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Abstract

In this paper, we consider scheduling parallelizable jobs in
the non-clairvoyant speed scaling setting to minimize the
objective of weighted flow time plus energy. Previously,
strong lower bounds were shown on this model in the
unweighted setting even when the algorithm is given
a constant amount of resource augmentation over the
optimal solution. However, these lower bounds were
given only for certain families of algorithms that do not
recognize the parallelizability of alive jobs. In this work,
we circumvent previous lower bounds shown and give a
scalable algorithm under the natural assumption that the
algorithm can know the current parallelizability of a job.
When a general power function is considered, this is also
the first algorithm that has a constant competitive ratio for
the problem using any amount of resource augmentation.

1 Introduction

Energy aware job scheduling has recently received a sig-
nificant amount of attention in scheduling theory literature
[5–10, 12, 14–16, 18–20, 28, 29, 33–35]. When scheduling
jobs, the scheduler must decide which resources (for ex-
ample, machines or processors) to allocate to which jobs
over time. In an energy aware scheduling environment,
the scheduler must also decide how to use resources in or-
der to minimize the energy consumed by the system. For
example, the scheduler may turn off machines over time
or the scheduler may dynamically scale the speed of a pro-
cessor. The scheduler’s goal is to minimize the energy
consumption while optimizing the quality of service with
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respect to the jobs (or the clients who submitted the jobs)
receive. These two objectives are naturally competing. By
using less energy the scheduler will have less resources
available to process the jobs. The scheduler in this setting
must determine the appropriate balance between energy
consumption and the quality of service delivered.

The dominant energy aware scheduling model con-
sidered in previous literature is an online speed scaling
setting. In an online setting, the scheduler only becomes
aware of a job once it arrives in the system, and the sched-
uler makes decisions over time without knowing the jobs
that are to arrive in the future. Online models accurately
capture most of the scheduling problems faced in the real
world, because generally the scheduler will not be aware
of a job until it arrives to the system. The model can be
made even more realistic by assuming the scheduler is
non-clairvoyant; it does not know the processing time of
the jobs. In the speed scaling model, the processors avail-
able to the scheduler can dynamically change their speed
over time. This model captures the fact that many systems
today have the ability to change the processor frequency
over time such as the technology used in AMD’s Power-
Now! [1] and Intel’s SpeedStep [2]. Such technology has
become ever more important in mobil computing where
battery power consumption is a high priority [38] and in
large scale server farms that use a very costly amount of
energy [38].

Perhaps the most popular online scheduling objective
without considering energy is minimizing the total flow
time. The flow time of a job is the amount of time that
passes between the job’s release and its completion. By
minimizing the total flow time, the server focuses on
optimizing the average quality of service delivered to the
jobs. In the online speed scaling setting, most previous
literature considered minimizing the total flow time plus
the energy consumed in the system. This has a natural
interpretation; a system designer may decide that it is
worth spending one unit of energy to save β units of
flow time. In this case, the system designer would want
to minimize the total flow time plus β multiplied by the
energy. By scaling the units of time and energy, we may
assume that β = 1 and consider minimizing the total flow



time plus energy. Work on this objective was initiated by
studying processors whose power consumption obeys a
generalization of the cube root rule observed in standard
CMOS based processors [13, 38]. For example, if the
processor runs at speed s then the power consumed is sα;
the cubed root rule is observed when α = 3. This model
was rigorously studied [6, 7, 9, 12, 14, 16, 33, 35], until a
generalization was introduced by Bansal et al. [8]. In the
generalization, there is a convex function P where P (s) is
the power consumed when running the processor at speed
s. This is known as the arbitrary power function model.
In either model, the total energy consumed by the system
is the integral of power over all time.

1.1 Old and new scheduling models In the online
speed scaling setting the scheduler has two policies:

Job selection: The scheduler must decide which job
should be scheduled at each moment in time.

Energy policy: The scheduler must decide how fast
to run the processor(s) at each moment in time.

When considering scheduling jobs on a single ma-
chine with speed scaling, the general approach is to use a
known algorithm that performs well on a single machine
without speed scaling and couple the algorithm with a nat-
ural speed scaling policy introduced in [4]. Essentially,
this speed scaling policy runs the machine at speed s such
that P (s) is proportional to the number of unsatisfied jobs.
This creates a natural balance between the energy objec-
tive and the flow time objective, because the increase in
the flow time objective at each moment in time is equal to
the number of unsatisfied jobs. At each point in time, the
two objectives will increase roughly at the same rate.

Recently, scheduling speed scaling jobs online on
multiple processors or machines has been addressed.
When addressing a multiple processor setting there are
two models which one can consider. The first is when
each job can be assigned to at most one machine at each
moment in time. This model naturally captures the set-
tings faced in multiple machine environments such as
server farms. It is known that when processors have fixed
speeds and energy is not a part of the objective that no al-
gorithm can be O(1)-competitive for the objective of to-
tal flow time, even if we do not assume non-clairvoyance
[37]. This lower bound carries over to the speed scaling
setting with arbitrary power functions. Due to this lower
bound, most previous work has turned to using a resource
augmentation analysis [31]. Here the algorithm is given
extra resources over the adversary and then the competi-
tive ratio is bounded. We say that an algorithm is b-speed
c-competitive if the algorithm with b-speed achieves an
objective value at most c times the optimal value with unit
speed. In the fixed speed setting, we mean each of the pro-
cessors runs b times faster than the optimal solution’s pro-

cessors. In the speed scaling setting, when the algorithm
runs a processor at power P (s) the algorithm can process
jobs at speed b · s. The goal of this form of analysis is
to find a (1+ε)-speedO(f(ε))-competitive algorithm for
any constant ε > 0 where f is some function of only ε.
That is, an algorithm which isO(1)-competitive while us-
ing a minimum amount of extra resources over the adver-
sary. Such an algorithm is called scalable. For problems
with strong lower bounds on the competitive ratio, a scal-
able algorithm is the best result that one can show using
worst case analysis.

The works of [35, 36] consider the case where each
machine is identical. When machines are not identical,
the problem becomes significantly more challenging. It
was not until recently that scalable clairvoyant and non-
clairovyant algorithms were found for the heterogeneous
machine settings [27, 28].

Another possible parallel scheduling model is when
jobs can be scheduled on more than one processor at each
moment in time. That is, jobs can run in parallel on mul-
tiple processors. The challenge in this setting is that there
can be different degrees of parallelizability, even within
phases of a single job. That is, each job consists of a set
of phases that are to be processed sequentially. Accord-
ing to the phase a job is in, the job may be considerably
sped-up when assigned to multiple processors, might not
get sped-up, or something in between. The phases of a job
can lead to different amounts of parallelism because one
phase may require a lot of computation that can be eas-
ily parallelized, while another phase may require I/O that
cannot be sped-up with extra computational power.

The model given above is known as the arbitrary
speed-up curves model, so named because each phase of
a job will have its own arbitrary speed-up curve/function
that specifies its parallizability. Scheduling in this model
was originally studied when energy was not taken into
consideration and the processor ran at a fixed speed. In
the arbitrary speed-up curves model, all pervious work has
focused on non-clairvoyant algorithms. In [22] Edmonds
gave a (2 + ε)-speed O(1)-competitive algorithm for
any fixed ε > 0. The algorithm considered was a
round robin like algorithm known as Equipartition. In a
breakthrough result, Edmonds and Pruhs [25] introduced
the algorithm LAPS and showed that it is scalable. Since
its introduction, the algorithm LAPS has proven to be very
useful in many other scheduling settings [11,16,17,19,24,
26, 27].

Prior work shows that scheduling in the speed-up
curves model becomes considerably more challenging
when speed scaling is introduced. Chan et al. [17] show
that an O(logm)-competitive algorithm exists if P (s) =
sα where m is the number of available processors. Their
algorithm makes the assumption that jobs do not have side
effects. The assumption allows their algorithm to process



multiple copies of the same job simultaneously; if a job
has side effects then multiple copies running at the same
time could interfere with each other. Unfortunately, this
assumption is not valid in many systems, and Chan et
al. argue that no non-clairvoyant randomized algorithm
can be Ω(m(α−1)/α)-competitive when P (s) = sα if
jobs do have side effects [17]. This lower bound implies
no algorithm can be O(1)-speed O(1)-competitive in the
arbitrary function case when jobs can have side effects.
They also argue that an Ω(log1/αm) lower bound exists
on the competitive ratio even when jobs do not have side
effects [17].

Their work suggests that scheduling with speed scal-
able processors when jobs are parallizable is essentially
closed. No algorithm can have a small competitive ratio
even with resource augmentation in the arbitrary power
function case. In the case where P (s) = sα and jobs do
not have side effects, there is an algorithm that achieves
roughly the best possible competitive ratio. In the case
where jobs have side effects, no algorithm can have a
small competitive ratio even when P (s) = sα. It appears
that adding both parallelism and the ability to speed scale
processors makes the problem much harder and there is no
hope for an online algorithm with a constant competitive
ratio using a small amount of resource augmentation.

However, previous work on the arbitrary speed-up
curves problem such as [17] rely on a crucial assumption;
the scheduler is never aware of the parallizability of a
phase of a job. That is, the online algorithm is in the ‘dark’
about how parallel a phase is, yet an optimal solution
being compared against may rely on this information. We
argue that this assumption is perhaps too strong. Indeed,
if some phase of a job uses multiple threads or processes,
then one can determine how many there are. There is a
vast amount of literature on how to measure the parallel
performance during runtime [3, 21, 32, 39, 44]. Further,
there are many systems where the parallelism of incoming
jobs is given a priori to the scheduler either specified by
the user or based on estimates calculated from previous
job traces [40–42]. We suggest that giving the scheduler
knowledge about the parallizability of job phases still
accurately models the real world while allowing for the
existence of competitive scheduling algorithms. Indeed,
in [43] it was shown that if the scheduler is aware of
the instantaneous paralizability of a job and a job is
always fully parallel up to a certain number of processors,
then their algorithm is O(1) competitive when the power
function is sα.

1.2 Our results and contributions In this paper we
consider a non-clairvoyent arbitrary speed-up curves
model where processors can be dynamically speed scaled.
Unlike previous work, we assume that each algorithm
knows how parallel each phase of any job is. This in-
formation need not be given to the algorithm initially; al-

though, it could be. Instead, the algorithm only requires
knowledge of the parallizability of a job phase at the point
in time where the algorithm decides to process that phase.
The algorithm does not learn the total number of phases
in any job or the total processing needed for a job until the
job’s completion. Thus, the algorithm is non-clairvoyant.
In this model, we can show the following result, circum-
venting the strong lower bounds in the more restrictive
model mentioned above.

THEOREM 1.1. In the arbitrary speed-up curves setting
where processors can be speed scaled with an arbitrary
convex power function, there is a (1 + ε)-speed O(1/ε2)-
competitive algorithm for minimizing weighted flow time
plus energy for any ε > 0.

This theorem also gives rise to the following corol-
lary.

COROLLARY 1.1. In the arbitrary speed-up curves set-
ting where processors can be speed scaled with a power
function of the form P (s) = sα, there is aO((1+ε)α/ε2)-
competitive algorithm for minimizing weighted flow time
plus energy for any ε > 0.

Note that no resource augmentation is needed in
the above corollary. The corollary immediately follows
because when P (s) = sα, we can simulate resource
augmentation by running the processors a factor of (1+ε)
faster. This process increases the energy cost by a factor
of (1 + ε)α.

We note that our results apply to the more general
weighted case, where each job is given a non-negative
weight and the total flow time is calculated by sum-
ming the flow time of individual jobs multiplied by their
weights. This is essentially the best positive result one
can hope for because this problem generalizes minimiz-
ing total flow time in the identical machine setting where
each job can be scheduled on at most one machine at once
and, as mentioned, there are strong lower bounds for any
online algorithm for this problem. This is also the first
positive result in the speed-up curves setting with power
for the cases where the power function P is an arbitrary
convex function.

We feel our work shows that scheduling with speed
scalable processors with parallelizable jobs is not as hard
as previous research suggests. Another contribution is in
our analysis. All previous works considering the speed-up
curves model and the speed scaling model use a potential
function analysis to bound the performance of an online
algorithm. The works on the speed-up curves model
first use a reduction from the general parallel setting
to a setting where each phase of a job is either fully
parallelizable or sequential. We cannot use this reduction
for our model as our algorithm’s behavior changes when



the parallelizability of jobs changes. Due to this, we
directly analyze the general setting and develop a new
potential function that captures the parallelizability of
different job phases. Our potential function shows how to
circumvent the reductions used in previous work and we
hope the underlying ideas will be of use in future studies
of the speed-up curve model.

2 Preliminaries

2.1 Formal problem definition We first describe the
arbitrary speed-up curves model [23] and then extend the
model to the speed-scaling setting.

Arbitrary speed-up curves: In this model there are
m uniform parallel machines/processors. A job i may
consist of multiple phases. Let µ̂i denote the number
of phases of job i. In the µth phase (1 ≤ µ ≤ µ̂i),
job i has work pµi that that needs to be completed, and
is associated with a speed-up curve Γµi that specifies the
parallelizability of job i in the phase. The phases of
job i must be processed sequentially. In other words,
job i’s (µ + 1)th phase immediately starts when the
pµi amount of work is done for job i in its µth phase.
Job i is considered complete when pµ̂ii work is done
in its µ̂ith phase. A speed-up curve Γ : R+ → R+

is a non-decreasing and continuous function where R+

denotes the set of non-negative real numbers. If a job
is in a phase with speed-up curve Γ, then it can be
processed (have work done) at a rate of Γ(h) when
using h machines. It is assumed that Γ(h)/h is non-
increasing, so that the processing efficiency per machine
does not increase as more machine are used. That is,
a job’s parallelizability satisfies Brent’s Thoerem. All
properties of job i can be described in a compact way as
〈((Γ1

i , p
1
i ), (Γ

2
i , p

2
i ), ...., (Γ

µ̂i
i , p

µ̂i
i )〉 along with its release

time ri and weight wi.
At each point in time t, a feasible schedule in the arbi-

trary speed-up curve model allocates the m available ma-
chines to the currently alive/unsatisfied jobs. To formally
describe a feasible schedule and its scheduling objective,
we need to define more notation. Let n denote the number
of jobs that are released over time. Consider any schedule
A and let qA(t) denote the set of alive jobs at time t (the
jobs that are released no later than time t and are not com-
pleted by time t). The schedule can be formally described
as n functions xAi (t) : [0,∞) → [0,m]; we will not in-
clude A in the notation when it is clear in the context.
Here xi(t) denotes the number of machines that are used
for job i at time t. It must be that

∑
i∈qA(t) xi(t) ≤ m,

so that no more than m machines are used. Note that a
fractional number of processors can be assigned to each
job. If we wish to work in a model where only an integral
number of processors can be assigned to a job, we can
reduce to the fractional case. Details about the reduction
including commentary on other assumptions in the model

can be found in Appendix A.
We assume that the online scheduler has access to the

speed-up curve for the phase each alive job is in as well as
the job’s weight. As mentioned in Section 1, this assump-
tion is different from the non-clairvoyant scheduler that is
assumed in [17, 23], and is key to our scalable algorithm.
However, the scheduler does not know job i’s remaining
size in its phase, nor does it know the remaining phases’
speed-up curves. In other words, the scheduler becomes
aware of job i only when it is released at time ri. The
scheduler also becomes aware of job i’s weight wi upon
its release. Further, it knows the speed-up curve Γµ

′

i (t) for
all µ′ ≤ µ where µ is job i’s current phase. In retrospect,
it knows pµ

′

i , µ′ ≤ µ− 1, but not pµi .
Let Cµi denote the completion time of the µth phase

of job i. For notional convenience, let C0
i := ri. Given

xi(t), the time Cµi , 1 ≤ µ ≤ µ̂i is formally defined as the
earliest time τ such that∫ τ

t=Cµ−1
i

Γµi (xi(t))dt ≥ pµi .

The completion time Ci is defined as the earliest time
when all phases of job i are completed, i.e. Ci := Cµ̂ii .
The weighted flow time (or response time) of job i is
defined as wi · (Ci − ri) and is a weighted measurement
of how long job i waits to be completed since its release
time. The total (or equivalently average) weighted flow
time of schedule A is

∑
i∈[n] wi(Ci − ri).

Extension to dynamic speed scaling: In the speed scal-
ing setting, each machine can be run faster or slower over
time by changing the power it consumes. In the arbi-
trary speed up curves setting where all machines are uni-
form, we are given a power function P : R+ → R+

where P (s) is the power used by a machine when running
at speed s. The power function P is assumed to be non-
decreasing and convex. It can be further assumed without
loss of generality that P is continuous as shown in [8].
Throughout this paper, we will be concerned with the in-
verse Q : R+ → R+ of power function P . In words,
Q(E) specifies the speed achieved when the processor is
given power E. We will refer to Q as the speed function.
One can assume without loss of generality that Q is con-
cave, continuous, and Q(0) = 0 [8].

In this extension, a feasible schedule consists
of {xi(t)}ni=1, which is defined above, and powers
{Ei(t)}ni=1 that specify the power consumed by job i at
time t. Again, we may optionally assume each xi(t) is
integral using a reduction given in Appendix A. Note that
we are assuming that all machines that are processing the
same job i consumes the same power. This assumption
is justified by the following fact. Consider any infinitesi-
mal interval [t, t+dt), and assume that an energy budget
E is given that can be used for job i during the interval.



Then the maximum speed at which job i is processed is
achieved by distributing the given energy equally among
the {xi(t)}ni=1 machines that are assigned to job i, since
Q is concave. Given {xi(t)}ni=1 and {Ei(t)}ni=1, job i

is processed at a rate of Γ
µi(t)
i (xi(t)) ·Q(Ei(t)/xi(t)) at

time t, where µi(t) is the phase that job i is in at time t.
The completion time Cµi of µth phase of job i is redefined
accordingly. That is, the time Cµi , 1 ≤ µ ≤ µ̂i is foamily
defined as the earliest time τ such that∫ τ

t=Cµ−1
i

Γµi (xi(t))Q(Ei(t)/xi(t))dt ≥ pµi ,

and the completion time of job i, Ci := Cµ̂ii .
We focus on the objective of minimizing the total

weighted flow time plus the total energy consumed,

n∑
i=1

wi(Ci − ri) +

n∑
i=1

∫ ∞
t=0

Ei(t)dt.

In sum, in this paper we are interested in the problem of
finding a non-clairvoyant scheduler, that can be specified
by {xi(t)}ni=1 and {Ei(t)}ni=1, that has access to the
speed-up curve of the current phase of each job. The
goal is to minimize the total flow time and total power
consumption.

3 Algorithm Definition

We present our algorithm for scheduling in the speedup
curve model with energy which we call Weighted Latest
Arrival Processor Sharing with Energy (WLAPS+E). For
the definition of WLAPS+E, we make the following tech-
nical yet reasonable assumption regarding Γ and Q.

ASSUMPTION 3.1. Consider any speed-up curve Γ :
R+ → R+ corresponding to some phase of a job. Then
for the given speed function Q : R+ → R+ and for any
positive real numbers h and w, there exists 0 < h∗ ≤ h
that maximizes

Υw(h∗) = Γ(h∗) ·Q(
w

h∗
).

Further, such h∗ can be efficiently computed.

In words, the function Υw(h) is the speed achieved
by distributing power w equally among h processors.
Detailed justification of this assumption can be found in
Appendix A. We also note that our algorithm may assign a
fractional number of processor to each job. Recall that the
case were the algorithm can assign only assign an integral
number of processors to each job can be reduced to the
fractional case. Again, details appear in Appendix A.

Given a positive real number h, let yµi (h) be the
number of processors less than h that yield the greatest

speed for job i in phase µ when using wi units of power.
In other words,

yµi (h) = argmax
0<h′≤h

Γµi (h′) ·Q
(wi
h′

)
.

Recall that we assume yµi (h) is well defined and effi-
ciently computable (Assumption 3.1). Let gµi (h) be the
highest speed achievable for job i in phase µ when using
at most h processors and power wi.

gµi (h) = max
0<h′≤h

Γµi (h′) ·Q
(wi
h′

)
.

Let ε be an arbitrary real number such that 0 < ε ≤
1/6. Informally, WLAPS+E shares processors propor-
tionally by weight among the most recently arriving jobs
so that the weight of all scheduled jobs is an ε fraction
of the total weight in the system. Then, for each job i,
WLAPS+E scales back the amount of processors given
to i in order to maximize the amount of processing done
with wi units of power.

More formally, let qA(t) be the set of jobs alive
for WLAPS+E at time t and let W (t) =

∑
i∈qA(t) wi.

Let qAi (t) be the set of jobs alive for WLAPS+E at time t
that arrive earlier than job i, including job i where ties
are broken arbitrarily but consistently. Let Wi(t) =∑
j∈qAi (t) wj . Let hi(t) = wim/(εW (t)) ifWi(t)−wi ≥

(1 − ε)W (t), let hi(t) = 0 if Wi(t) < (1 − ε)W (t),
and let hi(t) = (Wi(t) − (1 − ε)W (t))m/(εW (t)) oth-
erwise. Let µAi (t) be the phase job i is in at time t un-
der WLAPS+E’s schedule. For each of job i, WLAPS+E
processes i on yµ

A
i (t)
i (hi(t)) processors using wi units of

power.
Our algorithm is similar to LAPS in that it schedules

late arriving jobs, and each of those jobs is allowed to
use up to the same number of machines proportioned by
job weight. However, our algorithm actually leaves some
processors inactive in favor of more energy efficiency. It is
somewhat surprising that even in the speed scaling setting,
a scalable algorithm can be obtained by putting the same
quota on the maximum number of machines that each late
arriving job gets.

We will prove the following theorem.

THEOREM 3.1. For any 0 < ε ≤ 1/6, WLAPS+E is
(1 + 6ε)-speed, 5

ε2 -competitive.

4 Analysis of WLAPS+E

Here, we analyze WLAPS+E in order to prove Theo-
rem 3.1. Set an input instance I , and consider running
the optimal schedule for I using unit speed alongside
WLAPS+E using speed 1 + 6ε. For any job i, let CAi
be the completion time for i under WLAPS+E. For any
time t ≥ ri, let Ai(t) = wi(min{CAi , t} − ri) be the
accumulated weighted flow time of job i at time t and



let Ai = Ai(C
A
i ). Let A(t) denote the total energy that

WLAPS+E has consumed by time t plus the total accu-
mulated weighted flow time in WLAPS+E’s schedule. Fi-
nally, let A = A(∞) be the total weighted flow time plus
power consumption for WLAPS+E. Let OPTi(t), OPTi,
OPT(t) and OPT be defined similarly for the optimal
schedule.

We use a potential function analysis to prove our the-
orem. We give a potential function Φ(t) that is almost
everywhere differentiable such that Φ(0) = Φ(∞) =
0. We will bound the continuous and discrete increases
to A(t) + Φ(t) by a function of OPT. Potential functions
are the dominant form of analysis used for analyzing al-
gorithms in the speed scaling setting. See [30] for a re-
cent tutorial on potential functions. Our potential func-
tion is somewhat similar to the one used by Edmonds and
Pruhs [25] for the formulation of this problem without
energy, but we have modified the terms in the potential
function to account for job weights and our use of the
maximum in selecting how many processors a job should
use. A significant difference between our potential func-
tion and those used in the past is that our potential function
takes the functions Γ into consideration. Previous work on
the speed up curve model used a reduction from the gen-
eral setting to a setting where there are only two possible
speed up functions Γ(h) = h or Γ(h) = 1. We cannot
use this reduction because our algorithm uses the paral-
lelizability of a job phase to make scheduling decisions.
By taking the speed up functions into consideration, our
potential function captures the full generality of the prob-
lem.

Let pAµi (t) and pOµi (t) be the remaining process-
ing time for phase µ of job i at time t for WLAPS+E
and the optimal schedule respectively. Let zµi (t) =

max{pAµi (t)−pOµi (t), 0}. The potential function is com-
posed of one term for each job-phase pair.

Φµi (t) =
wiz

µ
i (t)

gµi (wim/((1 + 2ε)εWi(t)))
.

Our potential function is defined as

Φ(t) =
1

ε2

∑
i∈qA(t),µ

Φµi (t).

We now focus on changes made to A(t) + Φ(t) that
occur over time. Note that job arrivals have no effect
on A(t) + Φ(t). Further, the completion of jobs by
WLAPS+E or the optimal schedule do not cause any
increase inA(t)+Φ(t). This is because when the optimal
solution completes a job there is no effect on the potential
function. When the algorithm completes a job i the terms
corresponding to job i are removed from the potential, and
since all terms are positive, this removal can only decrease
the potential. For any other job j, the quantity Wj(t) may

decrease, but this can only decrease the potential since gµj
is non-decreasing for any µ. Our entire analysis can focus
on the continuous changes to A(t) + Φ(t).

We first summarize simple facts regarding Γui , Q and
gui in the following section. The continuous changes
of Φ(t) due to WLAPS+E and the optimal scheduler’s
processing are addressed in Section 4.2 and 4.3. The
all the changes are aggregated in Section 4.4, yielding
Theorem 3.1.

4.1 Simple observations In this section, we make sev-
eral simple observations that will be useful in our analysis.
We will implicitly use the following observation.

PROPOSITION 4.1. Consider any continuous and con-
cave function f : R+ → R+ with f(0) ≥ 0. Then for
any b ≥ a > 0, we have that f(a)/a ≥ f(b)/b.

Proof. By definition of concave functions, it follows that
f(tx+(1−t)y) ≥ tf(x)+(1−t)f(y) for any real x, y and
t ∈ [0, 1]. Consider setting x = 0, y = b and t = 1 − a

b .
Then we have f(a) ≥ (1− a

b )f(0) + a
b f(b) ≥ a

b f(b).

The above proposition immediately gives the follow-
ing property regarding Q and Γ.

PROPOSITION 4.2. Let a, b be any reals such that b ≥
a > 0. Then Q(b)/Q(a) ≤ b/a. Further for any job i
and µ, it holds that Γµi (b)/Γµi (a) ≤ b/a.

4.2 Changes in Φ(t) due to the optimal solution Fix
a time t. We begin by considering the optimal schedule’s
contribution to d

dtΦ(t). For each job i, let µOi (t) be
the current phase of job i for the optimal schedule at
time t. Let Pi be the number of processors the optimal
schedule assigns to i and let Ei be the total power used
by the optimal schedule to process i. We will place
each job i into one of four categories and then bound the
contribution to d

dtΦ(t) by jobs in each category. The types
of jobs that fit into each category are as follows:

Job Categories
A: Pi > wim

(1+2ε)εWi(t)
and Ei/Pi >

(1+2ε)εWi(t)
m

B: Pi > wim
(1+2ε)εWi(t)

and Ei/Pi ≤ (1+2ε)εWi(t)
m

C: Pi ≤ wim
(1+2ε)εWi(t)

and Ei > wi
D: Pi ≤ wim

(1+2ε)εWi(t)
and Ei ≤ wi

We may assume the optimal schedule is giving
each processor an equal amount of power (Ei/Pi), be-
cause Q is concave. The optimal schedule’s contribution
to d

dtΦ
µ
i (t) is at most

wiΓ
µOi (t)
i (Pi)Q (Ei/Pi)

g
µOi (t)
i (wim/((1 + 2ε)εWi(t)))

.



Category A and B: Suppose job i is in category A or B.
By definition of the function gµ

O
i (t)
i (·), first we observe

that,

Γ
µOi (t)
i (wim/((1 + 2ε)εWi(t)))Q ((1 + 2ε)εWi(t)/m)

≤ gµ
O
i (t)
i (wim/((1 + 2ε)εWi(t))) .

Using this fact we have the following. The second
inequality follows by Proposition 4.2 and the assumption
that job i is in category A or B and therefore Pi >
wim/((1 + 2ε)εWi(t)).

wiΓ
µOi (t)
i (Pi)Q (Ei/Pi)

g
µOi (t)
i (wim/((1 + 2ε)εWi(t)))

≤ wi ·
Γ
µOi (t)
i (Pi)

Γ
µOi (t)
i (wim/((1 + 2ε)εWi(t)))

· Q (Ei/Pi)

Q ((1 + 2ε)εWi(t)/m)

≤ (1 + 2ε)εWi(t)Pi
m

· Q (Ei/Pi)

Q ((1 + 2ε)εWi(t)/m)

If job i is in category A, then we have the following.
The first inequality follows from Proposition 4.2 and the
assumption that job i is in category A and therefore
Ei/Pi > (1 + 2ε)εWi(t)/m.

(1 + 2ε)εWi(t)Pi
m

· Q (Ei/Pi)

Q ((1 + 2ε)εWi(t)/m)

≤ (1 + 2ε)εWi(t)Pi
m

· Eim

(1 + 2ε)εWi(t)Pi
≤ Ei.

The total contribution to d
dtΦ(t) by category A jobs

is at most 1
ε2

d
dtOPT(t). This fact is because

∑
i∈qO(t)Ei

is the total power used by the optimal solution at time t.

Now suppose i is in category B, so Ei/Pi ≤
(1 + 2ε)εWi(t)/m. Function Q is increasing, so we ob-
serve that Q (Ei/Pi) ≤ Q ((1 + 2ε)εWi(t)/m). Hence,

(1 + 2ε)εWi(t)Pi
m

· Q (Ei/Pi)

Q ((1 + 2ε)εWi(t)/m)

≤ (1 + 2ε)εWi(t)Pi
m

≤ (1 + 2ε)εW (t)Pi
m

.

The optimal schedule has a total of m processors to
work with, so the total contribution to d

dtΦ(t) by category
B jobs is at most (1/ε2)

∑
i∈qO(t)

(1+2ε)εW (t)Pi
m =

((1 + 2ε)/ε)W (t)
∑
i∈qO(t)

Pi
m ≤ (1 + 2ε)W (t)/ε. Here

qO(t) denotes the set of alive jobs at time t in the optimal

schedule.

Category C and D: Suppose job i is in category C or D.
By definition of the function gµ

O
i (t)
i (·) and the assumption

that Pi ≤ wim/((1 + 2ε)εWi(t)) since i is in category C
or D, we have that,

Γ
µOi (t)
i (Pi)Q (wi/Pi) ≤ g

µOi (t)
i (wim/((1 + 2ε)εWi(t))) .

Suppose i is in category C. We see the following. The
first inequality follows from the above observation. The
second inequality follows from Proposition 4.2 and the
assumption that Ei > wi.

wiΓ
µOi (t)
i (Pi)Q (Ei/Pi)

g
µOi (t)
i (wim/((1 + 2ε)εWi(t)))

≤ wi ·
Γ
µOi (t)
i (Pi)

Γ
µOi (t)
i (Pi)

· Q (Ei/Pi)

Q (wi/Pi)
≤ wi ·

Ei
wi

= Ei.

The total contribution to d
dtΦ(t) by category C jobs

is at most 1
ε2

d
dtOPT(t). Again, this fact is because∑

i∈qO(t)Ei is the total power used by the optimal
solution at time t.

Finally, suppose job i is in category D, then knowing
that Q is increasing and Ei ≤ wi we have

wiΓ
µOi (t)
i (Pi)Q (Ei/Pi)

g
µOi (t)
i (wim/((1 + 2ε)εWi(t)))

≤ wi ·
Γ
µOi (t)
i (Pi)

Γ
µOi (t)
i (Pi)

· Q (Ei/Pi)

Q (wi/Pi)
≤ wi.

The total contribution to d
dtΦ(t) by category D jobs is at

most 1
ε2

d
dtOPT(t). This is because

∑
i∈qO(t) wi is the

increase in the weighted flow objective for the optimal
solution at time t.

In sum, the optimal scheduler’s contribution to
d
dtΦ(t) is at most

(4.1) (2 +
1

ε
)W (t) +

3

ε2
d

dt
OPT(t).

4.3 Change in Φ(t) due to the algorithm Now we dis-
cuss the contributions to d

dtΦ(t) from WLAPS+E. Recall
that qO(t) is the set of jobs alive for the optimal schedule

at time t. For each job i ∈ qA(t), we note zµ
A
i (t)

i (t) is

positive if i /∈ qO(t). Hence zµ
A
i (t)

i (t) decreases for all
jobs i /∈ qO(t) that WLAPS+E processes at time t. Recall
we are running WLAPS+E at speed 1 + 6ε.



Let qA
′
(t) be the set of jobs i where hi(t) =

wim/(εW (t)). For every job i ∈ qA
′
(t), we

have Wi(t) ≥ (1− ε)W (t).
Let ∆q be the contribution to d

dtΦ(t) from
WLAPS+E processing jobs in qA

′
(t). We see that ∆q is

less than,

−
(1 + 6ε)

ε2

∑
i∈qA′ (t)\qO(t)

wig
µAi (t)
i (wim/(εWi(t)))

g
µAi (t)

i (wim/((1 + 2ε)εWi(t)))

≤ −
(1 + 6ε)

ε2

∑
i∈qA′ (t)\qO(t)

wig
µAi (t)
i (wim/(εWi(t)))

g
µAi (t)

i (wim/((1 + 2ε)ε(1− ε)W (t)))

≤ −
(1 + 6ε)

ε2

∑
i∈qA′ (t)\qO(t)

wig
µAi (t)
i (wim/(εWi(t)))

g
µAi (t)

i (wim/(εW (t)))

≤ −
(1 + 6ε)

ε2

∑
i∈qA′ (t)\qO(t)

wi

= −
1 + 6ε

ε
·W (t)

∑
i∈qA′ (t)\qO(t)

hi(t)

m

[Since hi(t) = wim/(εW (t)) for i ∈ qA
′
(t)]

The second line holds since g
µAi (t)
i is an non-

decreasing function. The third line follows from the as-
sumption that 0 < ε ≤ 1/6 in addition to gµ

A
i (t)
i being

non-decreasing.
There may be a single job j with 0 < hj(t) <

wjm/(εW (t)). Let ∆j be the contribution to d
dtΦ(t)

due to WLAPS+E processing such a job j. We
show that ∆j ≤ − 1+6ε

ε · W (t)
∑
i∈{j}\qO(t)

hi(t)
m .

Assume that j /∈ O(t), since the inequality triv-
ially holds otherwise. Let k > 1 be such
that hj(t) = (1/k)wjm/(εW (t)). Observe by

Proposition 4.2 that g
µAj (t)

j ((1/k)wjm/(εW (t))) ≥

(1/k)g
µAj (t)

j (wjm/(εW (t))). A similar algebra to that
just shown gives ∆j ≤ − 1

k ·
1+6ε
ε2 · wj = − 1+6ε

ε ·
W (t) · hj(t)m . Hence the total contribution to d

dtΦ(t) from
WLAPS+E’s processing is

∆q + ∆j ≤ −
1 + 6ε

ε
·W (t)

∑
i∈qA(t)∪{j}\qO(t)

hi(t)

m

≤ −1 + 6ε

ε
·W (t)

[ ∑
i∈qA(t)∪{j}

hi(t)

m
−

∑
i∈qO(t)

hi(t)

m

]
≤ −1 + 6ε

ε
·W (t)

(
1−

∑
i∈qO(t)

wi
εW (t)

)

= −1 + 6ε

ε
W (t) +

1 + 6ε

ε2
d

dt
OPT(t)

(4.2)

The second line holds since WLAPS+E dis-
tributes machines among jobs in such a way that∑
i∈qA(t)∪{j}

hi(t)
m = m and hi(t) ≤ wim

εW (t) .

4.4 Final analysis: putting the pieces all together
In this section, we complete the analysis by aggregat-
ing all changes of A(t) and Φ(t). Recall that when
jobs arrive or are completed, Φ(t) does not increase.
Hence, there are no positive discontinuous changes in
Φ(t). Observe d

dtA(t) ≤ 2W (t) because the increase
in WLAPS+E’s weighted flow objective is W (t) and the
most energy the algorithm uses at this time is W (t). By
integrating over time d

dtA(t), and (4.1) and (4.2), the
contributions to d

dtΦ(t) from WLAPS+E and the optimal
scheduler’s processing, we have

A ≤
∫ ∞
t=0

d

dt
A(t) +

d

dt
Φ(t)dt

≤
∫ ∞
t=0

2W (t) + (4.1) + (4.2)dt

≤
∫ ∞
t=0

2W (t) + (2 +
1

ε
)W (t) +

3

ε2
d

dt
OPT(t)

− 1 + 6ε

ε
W (t) +

1 + 6ε

ε2
d

dt
OPT(t)dt

≤ (
6

ε
+

4

ε2
)OPT ≤ 5

ε2
OPT [Since 0 < ε ≤ 1/6].

Here the first inequality follows, since Φ(0) =
Φ(∞) = 0, and there is no positive discontinuous change
of Φ(t). This completes the proof of Theorem 3.1. By
scaling ε appropriately, we obtain Theorem 1.1.
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A Integral Processor Assignments and an
Assumption on Γ and Q

Consider Assumption 3.1. To see why the assumption is
necessary, consider Γ(h) = hα and Q(h) = hβ where
0 < α < β ≤ 1. Then Υw(h) = (1/h)β−α and there
exists no 0 < h∗ ≤ h that maximizes Υw(h∗). In this
case, the phase of speedup curve Γ can be finished instan-
taneously by using an infinitesimal number of processors!

We now discuss why such a degenerate case does not
occur in practice. Although a speedup curve Γ is defined
over R+, assigning a fractional number of machines to
a job is not permitted when there are only finite number
of machines in practice. In fact, it would better capture
reality to assume that Γ is defined only over non-negative
integers. Then one can extend the domain to R+ by
making Γ(h) a piecewise linear function as follows. For
a non-integer positive number h = h′ + λ, where h′ is an
integer and 0 < λ < 1,

Γ(h) = (1− λ)Γ(h′) + λΓ(h′ + 1).

This extension implies that during an infinitesimal
interval of length dt, the job in consideration is processed
on h′ processors for (1−λ)dt units of time and on h′+1
machines for λdt units of time. Observe that the average
number of machines used during the interval is exactly
h. Then we say that the job can be scheduled integrally
compatible. It is not difficult to see that one can find a
schedule where all alive jobs can be scheduled integrally
compatible: Initially give bxi(t)c processors to each job
i. Consider an infinitesimal interval [t, t+ dt). Consider
jobs in any order, and the remaining machines one by
one. Each of the remaining machines is available during
[t, t+ dt). Think of job i as having size xi(t)− bxi(t)c.
Schedule job i on the machine in consideration, and if
necessary on the next remaining machine. Each machine
is used from the earliest time t to t+ dt.

Then Υw(·) can be naturally defined over a fractional
value h = h′ + λ as follows:

Υw(h) =


λΓ(1)Q(wλ ) if 0 < h < 1

(1− λ)Γ(h′)Q(wh
′

h ·
1
h′ ) if h ≥ 1

+λΓ(h′ + 1)Q(w(h′+1)
h · 1

h′+1 )

In words, during an interval [t, t+dt), for 0 < h < 1,
we run the job on a single machine with power wλ for λdt

time steps. Observe that the average power dedicated to
the job per a unit time is exactly λwλ = w. For h ≥ 1,
we run the job on h′ machines, each with power w

h for
(1 − λ)dt time steps, and on h′ + 1 machines, each
with the same power w

h for λdt time steps. Likewise,
the average power usage per a unit time is (1 − λ)h′wh +
λ(h′ + 1)wh = w. Hence the schedule suggested by the
above extension of Γ and Υ preserves the power and the
number of machines used in addition to being feasible.

Further, observe that the above semantics gives the
same definition of Υw(h) = Γ(h) · Q(wh ). Indeed, when
0 < h < 1,

Γ(h) ·Q(
w

h
) = Γ(λ) ·Q(

w

λ
) = λΓ(1) ·Q(

w

h
).

Also when h ≥ 1,

Γ(h) ·Q(
w

h
) =

(
(1− λ)Γ(h′) + λΓ(h′ + 1)

)
Q(
w

h
).

Now when considering the extension of Γ defined
only over non-negative integers, note that for h ∈ (0, 1],
Υw(h) = hΓ(1)Q(wh ) is maximized when h = 1, sinceQ
is concave andQ(0) = 0; see Proposition 4.2. Further, for
all reasonably-behaving functions Q (e.g., differentiable),
Υw has a maximum value over any compact set in R+.
Hence we conclude that there always exists 0 < h∗ ≤ h
such that Υw(h∗) is maximized.
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