
Operations Research Letters 40 (2012) 180–184
Contents lists available at SciVerse ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Speed scaling for stretch plus energy

Daniel Cole a,∗, Sungjin Im b, Benjamin Moseley b, Kirk Pruhs a

a Computer Science Department, University of Pittsburgh, United States
b Department of Computer Science, University of Illinois, United States

a r t i c l e i n f o

Article history:
Received 22 August 2011
Accepted 19 February 2012
Available online 27 February 2012

Keywords:
Speed scaling
Scheduling
Energy
Online algorithms

a b s t r a c t

We consider speed scaling problems where the objective is to minimize a linear combination of arbitrary
scheduling objective S, and energy E . A natural conjecture is that there is an O(1)-competitive algorithm
for S on a fixed speed processor if and only if there is an O(1)-competitive algorithm for S + E on a
processor with an arbitrary power function. We give evidence to support this conjecture by providing an
O(1)-competitive algorithm for the objective of integer stretch plus energy.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

All major chip makers now produce speed scalable chips and
associated power management software. The algorithmic speed
scaling literature studies the interplay between the system’s speed
scaling policy, which determines the speed of the processor at each
time, and the system’s job selection policy, which determines the
task/job that is processed at each time. The processor is assumed
to have a power function P(s) specifying the power used by the
processor when running at speed s. The system is assumed to
have conflicting dual objectives: a scheduling quality of service
objective, and an energy objective. To reconcile these conflicting
objectives, one major line of algorithmic speed scaling research
considers the objective of minimizing a linear combination αS +

βE of a scheduling objective S and energy consumption E [1–12].
Here, α and β specify the relative importance of the scheduling
objective and energy. Intuitively, the optimal schedule for the
objective αS + βE is one that invests energy in such a way as
to give the best resulting decrease in the scheduling objective S
until the investment of an additional unit of energy cannot result
in a schedule that reduces the scheduling objective by more than
β

α
. By rescaling the units of time and energy one may assume

without loss of generality that α = β = 1. The most common
measure of goodness for a scheduler is the worst case relative
error (the competitive ratio) of a resulting schedule relative to
the optimal schedule. Naturally, one seeks schedulers where the
competitiveness is relatively small.

∗ Correspondence to: Department of Computer Science, University of Pittsburgh,
Pittsburgh, PA 15260, United States.

E-mail address: dcc20@cs.pitt.edu (D. Cole).

0167-6377/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2012.02.003
One natural question for either clairvoyant or non-clairvoyant
schedulers is as follows. ‘‘For what scheduling objectives S is there
a speed scaling algorithm that is constant competitive for S + E
when the power function is arbitrary?’’. A constant competitive
algorithm is achievable for some scheduling objectives. For
example, for the scheduling objective of integer flow, there is a
clairvoyant speed scaling algorithm that is constant competitive
for an arbitrary power function [4]. This algorithm uses Shortest
Remaining Processing Time (SRPT) for job selection and, at
each time, chooses the processor speed that results in power
consumption equal to the number of unfinished jobs. For
the scheduling objective of fractional weighted flow, there
is a clairvoyant speed scaling algorithm that has constant
competitiveness for an arbitrary power function [4]. This algorithm
uses Highest Density First (HDF) for job selection and, at each
time, sets the processor speed so that the power consumption
equals the total fractional weight of the unfinished jobs. Both of
these speed scaling algorithms use the ‘‘natural’’ speed scaling
algorithm that balances the rate of increase of the scheduling
objectivewith the rate of increase of the energy objective by setting
the instantaneous increase of the power consumption equal to the
instantaneous increase of the scheduling objective S. For some
scheduling objectives, constant competitiveness is only achievable
when restrictions are placed on the growth rate of the power
function P .

In [6], Chan et al. showed that non-clairvoyant speed scaling
algorithms cannot achieve constant competitiveness for the
objective of integer flow plus energy if the power function is
too steep, although constant competitiveness is achievable if P is
assumed to be bounded by a polynomial with a constant degree.
They extended the previous result in [13] that showed there is no

http://dx.doi.org/10.1016/j.orl.2012.02.003
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
mailto:dcc20@cs.pitt.edu
http://dx.doi.org/10.1016/j.orl.2012.02.003

D. Cole et al. / Operations Research Letters 40 (2012) 180–184 181
non-clairvoyant algorithm with constant competitiveness for the
objective of integer flow time on a fixed speed processor. Given
the evidence to date, we make the following bold, yet natural,
conjecture.

Conjecture. There exists an online scheduling algorithm that is
constant competitive on a fixed speed processor for the scheduling
objective S if and only if there exists an online scheduling algorithm
that is constant competitive for the scheduling objective S + E when
an arbitrary power function is considered.

Unfortunately, it seems hard to imagine that the conjecture
can be formally proven. A difficulty in showing the conjecture
is that it does not seem possible to use the fact that constant
competitiveness is achievable by an algorithm A for the scheduling
objective S in the fixed speed setting as a black box to deduce
anything about A in the speed scaling setting. Indeed, all previous
analysis of algorithms in the speed scaling setting must know why
A was constant competitive in the fixed speed setting. Thus, to
gain confidence of the truth of this conjecture perhaps one must
settle for showing that the conjecture holds for particular natural
scheduling objectives.

One of the most obvious scheduling objectives to consider to
further test this conjecture is the integer stretch objective. It is
known that SRPT is 2-competitive for integer stretch in the fixed
speed setting [14]. The integer stretch of a job is the job’s integer
flow time divided by the size of the job. This metric measures how
much the completion of the job was slowed down relative to what
it would have been on a dedicated unit speed processor. In cases
where the user has some idea of the size of the job (for example
when downloading static files from a web server, the user may
know that video files are generally larger and will take longer than
text files), integer stretch may be a better measure of the user
perceived quality of service than integer flow.

In Section 3, we show that constant competitiveness is
achievable by a clairvoyant speed scaling algorithm A for the
objective of integer stretch plus energy. The job selection algorithm
is a variation of HDF, and the speed scaling algorithm is a variation
of the natural algorithm. This can be viewed as evidence supporting
the conjecture. One difficulty in analyzing the competitiveness
of this algorithm is that there is no optimal online scheduling
algorithm for the objective of integer stretch in the setting of a
fixed speed processor [14]. The analyses in [4] of speed scaling
algorithms for arbitrary power functions critically uses the fact
that the scheduling algorithms considered (SRPT for the scheduling
objective of integer flow and HDF for the scheduling objective
of fractional weighted flow) are not only optimal, but have the
additional property that they do not fall any further behind an
arbitrary algorithm when starting from arbitrary configurations.
Since we cannot use the optimality of the scheduling algorithm in
the fixed speed setting, our analysis is necessarily very different
from the amortized local competitiveness analyses in [4]. By
contrast, we introduce a new algorithm A and our analysis bounds
the integer stretch of the algorithm A by its fractional stretch and
the aggregate integer stretch accumulated from jobs during times
they are processed by A. This allows us to focus on the scheduling
objective of fractional weighted flow (a generalization of fractional
stretch) plus energy. For this objective HDF is known to be 2-
competitive.We bound the integer stretch of the currently running
job by the optimal schedule’s integer stretch for this job and the
energy the optimal schedule uses while running this job.

1.1. Related results

Pruhs et al. [15] considered the problem of minimizing integer
flow subject to an energy constraint, and gave an efficient offline
algorithm for the case of unit size jobs. The problem of minimizing
integer flow time plus energy was first proposed in [1]. They
considered the unbounded speed scaling model with power
function P(s) = sα , and gave an O(1)-competitive algorithm
for the case of unit jobs. These results were improved upon
in [5] which showed that the natural speed scaling algorithm
is 4-competitive for integer flow time plus energy for unit jobs.
Bansal et al. [5] further considered the objective of fractional
weighted flow plus energy and gave an O(α/ log(α))-competitive
algorithm which, using standard resource augmentation, implies
an O((α/ log(α))2)-competitive algorithm for integer weighted
flow plus energy. Lam et al. [11] gave an O(α/ log(α))-competitive
algorithm for integer flow plus energy for arbitrary sized jobs. In
the case that there is an upper bound on the speed of the processor,
Bansal et al. [3] gave an O(α/ log(α))-competitive algorithm for
fractional weighted flow time plus energy for arbitrary sized jobs.

Speed scaling with arbitrary power functions was first consid-
ered in [4]. Bansal et al. [4] shows that the speed scaling algo-
rithm that runs at a power equal to 1 plus the number of active
jobs, and that uses SRPT for job selection is a 3-competitive algo-
rithm for the objective of integer flow plus energy. Bansal et al. [4]
also shows that the speed scaling algorithm that runs at power
equal to the fractional weighted flow of all unfinished jobs, and
that uses HDF for job selection is a 2-competitive algorithm for the
objective of fractional weighted flow plus energy. Andrew et al. [2]
shows that one could modify the analysis in [4] to show that the
speed scaling algorithms that runs at a power equal to the num-
ber of unfinished jobs, and that uses SRPT for job selection is 2-
competitive for the objective of integer flow plus energy. Andrew
et al. [2] further showed that no ‘‘natural’’ online speed scaling al-
gorithm can be better than 2-competitive. Andrew et al. [2] also
showed that, for P(s) = sα power functions, the natural speed
scaling algorithm with processor sharing (PS) for job selection is
max {4α − 2, 2(2 − 1/α)α}-competitive. Gupta et al. [8,9] show
how to extend the analyses in [4] to a setting of power heteroge-
neous multiprocessors.

2. Preliminaries

An instance I consists of n jobs that arrive over time. Job i has
release (arrival) time ri, work/size pi, and possibly a weight wi. The
density of a job is its weight divided by total size, that is wi/pi. A
clairvoyant online scheduler is not aware of job i until time ri, at
which time it learns pi and wi. A nonclairvoyant scheduler does
not learn pi at time ri. At each time the scheduler specifies a job to
process and a speed for the processor. Preemption is allowed, that
is, a job may be suspended and later restarted from the point of
suspension. A job i is completed once pi units of work have been
processed on i. The speed is the rate at which work is processed. If
job i of work pi is run at a constant speed s until completion then
job iwill complete pi/s time units after being started.

For a fixed schedule σ , we let Cσ
i denote job i’s completion time.

The flow (time) Fσ
i = Cσ

i − ri of job i is the time that elapses
after the job arrives until being completed. When the considered
schedule σ is clear in the context, we may omit the superscript
σ . Job i’s integer stretch is Fi/pi, and its integer weighted flow is
wiFi. The integer stretch of a job can be viewed as a special case of
integer weighted flow where the weight is the reciprocal of the
job’s size. The integer flow of a schedule is

n
i=1 Fi. The integer

stretch of a schedule is
n

i=1 Fi/pi, and the integer weighted flow
is

n
i=1 wiFi. If the unfinished work of job i at time t is pi(t) then

the fractional size of job i at time t is pi(t)/pi and the fractional
weight of job i at time t is wi(pi(t)/pi). The fractional flow of job i
is defined to be

∞

ri
pi(t)/pi dt and the fractional weighted flow of

job i is

∞

ri
wi(pi(t)/pi) dt. The fractional flow time and fractional

weighted flow time of a schedule are the sum over all jobs of the

182 D. Cole et al. / Operations Research Letters 40 (2012) 180–184
fractional flow time or fractional weighted flow time respectively.
The fractional stretch of a schedule is the same as the fractional
weighted flow time where the weight of job i is set to 1/pi.

We adopt the speed scaling model originally proposed in [4]
that essentially allows the power function to be arbitrary. In
particular the power function may have a maximum power
consumption rate, and hence maximum speed. The only real
restriction on the power function is that it is piecewise continuous,
differentiable, and integrable. It is shown in [4] that without loss of
generality, we can assume that the power function P: [0, smax] →

[0, Pmax] is continuous, differentiable, and convex, such that
P(0) = 0 and P(smax) = Pmax. Here smax (Pmax) denote the
maximum possible speed (power). By definition Pmax = P(smax).
The energy (consumption) of a schedule is the power usage
integrated over time.

We use WF , S, S , and E to denote the objectives of fractional
weighted flow, integer stretch, fractional stretch, and energy,
respectively. We use WF ⊕ E and S ⊕ E to denote the objective
of fractional weighted flow plus energy and integer stretch plus
energy, respectively. For an algorithm A we denote the schedule
output by A on input I by A(I). We useOPT (I) to denote the optimal
schedule for the objective under consideration. For example, WF⊕

E ⟨A(I)⟩ denotes the fractional weighted flow plus energy for the
schedule output by algorithm A on input I , and S ⊕ E ⟨OPT (I)⟩
denotes the optimal integer stretch plus energy for input I .

3. An algorithm for stretch plus energy with bounded compet-
itiveness

In this section, we give a clairvoyant speed scaling algorithm
A, and show that A is O(1) competitive for the objective of
integer stretch plus energy on a processor with an arbitrary power
function. We start by giving a definition of the online algorithm
from [4], which we call BCP. BCP takes as input an online sequence
of jobs with release times, sizes, and weights.
Definition of online algorithm BCP. At any time t , BCP always runs
the unfinished job with the highest density at power

Pb(t) = min {wb(t), Pmax}

where Pmax is the maximum power and wb(t) is the sum of the
fractional weights of all unfinished jobs for BCP at time t .

We will assume that in case of equal density jobs, BCP breaks
ties in favor of earlier released jobs. One of the two main results
in [4] is Theorem 1, that BCP is 2-competitive for the objective of
fractional weighted flow plus energy.

Theorem 1 ([4]). For all inputs I, WF ⊕ E ⟨BCP(I)⟩ ≤ 2 · WF ⊕

E ⟨OPT (I)⟩.

At a high level, A is the same as BCP with two important
differences. The first difference is that A rounds the weight of each
job up so that the density is an integer power of some constant
f > 1, so that 1

pj
≤ wj <

f
pj
. This is to prevent the algorithm

A from preempting between jobs of similar densities. The second
difference is that A never lets the power fall below one over the
work of the active job. Let I be an arbitrary instance of jobs with
release times and sizes. Let I ′ be the corresponding instance where
additionally all jobs j have weights wj, where wj is the minimal
real number, not less than 1/pj, such that wj/pj is an integer
power of f . The algorithm A can either be thought of as running
on an unweighted instance, where the algorithm instantiates the
weights, or on a weighted instance in which weights are provided
as part of the input.
Definition of online algorithm A. When considering an unweighted
instant I , A assigns jobs the weights that they would have in
instance I ′. At any time t , A runs the highest density job, breaking
ties in favor of earlier released jobs, at power

Pa(t) = min

max

wa(t),

1
pa(t)

, Pmax

where a(t) is the job being processed at time t , pa(t) is the size of
a(t), andwa(t) is the sumof the fractional weights of all unfinished
jobs at time t .

We show that, by picking f ≈ 2.015, A is approximately 9.414-
competitive for the objective of integer stretch plus energy. Our
analysis can be summarized as the following sequence of bounding
steps:

S ⊕ E⟨A(I)⟩

≤ WF ⊕ E⟨A(I ′)⟩ +

1 +

√
f

√
f − 1

t

1
pa(t)

(Lemma 2)

≤ WF ⊕ E⟨A(I ′)⟩

+

1 +

√
f

√
f − 1

S ⊕ E⟨OPT (I)⟩ (Lemma 3)

≤ (2f + 1) · S ⊕ E⟨OPT (I)⟩

+

1 +

√
f

√
f − 1

S ⊕ E⟨OPT (I)⟩ (Lemma 4)

=

2f + 2 +

√
f

√
f − 1

S ⊕ E⟨OPT (I)⟩

≈ 9.414 · S ⊕ E⟨OPT (I)⟩.

Before proving each of the lemmas used above, we give some
intuitive explanation of the lemmas. Lemma 2 shows that the
integer stretch of A is bounded by the fractional weighted flow of
A plus the aggregate integer stretch accumulated from jobs while
they are run by A. The proof relies on the fact that densities of
the preempted jobs in A’s schedule form a geometric sequence.
Lemma 3 shows via a charging scheme that the aggregate integer
stretch accumulated from jobs while they are run by A is at most
the optimal integer stretch plus energy. Intuitively, this lemma
can be explained as follows. For each job j, consider the times
that j is processed by A and OPT . If OPT processes j faster than A
by using more power, j’s integer stretch can be charged to OPT ’s
power usage. Otherwise, job j, as an active job, contributes to A’s
integer stretch less than OPT ’s integer stretch. Lemma 4 relates the
fractional weighted flow plus energy for A to the optimal integer
stretch plus energy. Recall that A uses the same speed scheduling
policy as BCP except that it runs at power at least 1/pa(t) at any
time t . Let us call the time periods that A uses power exactly
1/pa(t) as minimum power periods and the other time periods as
normal time periods. By mimicking the analysis of BCP, we can
bound the fractional flow for A, plus the energy used by A during
normal time periods. We separately bound the energy used by A
duringminimumpower periods by the integer stretch of the active
jobs. Before preceding to these lemmas, in Lemma 1 we make an
intuitive observation that the optimal fractional weighted flow for
instance I ′ is atmost f times the optimal integer stretch plus energy
for instance I .

Lemma 1. WF ⊕ E

OPT (I ′)

≤ f · S ⊕ E ⟨OPT (I)⟩.

Proof. First note that WF ⊕ E

OPT (I ′)

≤ f · S ⊕ E ⟨OPT (I)⟩

since each weight wj in I ′ is at most f /pj. Further it follows thatS ⊕ E ⟨OPT (I)⟩ ≤ S ⊕ E ⟨OPT (I)⟩ since the fractional stretch of any
schedule is no more than the integer stretch of that schedule. �

Lemma 2. S ⊕ E⟨A(I)⟩ ≤ WF ⊕ E⟨A(I ′)⟩ +

1 +

√
f

√
f−1

t

1
pa(t)

.

D. Cole et al. / Operations Research Letters 40 (2012) 180–184 183
Proof. Throughout this lemma, we will implicitly use the fact
that A creates the same schedule for the instance I and the
instance I ′ by definition of A. To show the lemma, we focus on
showing the stronger statement that S ⟨A(I)⟩ ≤ WF

A(I ′)

+

1 +

√
f

√
f−1

t

1
pa(t)

. Notice that this is strictly a stronger statement

because the energy used by A is the same for I ′ and I . Fix a time t .
We partition the unfinished jobs in A’s schedule at time t into three
sets: the running job, a(t), the set Au(t) of jobs that have not been
processed by A, and the set Ap(t) of jobs that have been partially
processed by A, excluding the running job a(t). It is sufficient to
establish the following invariant:
i∈Au(t)

1
pi

+

i∈Ap(t)

1
pi

+
1

pa(t)

≤

i∈Au(t)

wi
pi(t)
pi

+

1 +

√
f

√
f − 1

1

pa(t)
.

Proving this invariant is sufficient to prove the lemma because
the left hand side of the inequality is the instantaneous increase in
the stretch objective for A’s schedule at time t and

i∈Au(t) wi

pi(t)
pi

is the instantaneous increase in the fractional weighted flow time
of A’s schedule at time t . Thus, if this inequality can be shown for
all times t , then by integrating over time the lemma follows.

By definition pi(t)/pi = 1 for unprocessed jobs. Also, wi ≥ 1/pi
by the definition of I ′. Knowing this, we have
i∈Au(t)

1
pi

≤

i∈Au(t)

wi
pi(t)
pi

.

Thus to establish our invariant, it is sufficient to show that
i∈Ap(t)

1
pi

≤

√
f

√
f − 1

1
pa(t)

.

Consider the jobs d(0), . . . , d(m) in Ap(t) by increasing order
of arrival time where m = |Ap(t)|. By the definition of I ′, any two
jobs either have equal densities or their densities differ by at least
a factor of f . Knowing that all jobs in Ap(t) have been partially
processed by A and that A breaks ties in favor of jobs with earlier
release dates, it must be the case that f wd(i)

pd(i)
≤

wd(i+1)
pd(i+1)

for 0 ≤ i ≤

m − 1 and f wd(m)

pd(m)
≤

wa(t)
pa(t)

. Hence we have wd(i)
pd(i)

≤
1

fm−i+1
wa(t)
pa(t)

. For

any job j, by definition of wj, 1
pj

≤ wj <
f
pj
. Knowing this, we have

that 1
(pd(i))2

≤
wd(i)
pd(i)

≤
1

fm−i+1
wa(t)
pa(t)

≤
1

fm−i
1

(pa(t))2
. Thus we have,

i∈Ap(t)

1
pi

=

m
i=0

1
pd(i)

≤

m
i=0

1√
f
m−i

1
pa(t)

≤
1

pa(t)

∞
i=0

1√
f
i =

√
f

√
f − 1

1
pa(t)

. �

Lemma 3.

t

1
pa(t)

≤ S ⊕ E ⟨OPT (I)⟩.

Proof. Consider any arbitrary job j with total work pj, and an
arbitrary infinitesimal portion of that work dpj. Let dtA be the
amount of time that A spends actively working on pj to complete
the dpj portion of pj’s work, and let dtO be the amount of time that
OPT spends actively working on pj to complete the dpj portion of
pj’s work. We call dtA/pj the contribution of dpj to

t

1
pa(t)

. Our goal
is to bound the contribution of dpj by the optimal solution’s cost
when the optimal solution processes the dpj portion of pj’s work.
Once this is shown, by integrating over all portion’s of pj’s work and
summing over all jobs, the lemma follows. We consider two cases
depending on the relationship of dtA and dtO.
First consider the case where dtA ≤ dtO. In this case, we can
charge the contribution of dpj, to the integer stretch penalty OPT
incurs while processing the dpj portion of pj. Indeed, the integer
stretch penalty OPT incurs for job j is dtO/pj during this time. Now
consider the other casewhere dtA > dtO. In this case, the convexity
of the power function implies that A uses no more energy than
OPT while processing the dpj portion of pj. In particular, A’s energy
usage is strictly smaller Pmax. Thus, by definition of A, A runs the
processor using power at least 1/pj the entire time the dpj portion
of pj is being processed. This implies that the energy used by A to
complete the work dpj is at least the integer stretch penalty dpj/pj
incurred by A. Hence we can charge dpj/pj to the energy that OPT
uses to process dpj. �

Lemma 4. WF ⊕ E⟨A(I ′)⟩ ≤ (2f + 1) · S ⊕ E⟨OPT (I)⟩.
Proof. For instances where densities are integer powers of f , the
only difference between the algorithm A and the algorithm BCP
is that on some configurations A would run faster than BCP. In
particular, at times when wa(t) < 1/pa(t) ≤ Pmax, A will run at
power 1/pa(t) while BCPwould only run at powerwa(t). Recall that
these times are called the minimum power periods for A.

The analysis of BCP in [4] uses an amortized local competitive-
ness argument. That is, it gives a potential functionΦ(t) so that the
following invariant holds at all times t:

wa(t) + Pa(t) +
dΦ(t)
dt

≤ 2(wo(t) + Po(t))

where P(t) is the power used by A, wo(t) is the unfinished
fractional weight for the optimal schedule and Po(t) is the power
used in the optimal schedule. This invariant establishes that for
BCP, WF ⊕ E⟨BCP(I ′)⟩ ≤ 2 ·WF⊕ E⟨OPT (I ′)⟩. Hence by Lemma 1,WF ⊕ E⟨BCP(I ′)⟩ ≤ 2f · S ⊕ E ⟨OPT (I)⟩. If we attempted to repeat
this analysis with the algorithm A, the only problem is that during
theminimumpower periods, Amight run faster than BCP,meaning
that this analysis would not account for all the energy used by A
during the minimum power periods. Therefore, the only task left
is to bound the total power used by A during the minimum power
periods. Note that any time t that is a minimum power period, A
uses power 1/pa(t). Therefore, the total energy consumption by A
during all the minimum power periods is bounded by

t 1/pa(t). By

Lemma 3, it is atmost S⊕E ⟨OPT (I)⟩. Combining this quantitywith
the upper bound obtained following the BCP analysis completes
the proof. �

Acknowledgments

This was supported in part by NSF grants CCF-0830558 and
1115575, and an IBM Faculty Award. It was partially supported by
NSF grants CCF-0728782 and CCF-1016684.

References

[1] S. Albers, H. Fujiwara, Energy-efficient algorithms for flow timeminimization,
ACM Transactions on Algorithms 3 (4) (2007) 49:1–49:17.

[2] L.L. Andrew, M. Lin, A. Wierman, Optimality, fairness, and robustness in
speed scaling designs, in: ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, 2010, pp. 37–48.

[3] N. Bansal, H.-L. Chan, T.-W. Lam, L.-K. Lee, Scheduling for speed bounded pro-
cessors, International Colloquium on Automata, Languages and Programming,
Part I (2008) 409–420.

[4] N. Bansal, H.-L. Chan, K. Pruhs, Speed scaling with an arbitrary power function,
in: ACM-SIAM Symposium on Discrete Algorithms, 2009, pp. 693–701.

[5] N. Bansal, K. Pruhs, C. Stein, Speed scaling forweighted flow time, SIAM Journal
on Computing 39 (4) (2009) 1294–1308.

[6] H.-L. Chan, J. Edmonds, T.-W. Lam, L.-K. Lee, A.Marchetti-Spaccamela, K. Pruhs,
Nonclairvoyant speed scaling for flow and energy, Algorithmica 61 (3) (2011)
507–517.

[7] H.-L. Chan, J. Edmonds, K. Pruhs, Speed scaling of processes with arbitrary
speedup curves on a multiprocessor, Theory of Computing Systems 49 (4)
(2011) 817–833.

[8] A. Gupta, R. Krishnaswamy, K. Pruhs, Nonclairvoyantly scheduling power-
heterogeneous processors, in: International Conference on Green Computing,
2010, pp. 165–173.

184 D. Cole et al. / Operations Research Letters 40 (2012) 180–184
[9] A. Gupta, R. Krishnaswamy, K. Pruhs, Scalably scheduling power-
heterogeneous processors, International Colloquium on Automata, Languages
and Programming, Part I (2010) 312–323.

[10] T.-W. Lam, L.-K. Lee, H.-F. Ting, I.K. To, P.W. Wong, Sleep with guilt and work
faster to minimize flow plus energy, International Colloquium on Automata,
Languages and Programming, Part I (2009) 665–676.

[11] T.-W. Lam, L.-K. Lee, I.K. To, P.W. Wong, Speed scaling functions for flow time
scheduling based on active job count, in: European Symposium on Algorithms,
2008, pp. 647–659.
[12] T.-W. Lam, L.-K. Lee, I.K.K. To, P.W.H. Wong, Nonmigratory multiprocessor
scheduling for response time and energy, IEEE Transactions on Parallel and
Distributed Systems 19 (11) (2008) 1527–1539.

[13] R. Motwani, S. Phillips, E. Torng, Non-clairvoyant scheduling, Theoretical
Computer Science 130 (1) (1994) 17–47.

[14] S. Muthukrishnan, R. Rajaraman, A. Shaheen, J.E. Gehrke, Online scheduling to
minimize average stretch, SIAM Journal on Computing 34 (2) (2005) 433–452.

[15] K. Pruhs, P. Uthaisombut, G.Woeginger, Getting the best response for your erg,
ACM Transactions on Algorithms 4 (3) (2008) 38:1–38:17.

	Speed scaling for stretch plus energy
	Introduction
	Related results

	Preliminaries
	An algorithm for stretch plus energy with bounded competitiveness
	Acknowledgments
	References

