
Online Non-clairvoyant Scheduling to
Simultaneously Minimize All Convex Functions

Kyle Fox1?, Sungjin Im2, Janardhan Kulkarni2??, and Benjamin Moseley3

1 Department of Computer Science, University of Illinois, Urbana, IL 61801.
kylefox2@illinois.edu

2 Department of Computer Science, Duke University, Durham NC 27708.
[sungjin,kulkarni]@cs.duke.edu

3 Toyota Technological Institute at Chicago, Chicago, IL 60637. moseley@ttic.edu

Abstract. We consider scheduling jobs online to minimize the objective∑
i∈[n] wig(Ci− ri), where wi is the weight of job i, ri is its release time,

Ci is its completion time and g is any non-decreasing convex function.
Previously, it was known that the clairvoyant algorithm Highest-Density-
First (HDF) is (2 + ε)-speed O(1)-competitive for this objective on a
single machine for any fixed 0 < ε < 1 [21]. We show the first non-trivial
results for this problem when g is not concave and the algorithm must
be non-clairvoyant. More specifically, our results include:

• A (2 + ε)-speed O(1)-competitive non-clairovyant algorithm on a
single machine for all non-decreasing convex g, matching the perfor-
mance of HDF for any fixed 0 < ε < 1.

• A (3 + ε)-speed O(1)-competitive non-clairovyant algorithm on mul-
tiple identical machines for all non-decreasing convex g for any fixed
0 < ε < 1.

Our positive result on multiple machines is the first non-trivial one even
when the algorithm is clairvoyant. Interestingly, all performance guaran-
tees above hold for all non-decreasing convex functions g simultaneously.
We supplement our positive results by showing any algorithm that is
oblivious to g is not O(1)-competitive with speed less than 2 on a single
machine. Further, any non-clairvoyent algorithm that knows the func-
tion g cannot be O(1)-competitive with speed less than

√
2 on a single

machine or speed less than 2− 1
m

on m identical machines.

1 Introduction

Scheduling a set of jobs that arrive over time on a single machine is perhaps
the most basic setting considered in scheduling theory. A considerable amount
of work has focused on this fundamental problem. For examples, see [26]. In

? Research by this author is supported in part by the Department of Energy Office of
Science Graduate Fellowship Program (DOE SCGF), made possible in part by the
American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU
under contract no. DE-AC05-06OR23100.

?? Supported by NSF awards CCF-1008065 and IIS-0964560.

this setting, there are n jobs that arrive over time, and each job i requires some
processing time pi to be completed on the machine. In the online setting, the
scheduler becomes first aware of job i at time ri when job i is released. Note
that in the online setting, it is standard to assume jobs can be preempted.

Generally, a client that submits a job i would like to minimize the flow time
of the job defined as Fi := Ci−ri, where Ci denotes the completion time of job i.
The flow time of a job measures the amount of time the job waits to be satisfied
in the system. When there are multiple jobs competing for service, the scheduler
needs to make scheduling decisions to optimize a certain global objective. One
of the most popular objectives is to minimize the total (or equivalently average)
flow time of all the jobs, i.e.,

∑
i∈[n] Fi. It is well known that the algorithm

Shortest-Remaining-Processing-Time (SRPT) is optimal for that objective in
the single machine setting. The algorithm SRPT always schedules the job that
has the shortest remaining processing time at each point in time. Another well
known result is that the algorithm First-In-First-Out (FIFO) is optimal for
minimizing the maximum flow time, i.e., maxi∈[n] Fi on a single machine. The
algorithm FIFO schedules the jobs in the order they arrive.

These classic results have been extended to the case where jobs have prior-
ities. In this extension, each job i is associated with a weight wi denoting its
priority; large weight implies higher priority. The generalization of the total flow
time problem is to minimize the total weighted flow time,

∑
i∈[n] wiFi. For this

problem it is known that no online algorithm can be O(1)-competitive [5]. A
generalization of the maximum flow time problem is to minimize the maximum
weighted flow time maxi∈[n] wiFi. It is also known for this problem that no online
algorithm can be O(1)-competitive [11,15].

Due to these strong lower bounds, previous work for these objectives has
appealed to the relaxed analysis model called resource augmentation [22]. In
this relaxation, an algorithm A is said to be s-speed c-competitive if A has a
competitive ratio of c when processing jobs s times faster than the adversary.
The primary goal of a resource augmentation analysis is to find the minimum
speed an algorithm requires to be O(1)-competitive. For the total weighted flow
time objective, it is known that the algorithm Highest-Density-First (HDF) is
(1 + ε)-speed O(1

ε)-competitive for any fixed ε > 0 [25,10]. The algorithm HDF
always schedules the job i of highest density, wi

pi
. For the maximum weighted flow

objective, the algorithm Biggest-Weight-First (BFW) is known to be (1 + ε)-
speed O(1

ε)-competitive [15]. BFW always schedules the job with the largest
weight.

Another widely considered objective is minimizing the `k-norms of flow time,(∑
i∈[n] F

k
i

)1/k
[8,17,20,1,4,23]. The `k-norm objective is most useful for k ∈

{1, 2, 3,∞}. Observe that total flow time is the `1-norm of flow time, and the
maximum flow time is the `∞-norm. The `2 and `3 norms are natural balances
between the `1 and `∞ norms. These objectives can be used to decrease the
variance of flow time, thereby yielding a schedule that is fair to requests. It is
known that no algorithm can be nΩ(1)-competitive for minimizing the `2-norm

[8]. On the positive side, for ε > 0, HDF was shown to be (1 + ε)-speed O(1
ε2)-

competitive for any `k-norm objective, k ≥ 1 [8].

These objectives have also been considered in the identical machine schedul-
ing setting [24,14,3,2,9,16,13,19]. In this setting, there are m machines that the
jobs can be scheduled on. Each job can be scheduled on any machine and job
i requires processing time pi no matter which machine it is assigned to. In the
identical machine setting it is known that any randomized online algorithm has
competitive ratio Ω(min{ nm , logP}), where P denotes the ratio between the
maximum and minimum processing time of a job [24]. HDF as well as several
other algorithms are known to be scalable for weighted flow time [10,14,19,13].
For the `k-norms objective the multiple machine version of HDF is known to be
scalable [13] as well as other algorithms [14,19]. For the maximum unweighted
flow it is known that FIFO is (3−2/m)-competitive, and for weighted maximum
flow time a scalable algorithm is known [11,15].

The algorithms HDF and SRPT use the processing time of a job to make
scheduling decisions. An algorithm which learns the processing time of a job
upon its arrival is called clairvoyant. An algorithm that does not know the pro-
cessing time of a job before completing the job is said to be non-clairvoyant.
Among the aforementioned algorithms, FIFO and BFW are non-clairvoyant.
Non-clairvoyant schedulers are highly desirable in many real world settings. For
example, an operating system typically does not know a job’s processing time.
Thus, there has been extensive work done on designing non-clairvoyant sched-
ulers for the problems discussed above. Scalable non-clairvoyant algorithms are
known for the maximum weighted flow time, average weighted flow time, and
`k-norms of flow time objectives even on identical machines [15,14].

It is common in scheduling theory that algorithms are tailored for specific
scheduling settings and objective functions. For instance, FIFO is considered the
best algorithm for non-clairvoyantly minimizing the maximum flow time, while
HDF is considered one of the best algorithms for minimizing total weighted flow
time. One natural question that arises is what to do if a system designer wants
to minimize several objective functions simultaneously. For instance, a system
designer may want to optimize average quality of service, while minimizing the
maximum waiting time of a job. Different algorithms have been considered for
minimizing average flow time and maximum flow time, but the system designer
would like to have a single algorithm that performs well for both objectives.

Motivated by this question, the general cost function objective was considered
in [21]. In the general cost function problem, there is a function g : R+ → R+

given, and the goal of the scheduler is to minimize
∑
i∈[n] wig(Fi). One can think

of g(Fi) as the penalty of making job i wait Fi time steps, scaled by job i’s prior-
ity (its weight wi). This objective captures most scheduling metrics. For example,
this objective function captures total weighted flow time by setting g(x) = x.
By setting g(x) = xk, the objective also captures minimizing

∑
i∈[n] F

k
i which

is essentially the same as the `k-norm objective except the outer kth root is not
taken. Finally, by making g grow very quickly the objective can be designed
to capture minimizing the maximum weighted flow time. As stated, one of the

reasons this objective was introduced was to find an algorithm that can optimize
several objectives simultaneously. If one were to design an algorithm that opti-
mizes the general cost function g while being oblivious to g, then this algorithm
would optimize all objective functions in this framework simultaneously.

In [21], the general cost function objective was considered only assuming
that g is non-decreasing. This is a natural assumption since there should be no
incentive for a job to wait longer. It was shown that in this case, no algorithm
that is oblivious to the cost function g can be O(1)-competitive with speed 2− ε
for any fixed ε > 0. Surprisingly, it was also shown that HDF, an algorithm that
is oblivious to g, is (2 + ε)-speed O(1/ε)-competitive. This result shows that it
is indeed possible to design an algorithm that optimizes most of the reasonable
scheduling objectives simultaneously on a single machine. Recall that HDF is
clairvoyant. Ideally, we would like to have a non-clairvoyant algorithm for general
cost functions. Further, there is currently no known similar result in the multiple
identical machines setting.

Results: In this paper, we consider non-clairvoyant online scheduling to mini-
mize the general cost function on a single machine as well as on multiple identical
machines. In both the settings, we give the first nontrivial positive results when
the online scheduler is required to be non-clairvoyant. We concentrate on cost
functions g which are differentiable, non-decreasing, and convex. We assume
without loss of generality that g(0) = 0. Note that all of the objectives discussed
previously have these properties. We show the following somewhat surprising
result (Section 4).

Theorem 1. There exists a non-clairvoyant algorithm that is (2+ε)-speed O(1/ε)-
competitive for minimizing

∑
i∈[n] wig(Ci−ri) on a single machine for any ε > 0,

when the given cost function g : R+ → R+ is differentiable, non-decreasing, and
convex (g′ is non-decreasing). Further, this algorithm is oblivious to g.

We then consider the general cost function objective on multiple machines for
the first time, and give a positive result. This algorithm is also non-clairvoyant.

Theorem 2. There exists a non-clairvoyant algorithm that is (3+ε)-speed O(1/ε)-
competitive for minimizing

∑
i∈[n] wig(Ci − ri) on multiple identical machines

for any ε > 0, when the given cost function g : R+ → R+ is differentiable, non-
decreasing, and convex (g′ is non-decreasing). Further, this algorithm is oblivious
to g.

Note that we do not know if there exists a constant competitive non-clairvoyant
algorithm even for a single machine with any constant speed when the cost func-
tion is neither convex nor concave. We leave this gap as an open problem.

We complement these positive results by extending the lower bound presented
in [21]. They showed that for any ε > 0, no oblivious algorithm can be (2 − ε)-
speed O(1)-competitive on a single machine when the cost function g is non-
decreasing, but perhaps discontinuous. We show the same lower bound even if
g is differentiable, non-decreasing, and convex. Thus, on a single machine, our

positive result is essentially tight up to constant factors in the competitive ratio,
and our algorithm achieves the same performance guarantee while being non-
clairvoyant.

Theorem 3. No randomized clairvoyant algorithm that is oblivious to g can
be (2− ε)-speed O(1)-competitive for minimizing

∑
i∈[n] wig(Ci− ri) on a single

machine even if all jobs have unit weights and g is differentiable, non-decreasing,
and convex.

We go on to show that even if a non-clairvoyant algorithm knows the cost
function g, the algorithm cannot have a bounded competitive ratio when given
speed less than

√
2.

Theorem 4. Any deterministic non-clairvoyant (possibly aware of g) algorithm
for minimizing

∑
i∈[n] wig(Ci − ri) on a single machine has an unbounded com-

petitive ratio when given speed
√

2−ε for any fixed ε > 0 where g is differentiable,
non-decreasing, and convex..

Finally, we show that at least 2− 1
m speed is needed for any non-clairvoyant

algorithm to be constant competitive on m identical machines. This is the first
lower bound for the general cost function specifically designed for the multiple
machine case.

Theorem 5. Any randomized non-clairvoyant (possibly aware of g) algorithm
on m identical machines has an unbounded competitive ratio when given speed
less than 2− 1

m − ε for any fixed ε > 0 when g is differentiable, non-decreasing,
and convex..

Techniques: To show Theorem 1, we consider the well-known algorithm Weighted-
Shortest-Elapsed-Time-First (WSETF) on a singe machine, and first show that
it is 2-speed O(1)-competitive for minimizing the fractional version of the general
cost function objective. Then with a small extra amount of speed augmentation,
we convert WSETF’s schedule into the one that is (2+ε)-speedO(1)-competitive
for the integral general cost function. This conversion is now a fairly standard
technique, and will be further discussed in Section 2. This conversion was also
used in [21] when analyzing HDF. One can think of the fractional objective as
converting each job i to a set of pi unit sized jobs of weight wi/pi. That is, the
weight of the job is distributed among all unit pieces of the job. Notice that
the resulting weight of the unit time jobs as well as the number of them de-
pends on the job’s original processing time. Thus, to analyze a non-clairvoyant
algorithm for the fractional instance one must consider the algorithm’s decisions
on the original instance and argue about the algorithm’s cost on the fractional
instance. This differs from the analysis of [21], where the clairvoyant algorithm
HDF can assume full knowledge of the conversion. Due to this, in [21] they can
argue directly about HDF’s decisions for the fractional instance of the prob-
lem. Since a non-clairvoyant algorithm does not know the fractional instance, it

seems difficult to adapt the techniques of [21] when analyzing a non-clairvoyant
algorithm.

If the instance consists of a set of unweighted jobs, WSETF always processes
the job which has been processed the least. Let qAi (t) be the amount WSETF
has processed job i by time t. When jobs have weights, WSETF processes
the job i such that wi

qAi (t)
is maximized where wi is the weight in the integral

instance. One can see that WSETF will not necessarily process the jobs with
the highest weight at each time, which is what the algorithm HDF will do if
all jobs are unit sized. Further, WSETF may round robin among multiple jobs
of the same priority. For these reasons, our analysis of WSETF is substantially
different from the analysis in [21], and relies crucially on a new lower bound we
develop on the optimal solution. This lower bound holds for any objective that is
differentiable, non-decreasing, and convex. Our lower bound gives a way to relate
the final objective of the optimal solution to the volume of unsatisfied work the
optimal solution has at each moment in time. We then bound the volume of
unsatisfied jobs in the optimal schedule at each moment in time and relate this
to WSETF’s instantaneous increase in its objective function. We believe that
our new lower bound will be useful in further analysis of scheduling problems
since it is versatile enough to be used for many scheduling objectives.

Other Related Work: For minimizing average flow time on a single machine,
the non-clairvoyant algorithms Shortest Elapse Time First (SETF) and Lat-
est Arrival Processor Sharing (LAPS) are known to be scalable [22,18]. Their
weighted versions Weighted Shortest Elapse Time First (WSETF) and Weighted
Latest Arrival Processor Sharing (WLAPS) are scalable for average weighted
flow time [8,6], and also for (weighted) `k norms of flow time [8,17].

In [21], Im et al. showed Weighted Latest Arrival Processor Sharing (WLAPS)
is scalable for concave functions g. They also showed that no online randomized
algorithm, even with any constant speed-up, can have a constant competitive
ratio, when each job i has its own cost function gi, and the goal is to minimize∑
i∈[n] gi(Fi). This more general problem was studied in the offline setting by

Bansal and Pruhs [7]. They gave an O(log log nP)-approximation (without speed
augmentation), where P is the ratio of the maximum to minimum processing
time of a job. This is the best known approximation for minimizing average
weighted flow time offline, and a central open question in scheduling theory is
whether or not a O(1)-approximation exists for weighted flow time offline.

2 Preliminaries

The Fractional Objective: In this section we define the fractional general
cost objective and introduce some notation. We will refer to the non-fractional
general cost objective as integral. For a schedule, let pi(t) denote the remaining
processing time of job i at time t. Let βi(p) be the latest time t such that pi(t) = p
for any p where 0 ≤ p ≤ pi.

The fractional objective penalizes jobs over time by charging in proportion to
how much of the job remains to be processed. Formally, the fractional objective
is defined as:

∑
i∈[n]

∫ Ci

t=ri

wipi(t)

pi
g′(t− ri)dt (1)

Generally when the fractional objective is considered, it is stated in the form
(1). For our analysis it will be useful to note that this objective is equivalent to:∑

i∈[n]

wi
pi

∫ pi

p=0

g(βi(p)− ri)dp (2)

As noted earlier, considering the fractional objective has proven to be quite
useful for the analysis of algorithms in scheduling theory, because directly argu-
ing about the fractional objective is usually easier from an analysis viewpoint.
A schedule which optimizes the fractional objective can then be used to get a
good schedule for the integral objective as seen in the following theorems. In the
first theorem (6), the algorithm’s fractional cost is compared against the optimal
solution for the fractional objective. In the second theorem (7), the algorithm’s
fractional cost is compared against the optimal solution for the integral instance.

Theorem 6 ([21]). If a (non-clairvoyant) algorithm A is s-speed c-competitive
for minimizing the fractional general cost function then there exists a (1 + ε)s-

speed (1+ε)c
ε -competitive (non-clairvoyant) algorithm for the integral general cost

function objective for any 0 ≤ ε ≤ 1.

Theorem 7 ([21]). If a (non-clairvoyant) algorithm A with s-speed has frac-
tional cost at most a factor c larger than the optimal solution for the integral

objective then there exists a (1 + ε)s-speed (1+ε)c
ε -competitive (non-clairvoyant)

algorithm for the integral general cost function objective for any 0 ≤ ε ≤ 1.

These two theorems follow easily by the analysis given in [21]. We note that
the resulting algorithm that performs well for the integral objective is not nec-
essarily the algorithm A. Interestingly, [21] shows that if A is HDF then the
resulting algorithm is still HDF. However, if A is WSETF, the resulting inte-
gral algorithm need not be WSETF.

Notation: We now introduce some more notation that will be used throughout
the paper. For a schedule B, let CBi be the completion time of job i. Let pBi (t)
denote the remaining processing time for job i at time t. Let qBi (t) = pi − pBi (t)
be the amount job i has been processed by time t. Let pBi,j(t) = (min{wj

wi
pi, pj}−

qBj (t))+. Here (·)+ denotes max{·, 0}. Let pi,j = min{wj

wi
pi, pj} = pBi,j(rj). If the

schedule B is that produced by WSETF and t ∈ [ri, C
B
i] then pBi,j(t) is exactly

the amount of processing time WSETF will devote to job j during the interval
[t, CBi]. In other words, the remaining time job i waits due to WSETF processing
job j. Let QB(t) be the set of job released but unsatisfied by B at time t. Let

ZBi (t) =
∑
j∈QB(t) p

B
i,j(t). When the algorithm B is the optimal solution (OPT)

we set B to be O and if the algorithm is WSETF we set B to be A. For example
QA(t) is the set of released and unsatisfied jobs for WSETF at time t. Finally,
for a set of possibly overlapping time intervals I, let |I| denote the total length
of their union.

3 Analysis tools

In this section we introduce some useful tools that we use for our analysis. First
we present our novel lower bound on the optimal solution. This lower bound
is the key to our analysis and the main technical contribution of the paper.
The left-hand-side of the inequality in the lemma has an arbitrary function
x(t) : R+ → R+ \{0}, while the right-hand-side is simply a fractional cost of the
schedule in consideration. This lower bound is inspired by one presented in [20].
However, the lower bound given in [20] involves substantially different terms, and
is only for the `k-norms of flow time. Our proof is considerably different from
[20], and perhaps simpler. Since this lower bound applies to any objective that
fits into the general cost function framework, we believe that this lower bound
will prove to be useful for a variety of scheduling problems. The assumption in
the lemma that g is convex is crucial; the lemma is not true otherwise. The
usefulness of this lemma will become apparent in the following two sections. We
prove this lemma in Section 6 after we show the power of the lemma.

Lemma 1. Let σ be a set of jobs on a single machine with speed s′. Let B be any
feasible schedule and B(σ) be the total weighted fractional cost of B with objective
function g that is differentiable and convex (g′ is non-decreasing), with g(0) = 0.
Let x(t) : R+ → R+\{0} be any function of t. Let pBx,i(t) = (min(wix(t), pBi (t))−
qBi (t))+. Finally, let ZBx (t) =

∑
i∈QB(t) p

B
x,i(t). Then,∫ ∞

t=0

1

x(t)
g(ZBx (t)/s′)dt ≤ 1

s′
B(σ).

Next we show a property of WSETF that will be useful in relating the vol-
ume of work of unsatisfied jobs in WSETF’s schedule to that of the optimal
solution’s schedule. By using this lemma we can bound the volume of jobs in the
optimal solution’s schedule and then appeal to the lower bound shown in the
previous lemma. This lemma is somewhat similar to one shown for the algorithm
Shortest-Remaining-Processing-Time (SRPT) [26,19]. However, we are able to
get a stronger version of this lemma for WSETF.

Lemma 2. Consider running WSETF using s-speed for some s ≥ 2 on m iden-
tical machines and the optimal schedule at unit speed on m identical machines.
For any job i ∈ QA(t) and time t, it is the case that ZAi (t)− ZOi (t) ≤ 0.

Proof. For the sake of contradiction, let t be the earliest time such that ZAi (t)−
ZOi (t) > 0. Let j be a job where pAi,j(t) > pOi,j(t). Consider the interval I = [rj , t].

Let Ij be the set of intervals where WSETF works on job j during I and let
I ′j be the rest of the interval I. Knowing that pAi,j(t) > pOi,j(t), we have that

|Ij | < 1
s |I|. If this fact were not true, then qAj (t) = s|Ij | ≥ |I|, but since OPT

has 1 speed, qOj (t) ≤ |I|, and therefore qAj (t) ≥ qOj (t), a contradiction of the

definition of job j. Hence, we know that |I ′j | ≥ (1 − 1
s)|I|. At each time during

I either WSETF is scheduling job j or all m machines in WSETF’s schedule
are busy scheduling jobs which contribute to ZAi (t). Thus the total amount of
work done by WSETF during |I| on jobs that contribute to ZAi (t) is at least
qAj (t) + ms|I ′j | ≥ ms(1 − 1

s)|I| = m(s − 1)|I|. The total amount of work OPT

can do on jobs that contribute to ZOi (t) is m|I|. Let S denote the set of jobs
that arrive during I. The facts above imply that

ZAi (t)− ZOi (t) ≤ (ZAi (rj) +
∑
k∈S

pi,k −m(s− 1)|I|)− (ZOi (rj) +
∑
k∈S

pi,k −m|I|)

= (ZAi (rj)−m(s− 1)|I|)− (ZOi (rj)−m|I|)
≤ ZAi (rj)− ZOi (rj) [s ≥ 2]

≤ 0 [t is the first time ZAi (t)− ZOi (t) > 0 and rj < t].

�

4 Single machine

We now show WSETF is 2-speed O(1)-competitive on a single processor for
the fractional objective. We then derive Theorem 1. In Section 5, we extend our
analysis to bound the performance of WSETF on identical machines as well
when migration is allowed.

Assume that WSETF is given a speed s ≥ 2. Notice that ZAi (t) always
decreases at a rate of s for all jobs i ∈ QA(t) when t ∈ [ri, Ci]. This is because
ZAi (t) is exactly the amount of remaining processing WSETF will do before job
i is completed amongst jobs that have arrived by time t. Further, knowing that
OPT has 1 speed, we see ZOi (t) decreases at a rate of at most 1 at any time t.
We know that by Lemma 2 ZAi (ri) − ZOi (ri) ≤ 0. Using these facts, we derive
for any time t ∈ [ri, C

A
i],

ZAi (t)− ZOi (t) ≤ −(s− 1) · (t− ri).

Therefore,
ZO

i (t)
s−1 ≥ (t− ri) for any t ∈ [ri, C

A
i]. Let a(t) denote the job that

WSETF works on at time t. By the second definition, WSETF’s fractional cost
is∫ ∞
t=0

s·
wa(t)

pa(t)
g(t−ra(t))dt ≤ s

∫ ∞
t=0

wa(t)

pa(t)
g
(ZOa(t)(t)
s− 1

)
dt ≤ s

s− 1

∫ ∞
t=0

wa(t)

pa(t)
g(ZOa(t)(t))dt

The last inequality follows since g(·) is convex, g(0) = 0, and 1
s−1 ≤ 1. By

applying Lemma 1 with x(t) = pa(t)/wa(t), s
′ = 1 and B being OPT’s schedule,

we have the following theorem.

Theorem 8. WSETF is s-speed (1+ 1
s−1)-competitive for the fractional general

cost function when s ≥ 2.

This theorem combined with Theorem 6 proves Theorem 1.

5 Multiple identical machines

Here we present the proof of Theorem 2. In the analysis of WSETF on a single
machine, we bounded the cost of WSETF’s schedule for the fractional objective
to the cost of the optimal solution for the fractional objective. In the multiple
machines case, we will not compare WSETF to the optimal solution for the
fractional objective but rather compare to the cost of the optimal solution for
the integral objective. We then invoke Theorem 7 to derive Theorem 2. We
first consider an obvious lower bound on the optimal solution for the integral
objective. For each job i, the best the optimal solution can do is to process job
i immediately upon its arrival using one of its m unit speed machines. We know
that the total integral cost of the optimal solution is at least∑

i∈[n]

wig(pi). (3)

Similar to the single machine analysis, when a job is processed we charge
the cost to the optimal solution. However, if a job i is processed at time t where
t−ri ≤ pi we charge to the integral lower bound on the optimal solution above. If
t−ri > pi, then we will invoke the lower bound on the optimal solution shown in
Lemma 1 and use the fact that the an algorithm’s fractional objective is always
smaller than its integral objective.

Assume that WSETF is given speed s ≥ 3. If job i ∈ QA(t) is not processed
by WSETF at time t, then there must exist at least m jobs in QA(t) processed
instead by WSETF at this time. Hence, for all jobs i ∈ QA(t), the quantity
pAi (t)+ZAi (t)/m decreases at a rate of s during [ri, C

A
i]. In contrast, the quantity

ZOi (t)/m decreases at a rate of at most 1 since OPT has m unit speed machines.
Further, by Lemma 2, we know that ZAi (ri)−ZOi (ri) ≤ 0, and pAi (ri)+ZAi (ri)−
ZOi (ri) ≤ pi . Using these facts we know for any job i and t ∈ [ri, C

A
i] that

pAi (t) + (ZAi (t)− ZOi (t))/m ≤ pi − (s− 1)(t− ri). Notice that if t− ri ≥ pi, we

have that pAi (t)+(ZAi (t)−ZOi (t))/m ≤ −(s−2)(t−ri). Therefore, t−ri ≤ ZO
i (t)

m(s−2)
when t− ri ≥ pi.

Let W (t) be the set of jobs that WSETF processes at time t. By definition,
the value of WSETF’s fractional objective is

s

∫ ∞
t=0

∑
i∈W (t)

wi
pi
g(t− ri)dt.

We divide the set of jobs in W (t) into two sets. The first is the set of ‘young’
jobs Wy(t) which are the set of jobs i ∈W (t) where t− ri ≤ pi. The other set is

Wo(t) = W (t)\Wy(t) which is the set of ‘old’ jobs. Let OPT denote the optimal
solution’s integral cost. We see that WSETF’s cost is at most the following.

s

∫ ∞
t=0

∑
i∈W (t)

wi
pi
g(t− ri)dt ≤ s

∫ ∞
t=0

∑
i∈Wy(t)

wi
pi
g(t− ri)dt + s

∫ ∞
t=0

∑
i∈Wo(t)

wi
pi
g(t− ri)dt

≤
∫ ∞
t=0

∑
i∈Wy(t)

wi
s

pi
g(pi)dt + s

∫ ∞
t=0

∑
i∈Wo(t)

wi
pi
g(t− ri)dt

≤
∑
i∈[n]

wig(pi) + s

∫ ∞
t=0

∑
i∈Wo(t)

wi
pi
g(t− ri)dt

≤ OPT + s

∫ ∞
t=0

∑
i∈Wo(t)

wi
pi
g
(ZOi (t)

m(s− 2)

)
dt

[by the lower bound of (3) on OPT]

≤ OPT +
s

s− 2

∫ ∞
t=0

∑
i∈Wo(t)

wi
pi
g(ZOi (t)/m)dt

The third inequality holds since a job i can be in Wy(t) only if i is processed
by WSETF at time t, and job i can be processed by at most pi before it is
completed. More precisely, if i is in Wy(t), then it is processed by s · dt during
time [t, t+ dt). Hence,

∫∞
t=0

1[i ∈Wy(t)] · s · dt ≤ pi, where 1[i ∈Wy(t)] denotes
the 0-1 indicator variable such that 1[i ∈ Wy(t)] = 1 if and only if i ∈ Wy(t).
The last inequality follows since g(·) is convex, g(0) = 0, and 1

s−2 ≤ 1. We
know that a single m-speed machine is always as powerful as m unit speed
machines, because a m-speed machine can simulate m unit speed machines.
Thus, we can assume OPT has a single m-speed machine. We apply Lemma 1
with x(t) = pi/wi for each i ∈ Wo(t), s

′ = m and B being OPT’s schedule.
Knowing that |Wo(t)| ≤ m, we conclude that

∫∞
t=0

∑
a∈Wo(t)

wa

pa
g(ZOa (t)/m) is

at most the optimal solution’s fractional cost. Knowing that any algorithm’s
fractional cost is at most its integral cost, we conclude that WSETF’s fractional
cost with s-speed is at most (2 + 2

s−2) times the integral cost of the optimal
solution when s ≥ 3. Using Theorem 7, we derive Theorem 2.

6 Proof of the Main Lemma

In this section we prove Lemma 1.

Proof of [Lemma 1]
The intuition behind the lemma is that each instance of ZBx (t) is composed

of several infinitesimal job ‘slices’. By integrating over how long these slices have
left to live, we get an upper bound on ZBx (t). We then argue that the integration
over each slice’s time alive is actually the fractional cost of that slice according to
the second definition of the fractional objective. Recall βBi (p) denotes the latest

time t at which pBi (t) = p. For any time t, let

Λi(t) =
wi
pi

∫ pBi (t)

p=0

g′(βBi (p)− t)dp,

and let Λ(t) =
∑
i∈QB(t) Λi(t).

The proof of the lemma proceeds as follows. We first show a lower bound
on Λ(t) in terms of 1

x(t)g(ZBx (t)/s′). Then we show an upper bound on Λ(t) in

terms of the fractional cost of B’s schedule. This strategy allows us to relate
1
x(t)g(ZBx (t)/s′) and B’s cost. For the first part of the strategy, we prove that
s′

x(t)g(ZBx (t)/s′) ≤ Λ(t) at all times t. Consider any job i ∈ QB(t) with pBx,i(t) >

0. Suppose pi ≤ wix(t). Then,

Λi(t) =
wi
pi

∫ pBi (t)

p=0

g′(βBi (p)− t)dp ≥ 1

x(t)

∫ pBi (t)

p=pBi (t)−pBx,i(t)

g′(βBi (p)− t)dp.

If pi > wix(t), then by definition of pBx,i(t),

pBi (t)

pBx,i(t)
≥ pBi (t) + qBi (t)

pBx,i(t) + qBi (t)
[Since pBi (t) ≥ pBx,i(t)]

=
pi

min(wix(t), pBi (t))− qBi (t))+ + qBi (t)

≥ pi
(wix(t)− qBi (t)) + qBi (t)

[Since pBx,i(t) > 0]

=
pi

wix(t)
.

In this case,

Λi(t) =
wi
pi

∫ pBi (t)

p=0

g′(βBi (p)− t)dp

≥ pBi (t)wi
pBx,i(t)pi

∫ pBi (t)

p=pBi (t)−pBx,i(t)

g′(βBi (p)− t)dp [Since g is non-decreasing, convex]

≥ 1

x(t)

∫ pBi (t)

p=pBi (t)−pBx,i(t)

g′(βBi (p)− t)dp [Since pBi (t)/pBx,i(t) > pi/(wix(t))].

(4)

In either case, Λi(t) has a lower bound of quantity (4). By convexity of g, the
lower bounds on Λi(t) are minimized if B completes pBx,i(t) units of i as quickly
as possible for each job i. Schedule B runs at speed s′, so we have

Λ(t) ≥ 1

x(t)

∫ ZB
x (t)

p=0

g′(p/s′)dp =
s′

x(t)

∫ ZB
x (t)/s′

p=0

g′(p)dp ≥ s′

x(t)
g(ZBx (t)/s′).

This proves that lower bound on Λ(t). Now we show an upper bound on Λ(t)
in terms of the B’s fractional cost. We show

∫∞
t=0

Λ(t)dt ≤ B(I). Fix a job i. We
have∫ ∞

t=0

Λi(t)dt =

∫ ∞
t=0

wi
pi

∫ pBi (t)

p=0

g′(βBi (p)− t)dpdt =
wi
pi

∫ pi

p=0

∫ βB
i (p)

t=0

g′(t)dtdp

=
wi
pi

∫ pi

p=0

g(βBi (p))dp.

By summing over all jobs and using the definition of fractional flow time, we
have that

∫∞
t=0

Λ(t)dt ≤ B(I). Further, the given lower bound and upper bounds

on
∫∞
t=0

Λ(t)dt show us that
∫∞
t=0

s′

x(t)g(ZBx (t)/s′)dt ≤
∫∞
t=0

Λ(t)dt ≤ B(I), which

proves the lemma. �

7 Lower bounds

We now present the proof of Theorem 3. This lower bound extends a lower bound
given in [21]. In [21], it was shown that no oblivious algorithm can be O(1)-
competitive with speed less than 2−ε for the general cost function. However, they
assume that the cost function was possibly discontinuous and not convex. We
show that their lower bound can be extended to the case where g is convex and
continuous. This shows that WSETF is essentially the best oblivious algorithm
one can hope for. In all the proofs that follow, we will consider a general cost
function g that is continuous, non-decreasing, and convex. The function is also
differentiable except at a single point. The function can be easily adapted so
that it is differentiable over all points in R+.

Proof of [Theorem 3]: We appeal to Yao’s Min-max Principle [12]. Let A be any
deterministic online algorithm. Consider the cost function g and large constant
c such that g(F) = 2c(F − D) for F > D and g(F) = 0 for 0 ≤ F ≤ D. It
is easy to see that g is continuous, non-decreasing, and convex. The constant
D is hidden to A, and is set to 1 with probability 1

2c(n+1) and to n + 1 with

probability 1 − 1
2c(n+1) . Let E denote the event that D = 1. At time 0, one big

job Jb of size n+1 is released. At each integer time 1 ≤ t ≤ n, one unit sized job
Jt is released. Here n is assumed to be sufficiently large. That is n > 12c

ε2 . Note
that the event E has no effect on A’s scheduling decision, since A is ignorant of
the cost function.

Suppose the online algorithm A finishes the big job Jb by time n+2. Further,
say the event E occurs; that is D = 1. Since 2n + 1 volume of jobs in total are
released and A can process at most (2−ε)(n+2) amount of work during [0, n+2],
A has at least 2n + 1 − (2 − ε)(n + 2) = ε(n + 2) − 3 volume of unit sized jobs
unfinished at time n+2. A has total cost at least 2c(ε(n+2)−3)2/2 > c(εn)2/2.
The inequality follows since n > 12c

ε2 . Knowing that Pr[E] = 1
2c(n+1) , A has an

expected cost greater than Ω(n). Now suppose A did not finish Jb by time n+2.
Conditioned on ¬E , A has cost at least 2c. Hence A’s expected cost is at least
2c(1− 1

2c(n+1)) > c.

We now consider the adversary’s schedule. Conditioned on E (D = 1), the
adversary completes each unit sized job within one unit time and hence has
a non-zero cost only for Jb. The total cost is 2c(n + 1). Conditioned on ¬E
(D = n + 1), the adversary schedules jobs in a first in first out fashion thereby
having cost 0. Hence the adversary’s expected cost is 1

2c(n+1) (2c)(n + 1) = 1.

Knowing that n is sufficiently larger than c, the claim follows since A has cost
greater than c in expectation. �

Next we show a lower bound for any non-clairvoyant algorithm that knows
g. In [21] it was shown that no algorithm can be O(1)-competitive for a general
cost function with speed less than 7/6. However, the cost function g used in
the lower bound was neither continuous nor convex. We show that no algorithm
can have a bounded competitive ratio if it is given a speed less than

√
2 > 7/6

even if the function is continuous and convex but the algorithm is required to
be non-clairvoyant.

Proof of [Theorem 4]: Let A be any non-clairvoyant deterministic online al-
gorithm with speed s. Let the cost function g be defined as g(F) = F − 10
for F > 10 and g(F) = 0 otherwise. It is easy to verify that g is continuous,
non-decreasing, and convex. At time t = 0, job J1 of processing length 10 units
and weight w1 is released. At time t = 10(

√
2 − 1), job J2 of weight w2 is re-

leased. Weights of these jobs will be set later. The processing time of job J2 is
set based on the algorithm’s decisions, which can be done since the algorithm A
is non-clairovyant.

Consider the amount of work done by A on the job J2 by the time t = 10.
Suppose algorithm A worked on J2 for less than 10(

√
2−1) units by time t = 10.

In this case, the adversary sets J2’s processing time to 10 units. The flow time of
job J2 in A’s schedule is (10−10(

√
2−1))+(10−10(

√
2−1))/s ≥ 10+10(

√
2−

1)ε/(
√

2− ε) when s =
√

2− ε. Let ε′ = 10(
√

2− 1)ε/(
√

2− ε). Hence, A incurs
a weighted flow time of ε′w2 towards J2. The optimal solution works on J2 the
moment it arrives until its completion, so this job incurs no cost. The optimal
solution processes J1 partially before J2 arrives and processes it until completion
after job J2 is completed. The largest flow time the optimal solution can have
for J1 is 20, so the optimal cost is upper bounded by 10w1. The competitive
ratio of A ε′w2

10w1
can be made arbitrarily large by setting w2 to be much larger

than w1.

Now consider the case where A works on J2 for 10(
√

2 − 1) units by time
t = 10. In this case, the adversary sets the processing time of job J2 to 10(

√
2−1).

Therefore, A completes J2 by time t = 10. However, A can not complete J1 with
flow time of at most 10 units, if given a speed of at most

√
2− ε. Hence A incurs

a cost of εw1 towards flow time of J1. It is easy to verify that for this input, the
optimal solution first schedules J1 until its completion and then processes job
J2 to completion. Hence, the optimal solution completes both the jobs with flow
time of at most 10 units, incurring a cost of 0. Again, the competitive ratio is
unbounded.

�

Finally, we show a lower bound for any non-clairvoyant algorithm that knows
g on m identical machines. We show that no algorithm can have a bounded
competitive ratio when given speed less than 2− 1

m . Previously, the only previous
lower bounds for the general cost function on identical machines were lower
bounds that carried over from the single machine setting.

Proof of [Theorem 5]: We use Yao’s min-max principle. Let A be any non-
clairvoyant deterministic online algorithm on m parallel machines with the speed
s = 2 − ε, for any 0 < ε ≤ 1. Let L > 1 be a parameter and we take m > 1

ε .
Let the cost function g(F) be defined as follows: g(F) = F − L for F > L and
g(F) = 0 otherwise. It is easy to verify that, g is continuous, non-decreasing,
and convex. At time t = 0, (m− 1)L+ 1 jobs are released into the system, out
of which (m − 1)L jobs have unit processing time and one job has processing
time L. The adversary sets the job with processing time L uniformaly at random
amongst all the jobs.

Consider the time t = L(m−1)+1
sm . At the time t, there exist a job j that

has been processed to the extent of at most 1 unit by A since the most work
A can do is smt = L(m − 1) + 1, which is the total number of jobs. With
probability 1

L(m−1)+1 , j has a processing time of L units. In the event that j

has the processing time of L units, the earliest A can complete j is t + L−1
s =

L(m−1)+1
sm + L−1

s > L when L is sufficiently large and s ≤ 2 − ε (note that
m > 1

ε). In this case, j has a flow time greater than L time units. Therefore, in
expectation A incurs a positive cost.

Let us now look at the adversary’s schedule. Since the adversary knows the
processing times of jobs, the adversary processes the job j of length L on a
dedicated machine. The rest of the unit length jobs are processed on other ma-
chines. The adversary completes all the jobs by the time L and hence pays
cost of 0. Therefore, the expected competitive ratio of the online algorithm A is
unbounded. �

References

1. Anand, S., Garg, N., Kumar, A.: Resource augmentation for weighted flow-time
explained by dual fitting. In: SODA. pp. 1228–1241 (2012)

2. Avrahami, N., Azar, Y.: Minimizing total flow time and total completion time
with immediate dispatching. In: SPAA ’03: Proceedings of the fifteenth annual
ACM symposium on Parallel algorithms and architectures. pp. 11–18 (2003)

3. Awerbuch, B., Azar, Y., Leonardi, S., Regev, O.: Minimizing the flow time without
migration. SIAM J. Comput. 31(5), 1370–1382 (2002)

4. Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algo-
rithms. J. Algorithms 52(2), 120–133 (2004)

5. Bansal, N., Chan, H.L.: Weighted flow time does not admit o(1)-competitive algo-
rithms. In: SODA. pp. 1238–1244 (2009)

6. Bansal, N., Krishnaswamy, R., Nagarajan, V.: Better scalable algorithms for broad-
cast scheduling. In: ICALP (1). pp. 324–335 (2010)

7. Bansal, N., Pruhs, K.: The geometry of scheduling. In: IEE Symposium on the
Foundations of Computer Science. pp. 407–414 (2010)

8. Bansal, N., Pruhs, K.: Server scheduling to balance priorities, fairness, and average
quality of service. SIAM J. Comput. 39(7), 3311–3335 (2010)

9. Becchetti, L., Leonardi, S.: Nonclairvoyant scheduling to minimize the total flow
time on single and parallel machines. J. ACM 51(4), 517–539 (2004)

10. Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Online weighted
flow time and deadline scheduling. Journal of Discrete Algorithms 4(3), 339–352
(2006)

11. Bender, M.A., Chakrabarti, S., Muthukrishnan, S.: Flow and stretch metrics for
scheduling continuous job streams. In: SODA. pp. 270–279 (1998)

12. Borodin, A., El-Yaniv, R.: On ranomization in online computation. In: IEEE Con-
ference on Computational Complexity. pp. 226–238 (1997)

13. Bussema, C., Torng, E.: Greedy multiprocessor server scheduling. Oper. Res. Lett.
34(4), 451–458 (2006)

14. Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to mini-
mize flow time with epsilon resource augmentation. In: STOC. pp. 363–372 (2004)

15. Chekuri, C., Im, S., Moseley, B.: Online scheduling to minimize maximum response
time and maximum delay factor. Theory of Computing 8(1), 165–195 (2012), http:
//www.theoryofcomputing.org/articles/v008a007

16. Chekuri, C., Khanna, S., Zhu, A.: Algorithms for minimizing weighted flow time.
In: STOC. pp. 84–93 (2001)

17. Edmonds, J., Im, S., Moseley, B.: Online scalable scheduling for the `k-norms of
flow time without conservation of work. In: ACM-SIAM Symposium on Discrete
Algorithms (2011)

18. Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup
curves. In: ACM-SIAM Symposium on Discrete Algorithms. pp. 685–692 (2009)

19. Fox, K., Moseley, B.: Online scheduling on identical machines using srpt. In: SODA.
pp. 120–128 (2011)

20. Im, S., Moseley, B.: An online scalable algorithm for minimizing `k-norms of
weighted flow time on unrelated machines. In: ACM-SIAM Symposium on Dis-
crete Algorithms (2011)

21. Im, S., Moseley, B., Pruhs, K.: Online scheduling with general cost functions. In:
SODA. pp. 1254–1265 (2012)

22. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of
the ACM 47(4), 617–643 (2000)

23. Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: A unified ap-
proach to scheduling on unrelated parallel machines. J. ACM 56(5) (2009)

24. Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. J. Com-
put. Syst. Sci. 73(6), 875–891 (2007)

25. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via
resource augmentation. Algorithmica 32(2), 163–200 (2002)

26. Pruhs, K., Sgall, J., Torng, E.: Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, chap. Online Scheduling (2004)

http://www.theoryofcomputing.org/articles/v008a007
http://www.theoryofcomputing.org/articles/v008a007

	Online Non-clairvoyant Scheduling to Simultaneously Minimize All Convex Functions

