t=0 |A(t)|dt. Another popular objective is minimizing the total
weighted flow time. In this setting each jobJi has a weightwi and the goal is to minimize

∑

i∈[N ] wi(C
a
i −

ri). This objective is equivalent to minimizing
∫ ∞

t=0 wa(t)dt, wherewa(t) is the sum of the weights of the
unsatisfied jobs at timet in the schedule.

1.3 Fractional Objectives

A popular technique used in obtaining a resource augmented competitive online algorithm for an (integral)
objective is to first obtain an algorithm that is competitivefor a fractional objective. The fractional objective

for an algorithmA is defined to be
∑

i∈[N ]

∫ ∞

t=0
pa

i (t)
pi

dGa(t,Ji)
dt dt whereG(t, Ji) is the total cost of job

Ji up to timet. The fractional objective is usually considered whenG(t, Ji) depends only on the flow
time of job Ji. As an example. consider the objective of weighted flow. The fractional weighted flow
time of a jobJi is

∫ Ci

ri
wi

pa
i (t)
pi

dt wherepa
i (t) is the remaining work of jobJi by algorithmA at time

t. We call pa
i (t)
pi

the remaining fraction ofJi at timet. The total weighted fractional flow time objective

is
∫ ∞

t=0

∑

Ji∈A(t) wi
pa

i (t)
pi

dt. An interpretation of the fractional weighted flow time objective is that a job
contributes to the objective in proportion to the amount of remaining work the job has. Notice that the total
fractional weighted flow time of any schedule is at most the integral weighted flow time of the schedule.

The concept of fractional objectives has proved to be usefulfor analyzing online scheduling algorithms.
Generally it is easier for an online algorithm to be competitive for fractional objectives. Further, fractional
objectives are often easier to reason about. To the best of our knowledge, the use of fractional objectives to
aid in the analysis of online scheduling algorithms originates from [10]. It is generally possible to convert a
schedulerA that is good for a fractional objective into an algorithmA′ that is good for an integer objective

ACM SIGACT News 3 September 2003 Vol. 34, No. 3



with minimal speed augmentation in the following way: The algorithmA′ always schedules the exact same
jobs asA at any time, except a(1 + ǫ) factor faster in rate of speed, unless the job has been completed in
A′’s schedule. IfA is s-speedc-competitive for a fractional objective then generallyA′ is (1 + ǫ)s-speed
O(c/ǫ)-competitive for the corresponding integer objective.

1.4 Popular Algorithms

We give a quick overview of some of the most popular scheduling algorithms.

• Shortest Remaining Processing Time First (SRPT): Always processes the job with the least remaining
work.

• Shortest Job First (SJF): Always schedules the job with the least initial work.

• Highest Density First (HDF): Always schedules the jobJi such thatdi = wi

pi
is maximized.

• Round Robin (RR): At each instantaneous time processes all alive jobs equally.

• Shortest Elapsed Time First (SETF): Works on the job that has been processed the least. If thereare
ties the algorithm round robins the jobs that have been processed the least.

• First In First Out (FIFO ): Always schedules the oldest job.

• Late Arrival Processor Sharing (LAPS): Shares the processing equally among the latest arriving con-
stant fraction of the jobs.

2 Local Competitiveness

In this section we discuss an analysis technique known as local competitiveness. Until relatively recently,
this has been the most popular technique used for worst case analysis of scheduling algorithms. LetG
denote some objective and letGa(t) be the cumulative objective in the schedule for algorithmA up to time
t. So

∫ ∞

0
dGa(t)
dt dt = Ga is the final objective ofA. For example, whenG is total flow thendGa(t)

dt = |A(t)|

andGa(τ) =
∫ τ
0 |A(t)|dt. WhenG is the total fractional flow thendGa(t)

dt =
∑

Ji∈A(t)
pa

i (t)
pi

andGa(τ) =
∫ τ
0

∑

Ji∈A(t)
pa

i (t)
pi

dt. The algorithmA is said to belocally c-competitiveif for all times t,

dGa(t)

dt
≤ c ·

dGo(t)

dt
(1)

Most of the early competitive analyses of online schedulingalgorithms used local competitiveness. For
instance the following theorems were shown using local competitiveness. Generally, a proof of local com-
petitiveness uses one of the following techniques: (1) Showby induction on time an invariant concerning
the algorithm’s queue and the optimal solution’s queue, or (2) Fix an arbitrary timet and, by examining the
history, show that optimal does not have have enough processing capability to prevent the online algorithm
from being locally competitive at timet.

Theorem 1. SRPT is optimal for total/average flow time.

ACM SIGACT News 4 September 2003 Vol. 34, No. 3



Sketch.One can prove this induction on time that the following invariant holds: for allk, the aggregate
remaining work of thek jobs with the most remaining work time is always greater for SRPT than any other
algorithm.

Theorem 2. [35] SRPT is 2-approximate for average stretch.

Sketch.The stretch objective focuses on minimizing
∑

i∈[N ]
1
pi

(Ci − ri). This is the same as weighted flow

time whenwi = 1
pi

. One can prove by induction on time that the following invariant holds: the sum of the
weights (which are reciprocals of the work) of the jobs whichare not being scheduled in SRPT’s queue is
bounded by the total weight of the optimal solution’s queue.

Theorem 3. [10] HDF is scalable for weighted flow time.

Sketch.To show this theorem, first it is shown that HDF is locally optimal for fractional weighted flow time.
The conversion between fractional and integral flow time canbe used to get an algorithm that is scalable for
integral weighted flow time.

3 Examples Where Local Competitiveness Arguments Won’t Work

Unfortunately, local competitiveness cannot be used for many online scheduling problems. This is illustrated
by the following examples.

Broadcast Scheduling:Consider the broadcast scheduling problem with the objective of average flow. In
the broadcast problem there is a set of pages stored at the sever. Requests for pages arrive over time. In a
unit time step the server can broadcast a page and all requests for the page that have arrived to the server
are satisfied by the single broadcast because clients are assumed to be connected to the sever via a multicast
channel. To see why local competitiveness will not work in this setting even when the algorithm is given
(1 + ǫ) resource augmentation, consider the following adversarial strategy. There aren requests that arrive
at time 0, each for a distinct page. At timen/2, a new request arrives for each of then(1 + ǫ)/2 pages that
the online algorithmA has previously broadcasted. Thus by broadcasting the pagesin the opposite order of
A, it is possible to have satisfied all requests by time(1+ ǫ)n, butA still has aboutn/2 unsatisfied requests
at this time. Therefore, at timet = (1 + ǫ)n we havedGa(t)

dt = Ω(n) and dGo(t)
dt = 0.

Speed Scaling:In the speed scaling scheduling setting, the processor speed can be dynamically scaled over
time. The power, energy used per unit time, of the processor is a convex function of the speed. In this
setting, the scheduler needs to set the speed of the processor. Consider the objective of total flow time plus
the energy. Intuitively, the optimal scheduler will spend one unit of energy if it results in a decrease in at
least one unit of flow time. In this case,dG(t)

dt is power used at timet plus the number of unfinished jobs. It
is obviously not possible for a local competitiveness argument to work in this setting as one has to deal with
the possibility that the optimal solution has previously finished all the jobs, by using a lot of power in the
past, and is currently idling, so that the local cost for the benchmark schedule is zero.

Arbitrary Speed Up Curves: This is a popular parallel scheduling model. Due to space constraints, we
give only a simplified version of the model; for the general model, see [21, 23]. Say we haveM proces-
sors/cores, and each jobJi is either parallel or sequential. If jobJi is parallel, it is processed at rateM ′

when assignedM ′ cores. A job is sequential if it is processed at a rate of one regardless of how many cores
it is assigned to. It is assumed that the algorithm does not know the parallelizability of each job (parallel
or sequential) nor its work. Consider the objective of totalflow time and the following instance. At time

ACM SIGACT News 5 September 2003 Vol. 34, No. 3



0, supposeM − 1 unit sized sequential jobs and one parallel job with sizeM are released. Clearly, there
is a schedule that completes all jobs by time 1 by allocating all cores to the parallel job. Now consider any
scheduling algorithm with a(1 + ǫ) resource augmentation. Since the algorithm does not know which job
is parallel, it must have wasted most of its processing capabilities working on sequential jobs. So at time
1, the algorithm has the parallel job left. Recall that the optimal schedule does not have any job at time 1.
Thus the algorithm’s queue size cannot be bounded by the optimal solution’s queue size at time1.

4 Amortized Local Competitiveness

For problems where local competitiveness is not possible, one alternative form of analysis is amortized local
competitiveness. To prove that an online scheduling algorithmA is c-competitive using an amortized local
competitiveness argument, it suffices to give a potential functionΦ(t) such that the following conditions
hold.

Boundary condition: Φ is zero before any job is released andΦ is non-negative after all jobs are finished.

Completion condition: Summing over all job completions by the optimal solution andthe algorithm,Φ
does not increase by more thanβ · Go for someβ ≥ 0. Most commonlyβ = 0.

Arrival condition: Summing over all job arrivals,Φ does not increase by more thanα · GOPT for some
α ≥ 0. Most commonlyα = 0.

Running condition: At any timet when no job arrives or is completed,

dGa(t)

dt
+
dΦ(t)

dt
≤ c ·

dGo(t)

dt
(2)

Integrating these conditions over time one gets thatGa−Φ(0)+Φ(∞) ≤ (α+β +c) ·Go by the boundary,
arrival and completion conditions. Note that whenΦ is identically 0, equation (2) is equivalent to the local
competitiveness equation (1). Generally the value of the potentialΦ(t) depends only on the state (generally
how much work is left on each of the jobs) of the online algorithm and the optimal schedule at timet.

The value of the potential function can be thought of as a bankaccount. If the increase in the online
algorithm’s objective,dGa(t)

dt , is less thanc times the increase in the benchmark’s objective,dGo(t)
dt , then the

algorithm can save some money in the bank. Otherwise, it withdraws some money from the bank to pay for
its cost,dGa(t)

dt . Because of the boundary condition that guarantees a non-negative deposit at the end, the
total amount of money that the algorithm withdraws never exceeds its total deposit.

The concept of using a potential function to prove competitiveness goes back at least to the seminal pa-
pers by Sleator and Tarjan [39, 40]. The first use of a potential function to use a amortized local competitive
argument was in [7]; although, the origination of the idea traces back to [19]. [19] contains a “potential
function” but the potential at timet depends not only on the states of the online algorithm and theoptimal
schedule at timet, but also on the future job arrivals and future schedules. Soarguably the amortization
argument in [19] is probably closer to a charging argument than to a potential function argument.

Before introducing the standard potential function, it is instructive to consider an intuitive candidate
potential function that does not work: the potential is the online algorithm’s future cost minusc times the
optimal solution’s future cost, assuming no more jobs arrive. Further consider this potential within the
context of the problem of scheduling unit jobs with restricted assignment on uniform parallel machines with
the objective of total fractional flow time. Here there are a set of machines and each job is restricted to

ACM SIGACT News 6 September 2003 Vol. 34, No. 3



be scheduled on some subset of the machines. We will use the notationx andy to refer to machines. Let
ma,x denote the total remaining work of jobs that are assigned to machinex in the algorithmA’s schedule.
Likewise definemo,x for the optimal schedule. At any timet, ma,x(t)

2 is roughly the online algorithm’s
future cost at timet for jobs assigned to machinex assuming that no more jobs arrive and the algorithm
is given1 speed. Usually, the estimate of the future cost used in the potential function assumes that the
algorithm is given no resource augmentation. Thus the candidate potential function in this setting would be

∑

x

(m2
a,x(t) − cm2

o,x(t)) (3)

wherec is some constant. Although this potential function is basedon the right intuition, this potential will
not satisfy the arrival condition. To see this consider whenjob Ji arrives and is assigned to machinex by
the algorithm andy by the optimal schedule. The change in the potential is(ma,x(t) + 1)2 − m2

a,x(t) −
c(mo,y(t) + 1)2 + cm2

o,y(t). The termma,x(t) can be much larger thanmo,y(t), making the increase in the
potential not bounded byOPT .

We are now ready to introduce, the standard potential function. The first use of a potential function that
clearly was of this standard form was in [9].

Semi-Formal Definition of the Standard Potential Function: The potential is the future online cost as-
suming that (1) no more jobs arrive and (2) that each job size is the lag for that job, that is, how far the
online algorithm is behind the optimal solution schedule inthe work processed.

Let us return to the problem of scheduling unit jobs with restriction on uniform machines with the
objective of total fractional flow time. The standard potential function in this case is then:

c
∑

x

(ma,x(t) − mo,x(t))2 (4)

Comparing the standard potential function in (4) to the the potential function in (3) one can see that in
some sense the standard potential function is the “cost of the difference”, instead of “the difference in the
costs”. We consider the algorithmGreedy that assigns an arriving job to the machinex such thatma,x is
minimized, and that schedules jobs in a FIFO fashion on each machine. In the following theorem we show
how this potential function can be used to prove the scalability of Greedy. This is a special case of a more
general result for scheduling on unrelated processors in [11].

Theorem 4. The algorithmGreedy is scalable, more specifically(1 + ǫ)-speed(2 + 2
ǫ )-competitive, for

scheduling unit jobs with restricted assignment constraints on uniform machines with the objective of frac-
tional average flow time.

Proof. For the analysis we will compareGreedy against a fixed optimal schedule that schedules each job
on exactly one machine. We will further assume without loss of generality that the optimal solution runs
the jobs assigned to a machine in FIFO order. Consider the potential function (4). We now consider various
cases.

Boundary Conditions:The boundary conditions are trivially satisfied as the initial potential is clearly zero,
and the potential is never negative.

Completion Condition:Consider when a jobJj is completed by the algorithm at timet and say that this job
is assigned to machinex in the algorithm’s schedule. When this job is completed, itsremaining work is0.
Therefore this job is no longer contributing toma,x(t). Thus there is no change inΦ(t). The case when the
optimal solution completes a job is similar.

ACM SIGACT News 7 September 2003 Vol. 34, No. 3



Arrival Condition: Now consider when a jobJi arrives and the algorithm assigns this job to machinex
and the optimal solution assigns the job to machiney. The change in the potential due to the algorithm’s
assignment is1ǫ (ma,x(t) − mo,x(t) + 1)2 − 1

ǫ (ma,x(t) − mo,x(t))2 = 1
ǫ (2ma,x(t) − 2mo,x(t) + 1). The

change in the potential due to the optimal solution’s assignment is1
ǫ (ma,y(t)−mo,y(t)−1)2− 1

ǫ (ma,y(t)−
mo,y(t))

2 = −1
ǫ (2ma,y(t)−2mo,y(t)−1). We know thatma,x(t) ≤ ma,y(t) because the algorithm assigns

a job to the machine which has the least load on it and the job could have been scheduled on either machine
x or machiney. Hence, the increase in potential is at most2

ǫ (mo,y(t) + 1). This is exactly2
ǫ times the flow

time of jobJi in the optimal solution schedule, since the optimal solution is assumed to be running FIFO
and it assignedJi to machiney. Thus, by summing over all job arrivals, the increase is at most 2

ǫ times the
optimal cost.

Running Condition:Consider a time interval[t, t + dt]. For a machinex, the change in the potential
due to the algorithm’s processing is−2

ǫ (1 + ǫ)(ma,x(t) − mo,x(t))dt since the algorithm processes a
job on machinex at a speed of(1 + ǫ). The change due the optimal solution’s processing on machine
x is 2

ǫ (ma,x(t) − mo,x(t))dt since the optimal solution processes a job at a speed of1 on machinex.
Thus the total change in potential for the jobs due to the algorithm’s and optimal solution’s processing on
machinex is −2(ma,x(t) − mo,x(t))dt. The value ofma,x(t)dt is exactly the fractional increase in the
algorithm’s objective during[t, t + dt] for jobs assigned to machinex in its schedule; likewise,mo,x(t)dt
is the fractional increase in the optimal solution’s objective for jobs assigned to machinex in the optimal
schedule. By summing over all machines, we havedGa(t)

dt + dΦ(t)
dt =

∑

x(ma,x(t)−2(ma,x(t)−mo,x(t))) ≤
∑

x 2mo,x(t) = 2mo(t) ≤ 2 ·
dGo(t)
dt . Combining each of the conditions shows thatGreedy is (1+ ǫ)-speed

(2 + 2/ǫ)-competitive.

As another warm-up example of an amortized local competitiveness argument, we prove that HDF is
scalable for fractional weighted flow. Note that this analysis is weak as HDF is in fact optimal.

Theorem 5. The algorithm HDF is scalable for the objective of fractional weighted flow.

Proof. For simplicity, assume that all jobs have distinct densities. Recall that the densitydi of job Ji is wi

pi
.

Let zi(t) = pa
i (t) − po

i (t) be the lag for the online algorithm on jobJi. The potential function is defined as
follows:

Φ(t) =
1

ǫ

∑

Ji∈A(t)∪O(t)

dizi(t)
∑

Jj ∈ A(t) ∪ O(t)
dj ≥ di

zj(t)

Notice that if no jobs were to arrive in the future,
∑

Ji∈A(t) dip
a
i (t)

∑

Jj∈A(t),dj≥di
pa

j (t) is the future cost
of HDF at timet if HDF was given1-speed. To see this, note thatdip

a
i (t) is the fractional weight for

job Ji, and
∑

Jj∈A(t),dj≥di
pa

j (t) is the work of the higher density jobs that it will have to waitfor. Also,
note that it is possible for the potential function to be negative. The boundary condition is easy to check.
When a jobJi arrives, the value ofΦ(t) does not change, sincezi(t) = 0. When a jobJi is finished by
bothA andOPT , the terms for jobJi disappear, but they have value 0. Hence job completion does not
change the potential function value. We now turn to the running condition. We will give a sketch only for
the most interesting case:dk > dk′ whereJk andJk′ are the jobs thatA andOPT are working on at the
current timet respectively; the other cases are left as exercises. Note that dGa(t)

dt =
∑

Ji∈A(t) dip
a
i (t) and

ACM SIGACT News 8 September 2003 Vol. 34, No. 3



dGo(t)
dt =

∑

Ji∈O(t) dip
o
i (t). The rate of change ofΦ(t) due toA’s processingJk is

−
1 + ǫ

ǫ

[

dk

∑

Jj ∈ A(t) ∪ O(t)
dj ≥ dk

(pa
j (t) − po

j(t)) +
∑

Ji ∈ A(t) ∪ O(t)
di ≤ dk

di(p
a
i (t) − po

i (t))
]

≤ −
1 + ǫ

ǫ

[

∑

Ji∈A(t)

dip
a(t) −

∑

Jj ∈ O(t)
dj ≥ dk

dkp
o
j(t) −

∑

Ji ∈ O(t)
di ≤ dk

dip
o
i (t)

]

≤ −
1 + ǫ

ǫ

[dGa(t)

dt
−
dGo(t)

dt

]

[ Sincedj ≥ dk in the second summation] (5)

On the other hand, the rate of change ofΦ(t) due toOPT ’s processingJk′ is

1

ǫ

[

dk′

∑

Jj ∈ A(t) ∪ O(t)
dj ≥ dk′

(pa
j (t) − po

j(t)) +
∑

Ji ∈ A(t) ∪ O(t)
di ≤ dk′

di(p
a
i (t) − po

i (t))
]

≤
1

ǫ

[

∑

Jj ∈ A(t)
dj ≥ dk′

dk′pa
j (t) +

∑

Ji ∈ A(t)
di ≤ dk′

dip
a
i (t)

]

≤
1

ǫ

dGa(t)

dt
(6)

Hence we have thatdGa(t)
dt + dΦ(t)

dt ≤ (1 + 1
ǫ )

dGo(t)
dt . The other cases left as exercises also give similar

running conditions. Combining all conditions, we concludethat HDF is scalable.
Finally we note that in Equation (5), to simplify our analysis, we assumed that no job inO(t) has

densitydk. Likewise, in Equation (6) we assumed that no job inA(t) has densitydk′ . These simplifying
assumptions can be easily removed by a careful calculation.

We now turn to the speed scaling setting.

Theorem 6. Assume that the processor uses powerP (s) = sα, for some constantα > 1, when running
at speeds. Assume that all jobs are unit size. Then any non-idling algorithm that uses power equal to
the current total fractional weightma(t) is O(1)-competitive for the objective of minimizing fractional flow
time plus energy.

Proof. Note that the algorithm runs at the speed(ma(t))
1/α by using powerma(t), and hencedGa(t)

dt =

2ma(t). Knowing the the fractional weight of the jobs in the algorithm’s queue isma(t), and that the ratio
ma(t)/(ma(t))

1/α is a rough estimate of time that the algorithm will have to spend to finish all jobs inA(t),
we can approximate the future cost ofA asma(t) · ma(t)/(ma(t))

1/α = (ma(t))
2−1/α. Let mo(t) be the

fractional remaining work of the jobs in the optimal solution’s queue at timet. By replacingma(t) with the
lagz(t) = max(ma(t)−mo(t), 0) (and multiplying by a constant factor), we obtain the potential function:

Φ(t) := 8(z(t))2−1/α

Notice that the lag in this case was chosen to be based on the entire queue and not on individual jobs.
It is easy to check the boundary, arrival and completion conditions. As for the running condition, we

consider two cases: (a)ma(t) > 2mo(t) and (b)ma(t) ≤ 2mo(t). We prove only the more interesting case
(a) leaving the other case (b) as an exercise. Note thatΦ(t) > 0, andA’s processing decreasesΦ(t) in this

ACM SIGACT News 9 September 2003 Vol. 34, No. 3



case becausema(t) > 2mo(t). LetPo(t) denote the power used byOPT at timet. The change rate ofΦ(t)

due toOPT ’s processing isdΦ(t)
dmo(t)

dmo(t)
dt ≤ 16(ma(t))

1−1/α(Po(t))
1/α. We further consider two cases:

Po(t) < ma(t)
2α or not. For the second casePo(t) ≥

ma(t)
2α , by ignoring the decrease ofΦ(t) due toA’s pro-

cessing, we havedGa(t)
dt +

dΦ(t)
dt ≤ 2α+1Po(t) + 2α+3Po(t) ≤ 2α+4Po(t) ≤ 2α+4 dGo(t)

dt . We now consider

the first casePo(t) < ma(t)
2α . Noticing thatOPT runs at a rate of at most(ma(t))

1/α/2, we havedΦ(t)
dt =

dΦ(t)
dz(t)

dz(t)
dt ≤ 8(2−1/α)(z(t))1−1/α(−(ma(t))

1/α+(ma(t))
1/α/2) ≤ −8(ma(t)/2)1−1/α(ma(t))

1/α/2 ≤

−2ma(t). Hence it follows thatdGa(t)
dt +

dΦ(t)
dt ≤ 2ma(t) − 2ma(t) ≤ 0.

We now give an analysis of Round Robin that is a variation of the analysis in [21].

Theorem 7. RR is(2 + ǫ)-speedO(1)-competitive for the objective of total integral flow time.

Proof. Let zi(t) = max{pa
i (t) − po

i (t), 0} be the lag of the online algorithm on jobJi. Then consider the
potential function

Φ(t) :=
4

ǫ

∑

Ji,Jj∈A(t)

min{zi(t), zj(t)}

Notice that this potential function is always non-negative. It is worth noting that
∑

Jj∈A(t) min{pa
i (t), p

a
j (t)}

is exactly the amount of time that jobJi has to wait to be completed by RR without resource augmentation
if no more jobs arrive in the future. Thus, summing this over all jobs gives the future cost. As usual, in
obtainingΦ(t), the remaining workpa

i (t) is replaced with the lagzi(t).
The boundary condition is trivially satisfied. Job arrivalsdo not change the potential function value. Job

completion does not increaseΦ(t). Recall that for integral flow time,dGa(t)
dt = |A(t)| and dGo(t)

dt = |O(t)|.
For the running condition, we consider two cases: (a)|O(t)| ≤ ǫ

8 |A(t)| and (b)|O(t)| ≥ ǫ
8 |A(t)|. We first

consider case (a). Note that the termmin{zi(t), zj(t)} in Φ(t) is non-zero ifOPT completed both jobsJi

andJj, i.e. Ji, Jj /∈ O(t). Hence there are at least(1 − ǫ/8)2(|A(t)|)2 positive termsmin{zi(t), zj(t)},
and RR decreases each positive term at a rate of(2 + ǫ)/|A(t)|. The change rate ofΦ(t) due to RR’s
processing is at most−4

ǫ (1 − ǫ/8)2(|A(t)|)2(2 + ǫ)/|A(t)| ≤ −(1 + 8
ǫ )|A(t)| when0 < ǫ ≤ 1. For

simpler argument, we can assume that the optimal schedule works on only one job at timet. SinceOPT
can increase at most2|A(t)| termsmin{zi(t), zj(t)} in Φ(t) at a rate of 1, the maximum change rate of

Φ(t) due toOPT ’s processing is8ǫ |A(t)|. Hence we obtaindGa(t)
dt +

dΦ(t)
dt ≤ 0. For case (b), we ignore

decrease ofΦ(t) due to RR’s processing. Knowing thatdΦ(t)
dt ≤ 8

ǫ |A(t)| due toOPT ’s processing, we have
dGa(t)
dt +

dΦ(t)
dt ≤ 8

ǫ |O(t)| + 64
ǫ2
|O(t)| = 72

ǫ2
dGo(t)
dt . Combining all conditions together, we have shown that

RR is(2 + ǫ)-speed72
ǫ2

-competitive.

The standard potential function is generally only useful when the online algorithm has some resource
augmentation. To see why this is the case, consider the situation where optimal has a much lower current
cost than the online algorithm, but the adversary is processing the same job as the online algorithm. Then
because the online algorithm and optimal have the same speedprocessor, there is no change in the lags
of any of the jobs. And thus there is no decrease in the potential to pay for the online algorithm’s cost.
In this situation, the online algorithm needs resource augmentation to decrease the lag on the job that it is
running. The one example that we know where a potential function is used without resource augmentation,
and one of the few examples of a potential function in the literature that is not of the standard form, occurs
in [3] in the speed scaling setting for the objective of flow plus energy. [3] makes use of the fact that,
given fixed processing resources, SRPT does not fall furtherbehind optimal, even if SRPT is in a different
state/configuration than optimal.

ACM SIGACT News 10 September 2003 Vol. 34, No. 3



Notice that in the preceding examples there are some subtle differences in the potential functions, al-
though all potential functions are designed around estimating the algorithm’s future cost as if the lags of the
jobs are their sizes. Two issues usually arise when designing the potential function. First is determining
whether to allow the lags to go negative. For instance, in Theorem 5 the lags are allowed to go negative,
while in Theorem 7 the lags are always kept non-negative. Roughly speaking, the issue here is that if the
lags go negative then the potential can increase on the arrival and completion of jobs. However, if the po-
tential does not go negative, then the running condition forsome algorithms is difficult to show. The other
subtle difference is determining which jobs are summed overin the potential function. In Theorem 5 the
summation is over all jobs in the algorithm’s queue and the optimal solution’s queue, while in Theorem 7
the summation is only over jobs in the algorithm’s queue. Thequestion of which jobs to take the summation
over is intimately tied to whether or not the potential can gonegative, how the potential changes on job
arrival and completion, and the algorithm considered. In general these two conditions need to be tailored to
the specific problem and algorithm. It would be useful to havea better understanding of these two issues.

As an illustration of these issues, consider changing the potential function from the proof of Theorem 5:

Φ(t) =
1

ǫ

∑

Ji∈A(t)

dizi(t)
∑

Jj∈A(t),dj≥di

zj(t)

Recall thatzj(t) = pa
j (t)− po

j(t). Note that this potential function can be negative, and onlysums over jobs
in the algorithm’s queue. Now when a jobJi is completed by HDF, the change in the potential function
is roughly−1

ǫ zi(t)
∑

Jj∈A(t) djzj(t) sinceHDF always completes the highest density job in its queue.
However, thez variables can be negative or positive and therefore this could be a positive increase in the
potential that is not straightforward to bound without knowing the structure of the optimal solution. One
way around this would be to not allow thez variables to go negative, that iszj(t) = max{pa

j (t)− po
j(t), 0}.

Now there is no increase on the arrival and completion of jobs. However, the running condition causes
issues. Consider the case where the optimal solution has only one jobJj at timet and the algorithm has a
lot of jobs. In this case, the algorithm cannot charge to the optimal solution’s local cost and must use the
potential function. Further, assume thatJj is the job with the highest density in HDF’s schedule andJj has
been processed a lot by the algorithm and none by the optimal solution. In this casezj(t) = 0. Therefore,
at timet HDF will processJj and it will not change the variablezj(t). Thus there is no negative change
in the potential function at timet and HDF cannot charge to the optimal solution’s local cost. The running
condition cannot be shown in this setting.

5 More Examples and Exercises

Here we give several exercises of algorithm analysis that can be performed by a relatively straightforward
amortized local competitiveness argument using the standard potential function.

Weighted Round Robin: At each time, the algorithm Weighted Round Robin (WRR) distributes its pro-
cessing to jobs in proportion to their weight. Formally, WRRprocesses jobJi at a rate ofwi/

∑

i∈A(t) wi.
Show that WRR is(2 + ǫ)-speedO(1/ǫ)-competitive for minimizing the total weighted flow time.

Another Variation of Round Robin: If a job j has been released but not completed at timet, then de-
finerank(j) to be one more than the number jobs released strictly beforerj that are still unfinished at time
t. For simplicity assume that no two jobs are released at the same time. Consider the scheduling algorithm

ACM SIGACT News 11 September 2003 Vol. 34, No. 3



that shares the processing proportionally to the rank of thereleased but unfinished jobs. So if there are 3
released but unfinished jobs, the earliest arriving of thesejobs would get 1/(1+2+3) fraction of the proces-
sor, the second arriving job would get 2/(1+2+3) fraction ofthe processor, and the latest arriving job would
get 3/(1+2+3) fraction of the processor. Show that the average flow time for this scheduling algorithm is
O(1)-competitive with the optimal scheduler with as little speed augmentation as possible. (Hint: Use the
potential functionΦ(t) :=

∑

i∈A(t) zi(t)rank(j) wherezi(t) = max{pA
i (t) − pO

i (t), 0)}.)

Greedy on Related Machines:Consider the problem of scheduling unit sized jobs on related machine
to minimize the average fractional flow time. In the related machine setting, each machinex runs at some
speedsx and any job can be scheduled on any machine. The total processing a job requires on machinex
is 1

sx
. For this problem, consider theGreedy algorithm that always assigns a jobJi to the machinex such

that ma,x(t)
sx

is minimized whenJi arrives at timet. For the jobs assigned to a machine,Greedy schedules
the jobs in a FIFO order. Fix the optimal nonmigratory schedule, and assume the optimal solution processes
jobs in FIFO order on each machine. Generalize the potentialfunction given in the proof of Theorem 4 to
this setting and show that theGreedy algorithm is scalable.

SJF on Uniform Machines: Consider the problem of scheduling varying sized jobs onM identical ma-
chines to minimize the total fraction flow time. For this problem consider the algorithm SJF that at anytime
schedules theM jobs with shortest original work on theM machines. Here a job cannot be processed si-
multaneously on two machines, but migration between processors is allowed. The goal is to show that SJF
is O(1)-competitive with as little resource augmentation as possible. LetVa,j(t) =

∑

Ji∈A(t),pi≤pj
pa

i (t) be
the total remaining work of jobs with original work less thanpj at timet in the algorithm’s schedule. Let
Vo,j(t) be defined similarly for OPT. Consider the potential function

c
∑

j∈A(t)

pa
j (t)

pj

1

M
(Va,j(t)− Vo,j(t)) + pa

j (t)

wherec ≥ 1 is some constant. Notice that1M Va,j(t) is the amount of time that jobJj will have to wait to be
satisfied if the algorithm was running SJF on a single machineof speedM . For the arrival condition, accept
without proof the fact that at any time it is the case thatVa,j(t) − Vo,j(t) ≤ Mpj for any jobJj and thatJj

has fractional flow time at leastpj

2 in the optimal schedule.

Acknowledgments: We thank our many collaborators for discussions that have been indispensable to de-
velopment of our understanding in this area. We also thank Chandra Chekuri for his comments on this
paper.

References

[1] Lachlan L. H. Andrew, Minghong Lin, and Adam Wierman. Optimality, fairness, and robustness in
speed scaling designs. InSIGMETRICS, pages 37–48, 2010.

[2] Lachlan L. H. Andrew, Adam Wierman, and Ao Tang. Optimal speed scaling under arbitrary power
functions.SIGMETRICS Performance Evaluation Review, 37(2):39–41, 2009.

[3] Nikhil Bansal, David P. Bunde, Ho-Leung Chan, and Kirk Pruhs. Average rate speed scaling. In
LATIN, pages 240–251, 2008.

ACM SIGACT News 12 September 2003 Vol. 34, No. 3



[4] Nikhil Bansal, Ho-Leung Chan, Tak Wah Lam, and Lap-Kei Lee. Scheduling for speed bounded
processors. InICALP (1), pages 409–420, 2008.

[5] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary power function. In
SODA, pages 693–701, 2009.

[6] Nikhil Bansal, Ho-Leung Chan, Kirk Pruhs, and Dmitriy Katz. Improved bounds for speed scaling in
devices obeying the cube-root rule. InICALP (1), pages 144–155, 2009.

[7] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and temperature.J.
ACM, 54(1), 2007. Preliminary version inFOCS2004.

[8] Nikhil Bansal, Ravishankar Krishnaswamy, and Viswanath Nagarajan. Better scalable algorithms for
broadcast scheduling. InICALP, 2010.

[9] Nikhil Bansal, Kirk Pruhs, and Clifford Stein. Speed scaling for weighted flow time.SIAM J. Comput.,
39(4):1294–1308, 2009. Preliminary version inSODA2007.

[10] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Kirk Pruhs. Online weighted
flow time and deadline scheduling.J. Discrete Algorithms, 4(3):339–352, 2006. Preliminary version
in APPROX2001.

[11] Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A competitive algorithm for
minimizing weighted flow time on unrelatedmachines with speed augmentation. InSTOC, pages 679–
684, 2009.

[12] Ho-Leung Chan, Joseph Wun-Tat Chan, Tak Wah Lam, Lap-Kei Lee, Kin-Sum Mak, and Prudence
W. H. Wong. Optimizing throughput and energy in online deadline scheduling.ACM Transactions on
Algorithms, 6(1), 2009. Preliminary version inSODA2007.

[13] Ho-Leung Chan, Wun-Tat Chan, Tak Wah Lam, Lap-Kei Lee, Kin-Sum Mak, and Prudence W. H.
Wong. Energy efficient online deadline scheduling. InSODA, pages 795–804, 2007.

[14] Ho-Leung Chan, Jeff Edmonds, Tak Wah Lam, Lap-Kei Lee, Alberto Marchetti-Spaccamela, and Kirk
Pruhs. Nonclairvoyant speed scaling for flow and energy. InSTACS, pages 255–264, 2009.

[15] Ho-Leung Chan, Jeff Edmonds, and Kirk Pruhs. Speed scaling of processes with arbitrary speedup
curves on a multiprocessor. InSPAA, pages 1–10, 2009.

[16] Ho-Leung Chan, Tak Wah Lam, and Rongbin Li. Tradeoff between energy and throughput for online
deadline scheduling. InWAOA, pages 59–70, 2010.

[17] Sze-Hang Chan, Tak Wah Lam, and Lap-Kei Lee. Non-clairvoyant speed scaling for weighted flow
time. InESA (1), pages 23–35, 2010.

[18] Sze-Hang Chan, Tak Wah Lam, and Lap-Kei Lee. Schedulingfor weighted flow time and energy with
rejection penalty. InSTACS, 2011.

[19] Jeff Edmonds. Scheduling in the dark.Theor. Comput. Sci., 235(1):109–141,2000. Preliminary version
in STOC1999.

ACM SIGACT News 13 September 2003 Vol. 34, No. 3



[20] Jeff Edmonds, Sungjin Im, and Benjamin Moseley. Onlinescalable scheduling for theℓk-norms of
flow time without conservation of work. InSODA, 2011.

[21] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary speedup curves. InSODA,
pages 685–692, 2009.

[22] Kyle Fox and Benjamin Moseley. Online scheduling on identical machines using srpt. InSODA, 2011.

[23] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy, Benjamin Moseley, and Kirk Pruhs.
Scheduling jobs with varying parallelizability to reduce variance. InSPAA ’10: 22nd ACM Symposium
on Parallelism in Algorithms and Architectures, 2010.

[24] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Scalably scheduling power-
heterogeneous processors. InICALP (1), pages 312–323, 2010.

[25] Xin Han, Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H. Wong. Deadline
scheduling and power management for speed bounded processors. Theor. Comput. Sci., 411(40-
42):3587–3600, 2010. Preliminary version inMAPSP2009.

[26] Sungjin Im and Benjamin Moseley. An online scalable algorithm for minimizingℓk-norms of weighted
flow time on unrelated machines. InSODA, 2011.

[27] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance.J. ACM, 47(4):617–643,
2000. Preliminary version inFOCS1995.

[28] Tak Wah Lam, Lap-Kei Lee, Hing-Fung Ting, Isaac Kar-Keung To, and Prudence W. H. Wong. Sleep
with guilt and work faster to minimize flow plus energy. InICALP (1), pages 665–676, 2009.

[29] Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H. Wong. Energy efficient deadline
scheduling in two processor systems. InISAAC, pages 476–487, 2007.

[30] Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H. Wong. Competitive non-
migratory scheduling for flow time and energy. InSPAA, pages 256–264, 2008.

[31] Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H. Wong. Speed scaling functions
for flow time scheduling based on active job count. InESA, pages 647–659, 2008.

[32] John D. C. Little. A Proof for the Queuing Formula:L = λW . Operations Research, 9(3):383–387,
1961.

[33] Benjamin Moseley. Scheduling to minimize energy and flow time in broadcast scheduling.CoRR,
abs/1007.3747, 2010.

[34] Rajeev Motwani, Steven Phillips, and Eric Torng. Non-clairvoyant scheduling.Theor. Comput. Sci.,
130(1):17–47, 1994. Preliminary version inSODA1993.

[35] S. Muthukrishnan, Rajmohan Rajaraman, Anthony Shaheen, and Johannes Gehrke. Online scheduling
to minimize average stretch.SIAM J. Comput., 34(2):433–452, 2004. Preliminary version inFOCS
1999.

[36] Cynthia A. Phillips, Clifford Stein, Eric Torng, and Joel Wein. Optimal time-critical scheduling via
resource augmentation.Algorithmica, 32(2):163–200, 2002. Preliminary version inSTOC1997.

ACM SIGACT News 14 September 2003 Vol. 34, No. 3



[37] Kirk Pruhs. Competitive online scheduling for server systems. SIGMETRICS Perform. Eval. Rev.,
34(4):52–58, 2007.

[38] Kirk Pruhs, Jiri Sgall, and Eric Torng.Handbook of Scheduling: Algorithms, Models, and Performance
Analysis, chapter Online Scheduling. 2004.

[39] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and paging rules.
Commun. ACM, 28(2):202–208, 1985.

[40] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.J. ACM,
32(3):652–686, 1985.

ACM SIGACT News 15 September 2003 Vol. 34, No. 3


