
Stochastic Scheduling of Heavy-tailed Jobs
Sungjin Im∗ 1, Benjamin Moseley2, and Kirk Pruhs† 3

1 Electrical Engineering and Computer Science
University of California, Merced
sim3@ucmerced.edu

2 Computer Science and Engineering
Washington University in St. Louis
bmoseley@wustl.edu

3 Computer Science
University of Pittsburgh
kirk@cs.pitt.edu

Abstract
We revisit the classical stochastic scheduling problem of nonpreemptively scheduling n jobs so
as to minimize total completion time on m identical machines, P || E

∑
Cj in the standard 3-

field scheduling notation. Previously it was only known how to obtain reasonable approximation
if jobs sizes have low variability. However, distributions commonly arising in practice have
high variability, and the upper bounds on the approximation ratio for the previous algorithms
for such distributions can be even inverse-polynomial in the maximum possible job size. We
start by showing that the natural list scheduling algorithm Shortest Expected Processing Time
(SEPT) has a bad approximation ratio for high variability jobs. We observe that a simple
randomized rounding of a natural linear programming relaxation is a (1 + ε)-machine O(1)-
approximation assuming the number of machines is at least logarithmic in the number of jobs.
Turning to the case of a modest number of machines, we develop a list scheduling algorithm
that is O(log2 n+m logn)-approximate. Our results together imply a (1 + ε)-machine O(log2 n)-
approximation for an arbitrary number of machines. Intuitively our list scheduling algorithm
finds an ordering that not only takes the expected size of a job into account, but also takes into
account the probability that job will be big.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems; Sequencing
and scheduling

Keywords and phrases stochastic scheduling, completion time, approximation

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Scheduling jobs on identical machines with the objective of minimizing total completion
time is a well studied class of scheduling problems as well as being one of the most basic
multiple machines scheduling settings. Basic versions of these problems and their variansts
are reasonably well understood in both the online and offline settings. For example, if the
processing times of the jobs are available to the scheduler, then list scheduling the jobs
in increasing order of their sizes yields an optimal nonpreemptive schedule [4]. See [16]

∗ Supported in part by NSF grant CCF-1409130.
† Supported in part by NSF grants CCF-1115575, CNS-1253218, CCF-1421508, and an IBM Faculty
Award.

© Sungjin Im, Benjamin Moseley, and Kirk Pruhs;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Stochastic Scheduling of Heavy-tailed Jobs

for various approximation results. Unfortunately, in many systems, the scheduler may not
know a priori the exact processing times of jobs. But often the scheduler may know a priori,
from past invocations of the job, stochastic information about a job’s size. Thus there is
significant research on such stochastic scheduling problems (see for example [9]).

We revisit the classical stochastic scheduling problem of non-preemptively scheduling a
collection J of n jobs so as to minimize the total expected completion time on m identical
machines, P || E

∑
Cj in the standard 3-field scheduling notation. The algorithm and

optimal solution are assumed to be nonanticipatory. In the stochastic setting, a nonanti-
cipatory scheduler only knows a priori the probability distribution on the size Pj of each
job j. If a machine is not running a job at a particular time, the nonanticipatory scheduler
may optionally assign a job to that machine at that time; if it assigns a job, then the job
must be run to completion, which is when the nonanticipatory scheduler finally learns the
realized size of the job. Note that the scheduler can be dynamic in the sense that it can
make scheduling decisions at time t based on the revealed processing times of jobs scheduled
up to time t. If a job j is started at time Sj and is still being scheduled at time t then the
scheduler only knows the job’s size is at least t − Sj and if the job j completes by time t,
the scheduler knows its realized size.

In contrast to the worst-case offline and online settings, this problem is not well under-
stood in the stochastic setting for general distributions. The most natural nonanticipatory
algorithm is Shortest Expected Processing Time (SEPT), which always assigns a job with
the minimum expected size to a machine that is free. SEPT is known to be an optimal
nonanticipatory algorithm on a single machine [10]. As is standard in stochastic settings,
approximation is relative to the optimal nonanticipatory algorithm. For identical machines,
SEPT is optimal if job sizes are exponentially distributed or are stochastically comparable
in pairs [15, 14]. However, for general distributions, even the question of whether SEPT has
a reasonable approximation ratio independent of the variability of the jobs’ processing times
for identical machines was open.

We start by resolving this open question by showing that the approximation ratio of
SEPT is Ω(n1/4). For full details see Section 2. It is useful to consider this instance as it
also represents the types of instances that are hard to design and analyze algorithms for. In
this instance most of the jobs are small with high probability. The remaining jobs are either
of size zero, or are (very) big. The expected number of jobs that become big is approximately
m. If the high variability jobs are run first (as SEPT does given the proper settings of the
parameters) then there can be a large difference in the cost depending on whether m jobs
become big, clogging up the machines for a long period of time, or whether only m− 1 jobs
become big, leaving one machine to finish off the small jobs. This instance demonstrates
that the problem is delicate/fragile in the sense that small changes in the input, or changes
in the random realizations of sizes for a small number of jobs, can have a large impact on
the objective.

This demonstrates that the main difficulty in these types of stochastic scheduling prob-
lems is handling high variability jobs. A standard research approach for problems, that are
difficult when some parameter is large, is to seek algorithms that perform reasonably when
this parameter is small. To the best of our knowledge, this is the approach taken by all pre-
vious research for these types of stochastic scheduling problems. For example, [8, 13] give
algorithms for our problem P || E

∑
Cj , and generalizations thereof, and show that they

have approximation ratios that are roughly linear in the squared coefficient of variation,
which is the variance divided by the square of the expectation. So these algorithms would
provide reasonable approximation if the sizes of the jobs did not have high variability.



S. Im, B. Moseley, and K. Pruhs 3

Unfortunately, the distributions that most commonly arise in practice, Zipf distributions
with small α parameters, have high variability [3, 5, 1]. In a Zipf distribution the probability
that a job has size s is proportional to 1/sα. Zipf distributions with α ∈ (1, 2) have a squared
coefficient of variation which is Ω̃(Pα−1) where P is the maximum possible job size. For
example, for the common case that α ≈ 2, this gives approximation ratio approximately
O(P ), which is quite weak as it is achieved by every algorithm that doesn’t unnecessarily
idle a processor.

The starting point for our research was to investigate whether one can obtain reason-
able approximation when jobs may have high variability. It was clear a priori that success
would require the development of new analysis techniques. The approaches in the stochastic
scheduling literature all require low variability. The approaches in the deterministic schedul-
ing literature are all essentially based on volume arguments, in which one bounds the total
volume of work that will be processed by the algorithm before a specific job completes. Un-
fortunately, on instances such as the lower bound instance for SEPT, similar volume based
arguments again only lead to approximate ratios depending on the squared coefficient of
variation [8, 13]. Further the most natural candidate algorithms, like SEPT, all perform
badly.

1.1 Our Results and Contributions
Our main result is a polynomial-time (1 + ε)-machine O( 1

ε2 log2 n)-approximation algorithm
for any number of machines. Our analysis is broken into two parts depending on the number
of machines as compared to the number of jobs. The most challenging case is when the
number of machines is small. In Section 4 we develop a novel polynomial-time list scheduling
algorithm LS. Here list scheduling means that the algorithm initially computes an ordered
list of the jobs, and whenever a machine becomes free, the algorithm assigns the next job
on the list to the available machine. In Section 5 we show the approximation ratio for
LS is O(log2 n + m logn). When m is O(logn) this implies an O(log2 n)-approximation
without resource augmentation. Adopting the viewpoint of the approximation algorithms
community that a poly-log approximation is reasonable, albeit at the top end of reasonable,
then LS is reasonable for a smallish/poly-log number of machines. Our main result is based
on two, related, insights:

We can construct a lower bound for optimum using two characteristics of the jobs:
The expected size of a job (so the same characteristic that SEPT uses), and
the probability that a job becomes big.

We can construct a list using these same two parameters so that the list scheduling
algorithm LS will never be too far off from our lower bound.

In most stochastic approximation literature, finding a good lower bound for the adaptive
adversary is crucial for the analysis, and we believe our lower bound is worth further invest-
igation for other stochastic scheduling problems. As mentioned before, prior to our work,
the best known approximation ratio for arbitrary job size distributions was the maximum
possible job size, even when there are only two machines. A more detailed overview can be
found in Section 3.

We then consider the case that the number of machines is not small relative to n. In
our lower bound instance for SEPT it is the case that the objective could be significantly
affected by a small change in the amount of resources available. This is a clear signal
that a resource augmentation analysis might be useful. If the number of machines is large,
then allowing the algorithm some modest resource/machine augmentation seems reasonable.



4 Stochastic Scheduling of Heavy-tailed Jobs

We show in Section 6 that a simple randomized rounding of a natural linear programming
relaxation is a (1 + ε)-machine O(1)-approximation provided that m ≥ Ω((1/ε2) logn); here
the algorithm is allowed to use (1 + ε)m machines and is compared against the optimal
adaptive algorithm that can only use m machines. The analysis follows by showing, using
standard concentration arguments, that if there are at least this many machines, then with
high probability it is never that case that all machines are “clogged up”.

Finally, we show in Section 2 that the approximation ratio of SEPT is Ω(n1/4).

1.2 Other Related Work
Most of the related results in the literature also hold for the more general problem where
jobs have weights and the objective is the weighted sum of completion times. For a single
machine, the algorithm WSEPT (running jobs with high weight to expected size ratio) is
2-approximate, and this approximation ratio is best possible [10]. Turning back to identical
machines, it is known that WSEPT is asymptotically optimal; that is, the approximation
tends to one as the number of jobs tends to infinity [14, 15]. [8] gives a list scheduling policy
based on a linear programming relaxation where the approximation is linear in the squared
coefficient of variation. It is known that this is the best approximation ratio possible if jobs
must be irrevocably assigned to machines a priori [13]. This approach was extended to an
online setting in [11], to allow the possibility of precedence constraints in [12], and to allow
the possibility of related machines in [13]. The fact that the approximation results also
hold for weighted completion time is in part explained by the fact that they are based on
linear programming formulations, which easily incorporate weights. [7] gives a combinatorial
algorithm for the setting that job arrive online in a list, and must be assigned to machines
as they arrive, and again show an approximation ratio that is linear in the square coefficient
of variation. For deterministic sizes, there is a polynomial time approximation scheme [2].

2 Lower Bound for SEPT

I Theorem 1. The algorithm SEPT rule has an approximation ratio Ω(n1/4).

Proof. We first describe the example. There are m machines where m is greater than a
sufficiently large constant such that exp(−m/16) < 1/m8. There are two types of jobs.
• Type-1: There are 2m2 jobs, and each job has size 1 with probability 1/m, and 0
otherwise.
• Type-2: There are m4/4 jobs, and each job has size m2 with probability 1/m3, and 0
otherwise.

Note that all jobs have the same expected size. Therefore, SEPT rule can schedule jobs in
arbitrarily order. Suppose it first schedules Type-1 jobs. By applying a standard Chernoff
bound (for example, Theorem 20 with µ = 2m and δ = 1/2), with a probability of at least
1 − exp(−m/4) ≥ 1 − 1/m8, at least m jobs will have size 1, thereby delaying all Type-2
jobs after time 1. Hence the total completion time of SEPT will be Ω(m4) in expectation.

In contrast, suppose the adversary schedule Type-2 jobs first. The adversary can learn at
an infinitesimally small time, say 1/m4, the empty machines. Let E denote the event that the
number of such machines is at least m/2. Observe that Pr[E ] ≥ 1−exp(−m/16) ≥ 1−1/m8

by Theorem 20 with µ = m/4 and δ = 1. Since the total job size is at most O(m6) in
all cases, and the total number of jobs is O(m4), the expected total completion time of the
adversary in the event of ¬E is at most O(m6 ·m4 · 1

m8 ) = O(m2). Now consider the case that
the event E occurs. The adversary distributes Type-1 jobs evenly on the empty machines it



S. Im, B. Moseley, and K. Pruhs 5

discovered at an infinitesimally small time. Since there are at least m/2 empty machines,
and there are 2m2 Type-1 jobs to schedule, no machine is assigned more than O(m) Type-1
jobs. Hence, even in the worst case where all Type-1 jobs have size 1, every Type-1 job is
completed by time O(m). In sum, we have shown the adversary’s total completion time is
O(m3) in expectation. Since n = Θ(m4), the gap follows. J

3 Intuitive Overview of the Design and Analysis of the Algorithm LS

We now give an informal overview of the intuition behind the intertwined design and analysis
of the algorithm LS (occasionally oversimplifying some issues).

The initial starting point is the way in which we estimate the total completion time.
Let τk be the time that the n

2k th to last job completes. Let Gi be those jobs that complete
between τk−1 and τk. By rounding down the completion times in Gk to τk−1 we obtain an
estimate

∑
k τkn/2k of the total competition time that is accurate within a constant factor.

To see this note that the decrease in total completion time for the n/2k jobs in Gk can be
charged to a [τk−1, τk] portion of the competition times of the n/2k jobs that complete after
τk. It will be convenient to consider job starting times, instead of job competition times.
This is, without any real loss of generally, as the sum of the starting times differs from the
sum of the completion times by only the sum of the processing times, and the expected sum
of the processing times is the same for all algorithms. Then intuitively our algorithm needs
to determine the jobs in Gk, which roughly one would expect should be the n/2k jobs in
positions [n − n/2k−1, n − n/2k] in the algorithm’s list, so that these jobs are all likely to
start by a deadline τk that is as early as possible. Let us for the moment assume that the
algorithm knows the “correct” value of the deadline τk. The algorithm must then solve the
following informal subproblem:
Key Subproblem (k, τ): Given a cardinality k and a deadline τ , which set Ek,τ of n/2k jobs
should be excluded so as to maximize the probability that the remaining set Ak,τ of n−n/2k
jobs can all start by time τ?

We give an algorithm SPLIT for selecting Ek,τ . We then show that if SPLIT isn’t
likely to start all jobs in Ak,τ by deadline τk then the optimal adaptive algorithm likely
has a comparable number of jobs unfinished by deadline τ/∆. Here ∆ is a parameter that
we will eventually set to m + logn. This relaxed deadline contributes a ∆ factor to the
approximation ratio. It will be convenient to call a job small if it has size at most τ/∆, and
call a job big otherwise.

Our algorithm SPLIT certainly should exclude those jobs with high expected processing
time. Here all expected processing times will be conditioned on the fact that the job is small,
since all big jobs are equally bad for the optimal adaptive algorithm. Our lower bound for
SEPT suggests that we should also exclude those jobs that are most likely to be big as these
jobs are the ones most likely to clog up the machines. The algorithm SPLIT splits the n/2k
exclusions in Ek,τ equally between the n/2k+1 jobs with the highest expected processing
times, the n/2k+1 jobs with highest probability of being big. The algorithm SPLIT then list
schedules the jobs in Ak,τ in an arbitrary order.

The key part of our analysis of SPLIT, and of almost all algorithm analyses of such
stochastic problems, is lower bounding optimal. Here we are able to lower bound optimal
using the same exact two job characteristics, the probability that a job is big and the
expected size, that SPLIT uses. The analysis is split into two cases. The first case is when
the aggregate expected size jobs in Ak,τ is at least τ/2. In this case, there is sufficient
probability mass on small sizes (this is where we need that ∆ is sufficiently large) so that



6 Stochastic Scheduling of Heavy-tailed Jobs

a standard lower tail bound can be used to show with high probability the aggregate size
of the small jobs is close to expectation. The result is then established using the fact that
the aggregate sizes divided by m is a lower bound for optimal. The second case is when the
aggregate expected size of jobs in Ak,τ is at most τ/2. Then with high probability the small
jobs from Ak,τ don’t have sufficient aggregate size to keep one machine busy until time τ .
Thus if SPLIT has all machines busy at time τ , then SPLIT must have seen at least m big
jobs. But as SPLIT excluded the jobs most likely to be big, the optimal algorithm also likely
saw m big jobs, and thus still have all machines busy at time τ/∆.

It is natural to try to extend the algorithm SPLIT to create a list for LS by first picking in
arbitrary order the jobs in J −E1,τ1 , which are intuitively the n/2 jobs most likely startable
by τ1, then picking in arbitrary order the jobs in J −E1,τ1 −E2,τ2 , which are intuitively the
n/4 jobs in the set of 3n/4 jobs most likely startable by τ2 that were not previously picked,
and on the phase k, picking in arbitrary order the jobs in J −∪i≤kEi,τi = ∩i≤kAi,τi . There
are two difficulties with this approach. We end up surmounting both difficulties in a similar
fashion.

The first difficulty is that we do know know a priori the “right” values for the τk’s. Using
standard transformations we can without loss of generality assume that the range of possible
times is polynomially bounded, and that we can restrict our attention to τk being one of the
logarithmically many times that are an integer power of two. We then modify our solution
Ek,τ to the subproblems (k, τ) by excluding n/(2k logn) jobs, instead of n/2k. Again the
exclusions in Ek,τ are split equally between jobs that are have the largest expected sizes,
and those that are most likely be be big. Let the excluded set Ek = ∪iEk,2i be the union
of the excluded sets for various possible values of τk. We could then construct our list by
first picking in arbitrary order the jobs in J − E1, then picking in arbitrary order the jobs
in J − E1 − E2, and on the phase k, picking in arbitrary order the jobs in J − ∪i≤kEi.
Because E is the union of essentially all possible Ek,τk ’s, we know that we are excluding the
excluded jobs from the subproblem corresponding to the “right” τk. The redefinition of the
Ek,τ ’s costs a log factor in our approximation ratio.

The remaining problem with this ordering is the possibility that the excluded sets may
not be consistent. For example, a job j such that j /∈ E1 and j ∈ E2 is an inconsistency
as it is not possible to schedule j after τ2 and before τ1. To solve this we let the excluded
set E′k = ∪i≥kEi be the union of the previously defined excluded sets for later times. The
algorithm LS then constructs its list by first picking in arbitrary order the jobs in J − E′1,
then picking in arbitrary order the jobs in J −E′1−E′2, and on phase k, picking in arbitrary
order the jobs in J − ∪i≤kE′i. Because a job is excluded in E′k if it is in any later excluded
set Ei, we know that there will be no inconsistencies. This also guarantees the hereditary
condition that E′k+1 ⊆ E′k, which means that earlier scheduled jobs are not in later excluded
sets. Because the size of the sets Ek are geometrically decreasing, these additional exclusions
don’t change the size of the excluded sets by more than a constant factor.

4 Algorithm LS

In this section we more formally describe the list scheduling algorithm LS, and introduce
some notation that will be needed in the analysis. To aid in our later analysis, we describe
the algorithm in terms of the complements of the excluded sets discussed in the last section.
Recall Ak,` is the complement of the excluded set Ek,`, and taking the complement of the
union is equivalent to taking the intersection of the complements.

We assume that the number of machinesm ≥ 2. We show in Lemma 2 that we can assume



S. Im, B. Moseley, and K. Pruhs 7

without loss of generality that all possible job sizes are in the range [1, n10]. Intuitively, if
a job is sufficiently small, then it can change the total completion time objective by very
little. The upper bound then follows by noting that at least two jobs have to become big
to clog up the machines for a long period of time, and the probability that this happens
is quite small. The proof of Lemma 2 can be found in Section 5.1. Let ∆ be the smallest
integer greater than 1000 max{m, logn} that is a power of two.

I Lemma 2. Suppose we have a nonanticipatory fixed-priority algorithm that is α-approximate
for the simplified instances of n jobs where every job j is instantiated to a size between 1
and n10, i.e. 1 ≤ Pj ≤ n10 for all jobs j. Then one can get a O(α)-approximation for an
arbitrary instance consisting of n jobs.

We now introduce our algorithm. For intuition guiding the development of the algorithm,
we refer the reader to the overview of the algorithm given in Section 3.

Algorithm LS (k ∈ [logn], and ` ∈ [12 logn])
1. For each pair of k, `, compute Ak,` as follows. Let τ := 2`. Let Ak,` be the intersection of

the following two sets Ah
k,` and Av

k,`:
Let Ah

k,` be the n− n
24·2k·log n

jobs with the smallest hj,` values
where hj,` := Pr[Pj ≥ 2`/∆].
Let Av

k,` be the n− n
24·2k·log n

jobs with the smallest vj,` values
where vj,` :=

∑
s<2`/∆ s · Pr[Pj = s].

2. Define Ak :=
⋂

`∈[12 log n] Ak,`.

3. Define A′k :=
⋂

k≤k′≤log n
Ak′ .

4. Consider k in increasing order. For each k, schedule jobs in A′k \ A′k−1 in an arbitrary but
fixed order assigning jobs to any available machine.

The following Lemmas are immediate from the algorithm’s description, and will be useful
for our analysis.

I Lemma 3. It holds that
For all k, `, n− n

12·2k logn ≤ |Ak,`| ≤ n−
n

24·2k logn .
For all k, n− n

2k ≤ |Ak| ≤ n−
n

24·2k logn .
For all k, n− n

2k−1 ≤ |A′k| ≤ n− n
24·2k logn .

For all k, A′k ⊆ A′k+1.

5 Analysis

This section is devoted to proving Theorem 4.

I Theorem 4. The algorithm LS is O(log2 n+m logn)-approximate for scheduling n stochastic
jobs non-preemptively on m identical machines with the objective of minimizing the total
completion time in expectation.

Our analysis is based on Lemma 8 that states how the solution to the subproblem
parameterized by k, ` can be charged to the adversary’s cost. That is, we will show if the
algorithm cannot start all jobs in Ak, which is a subset of Ak,`, by a deadline τ = 2`, thereby
delaying n−|Ak| jobs after τ , then the adversary is more likely to delay a comparable number
of jobs after time τ/∆.



8 Stochastic Scheduling of Heavy-tailed Jobs

To formally state Lemma 8, we need to introduce some notation. Let L(J ′) denote
the earliest time when a machine becomes available after starting all jobs in J ′; here the
associated algorithm is implicitly given. Note that L(J ′) depends on the realized processing
time of jobs. Let A∗k denote the n − n

24·2k logn jobs the adversary starts the earliest; recall
that |Ahk,`| = |Avk,`| = n − n

24·2k logn , and |Ak,`| ≥ n − n
12·2k logn . Note that A∗k could be

stochastic while Ak,` is deterministic.
The quantity LW (J ′) is defined similar to L(J), but for the the worst anticipatory list

scheduling algorithm W . So W knows the jobs sizes and it maximizes the earliest time
when a machine becomes available after starting all the jobs in J ′. Obviously LS performs
better than the worst anticipatory algorithm. Lemma 5, Lemma 6, and Lemma 7 state
straightforward properties of these times. The proof of Theorem 4 follows by application
of Lemma 8, Lemma 5, Lemma 6 and basic algebra. The cornerstone of the analysis is the
proof of Lemma 8, which we postpone until the end of the section.

I Lemma 5. The function LW (·) is monotone, i.e., for any realization of job sizes and any
two sets of jobs, J ′ ⊆ J , we have LW (J ′) ≤ LW (J).

I Lemma 6. For all k and ` and for any realization of job sizes, L(A′k) ≤ LW (A′k) ≤
LW (Ak) ≤ LW (Ak,`).

Proof. This follows from the the fact that A′k ⊆ Ak ⊆ Ak,`, and that LS is a list scheduling
algorithm. J

I Lemma 7. For all k, L(A∗k) ≤ L(A∗k+1).

Proof. By definition of A∗k, we know that A∗k ⊆ A∗k+1. Then, the lemma is immediate since
the earlist time when a machine becomes available after the optimal scheduler starts all jobs
in A∗k can be only smaller than the analgously defined time after the same optimal scheduler
starts all jobs in A∗k+1. J

We now formally state our key lemma.

I Lemma 8. For all k, we have Pr[LW (Ak) ≥ 2`] ≤ Pr[L(A∗k) ≥ 2`/∆] +O( 1
n12 ).

Before proving Lemma 8, we show how it implies Theorem 4.

Proof of Theorem 4. Since all jobs have sizes at most n10, the maximum total completion
time can be at most n12. Hence we will proceed with our analysis ignoring the small additive
term in the right-hand-side of Lemma 8 since it will add only 1 to the total completion time
in expectation, and all jobs have sizes at least 1. Note that it suffices to bound E

∑
j Sj

where Sj is j’s starting time. This is because the algorithm’s cost is
∑
j Sj plus

∑
j Pj , and

E
∑
j Pj is a clear lower bound to the adversary as we can observe in Lemma 15. We let

1[E ] be an indicator variable that is 1 if the event E occurs and 0 otherwise, for some event
E . ∑

j

Sj ≤
∑
j

∑
`≥0

2`+1 · 1[Sj ≥ 2`] ≤
∑
j

∑
`≥log ∆

2`+1 · 1[Sj ≥ 2`] +O(∆n)

=
∑
k≥1

∑
j∈A′

k
\A′

k−1

∑
`≥log ∆

2`+1 · 1[Sj ≥ 2`] +O(∆n)

≤
∑
k≥1
|A′k \A′k−1| ·

∑
`≥log ∆

2`+1 · 1[L(A′k) ≥ 2`] +O(∆n)

≤
∑
k≥1

O( n2k ) ·
∑

`≥log ∆

2` · 1[L(A′k) ≥ 2`] +O(∆n) [Lemma 3]



S. Im, B. Moseley, and K. Pruhs 9

The first inequality follows since for some `, 2` ≤ Sj < 2`+1. By taking the expectation
on both sides, we have

E
∑
j

Sj ≤
∑
k≥1

O( n2k )
∑

`≥log ∆

2` · Pr[L(A′k) ≥ 2`] +O(∆n)

≤
∑
k≥1

O( n2k )
∑

`≥log ∆

2` · Pr[LW (Ak) ≥ 2`] +O(∆n)

≤
∑
k≥1

O( n2k )
∑

`≥log ∆

2` · Pr[L(A∗k) ≥ 2`/∆] +O(∆n)

≤
∑
k≥1

O( n2k )
∑
`≥1

∆ · 2` · Pr[L(A∗k) ≥ 2`] +O(∆n)

≤ 2
∑
k≥2

O( n2k )
∑
`≥1

∆ · 2` · Pr[L(A∗k) ≥ 2`] +O(∆n)

The second and third inequalities are due to Lemma 6 and Lemma 8, respectively. In the
last inequality, we used the fact L(A∗2) ≥ L(A∗1), which follows from Lemma 7. We can
charge O(∆n) to the optimal cost since the nonanticipatory optimal solution must have
total expected completion time at least

∑
j EPj ≥ n, and our goal is to show a O(∆ logn)-

approximation.
To upper bound the remaining terms, we lower bound OPT as follows.

OPT ≥
∑
k≥2
|A∗k+1 \A∗k| · L(A∗k) ≥ Θ(1) ·

∑
k≥2

O( n

2k logn )
∑
`

2` · 1[L(A∗k) ≥ 2`]

The first inequality follows since no job in A∗k+1 \ A∗k starts before time L(A∗k). By taking
the expectation on this equation and combining it with the above equation, we conclude
that our algorithm is O(∆ logn)-approximation, deriving Theorem 4. J

We are now ready to prove the key lemma.

Proof of Lemma 8. We will be concerned with the probability that the optimal adaptive
algorithm cannot start n′ := n− n

24·2k logn jobs before time τ/∆. We will say that a job j is
big if its realized size Pj ≥ τ/∆, and say the job is small otherwise. We consider two cases
depending on the volume of small jobs. Fix k and `. For notational simplicity, let τ := 2`.
Case A:

∑
j∈Ak vj ≥ τ/2: We first show in Lemma 9 and Lemma 10 that the aggregate size

of the first n′ small jobs that the optimal adaptive algorithms starts is likely at least τ/4.
Lemma 11 then shows that this is sufficient volume so that the optimal adaptive algorithm
cannot start n′ jobs before time τ/∆.

To make this formal, we define a sequence of random variables {Xq} where Xq refers to
the “small" size of the qth earliest job that is started by the optimal adaptive algorithm – Xq

is set to Pj if Pj < τ/∆, otherwise 0. Also let Yq be the 0-1 random variable that becomes
1 if the qth earliest job that the adversary starts becomes large, otherwise 0.

I Lemma 9.
∑
q∈[n′] E[Xq] ≥ τ/2.

Proof. This observation immediately follows from the fact that Ak ⊆ Ak,` ⊆ Avk,`, and Avk,`
consists of n′ jobs with the smallest vj,` :=

∑
s<τ/∆ s · Pr[Pj = s] values. J

I Lemma 10. Pr[
∑
q∈[n′]Xq ≤ τ/4] ≤ 1

n12 .



10 Stochastic Scheduling of Heavy-tailed Jobs

Proof. To apply Theorem 20, we scale down Xq by τ/∆. Recall that Xq ≤ τ/∆ and
∆ ≥ 1000 max{m, logn}. By using Theorem 20 with µ ≥ τ

2/
τ
∆ ≥

∆
2 and ε ≥ 1/2, we derive

that the probability is at most exp(−ε2µ/2) ≤ exp(−∆/16) ≤ 1/n12. J

I Lemma 11. If
∑
q∈[n′]Xq ≥ τ/4, then L(A∗k) ≥ τ/∆.

Proof. For the sake of contradiction, suppose that L(A∗k) ≤ τ/∆. Since each small job has
size at most τ/∆, a machine can be busy until time 2τ/∆ due to small jobs that are started
by time τ/∆. Hence it must be the case that

∑
q∈[n′]Xq ≤ m · 2τ/∆ < τ/4, which is a

contradiction. J

Case B:
∑
j∈Ak vj ≤ τ/2: We show in Lemma 12 that the algorithm W likely didn’t start

enough small jobs to even fill up one machine until time τ . Lemma 13 then shows that it
must be the case that the algorithm W then must have started m big jobs before time τ .
Lemma 14 then shows that the optimal adaptive algorithm must have started m big jobs
before time τ/∆ and before starting n′ jobs. Thus the optimal adaptive likely cannot finish
n′ jobs before time τ/∆.

To make this formal, let X ′j denote job j’s small size. That is, X ′j is set to Pj if Pj ≤ τ/∆,
otherwise 0. Let Y ′j be the 0-1 random variable that becomes 1 if job j becomes large,
otherwise 0. The differnece between Xq and X ′j (likewise between Yq and Y ′j ) is that X ′j is
concerned with the size of a fixed job j while Xq is concerned with the size of the qth earliest
job the adversary starts – the qth job cah change since the adversary is not necessarily a
fixed-priority scheduler. By applying a concentration inequality, we can show,

I Lemma 12. Pr[
∑
j∈Ak X

′
j ≥ τ ] ≤ 1/n12.

Proof. We scale down Xq by τ/∆. By applying Theorem 20 with µ ≤ τ
2/

τ
∆ ≤

∆
2 and

ε = τ
τ/∆/µ− 1 = ∆

µ − 1 ≥ ∆
2µ , we upper bound the probability by exp

(
− (∆/(2µ))2µ

2(1+( ∆
2µ−1)/3)

)
≤

exp
(
− (∆/(2µ))2µ

∆/µ

)
= exp(−∆/4) ≤ 1/n12. J

I Lemma 13. If
∑
j∈Ak X

′
j < τ and LW (Ak) ≥ τ , then there must be at least m jobs in Ak

with realized sizes at least τ/∆.

Proof. For the sake of contradiction, suppose there are less than m big jobs. Then there
must exist a machine that is busy until time τ scheduling small jobs, which is a contradiction
to the condition

∑
j∈Ak X

′
j < τ . J

I Lemma 14. Pr[
∑
q∈[n′] Yq ≥ m] ≥ Pr[

∑
j∈Ak,`′

Y ′j ≥ m] ≥ Pr[
∑
j∈Ak Y

′
j ≥ m].

Proof. Notice that Ak is a subset of Ahk,`′ with `′ = log2(τ/∆). Since Ahk,`′ consists of n′

jobs with the smallest hj,`′ := Pr[Pj ≥ 2`′ = τ/∆] values, the probability that the adversary
finds at least m big jobs while scheduling the first n′ jobs it starts must be as large as the
probability that our algorithm finds m big jobs while scheduling jobs in Ak. J

This concludes the proof of Lemma 8. J



S. Im, B. Moseley, and K. Pruhs 11

5.1 Proof of the Simplifying Assumption (Lemma 2)
In this section we prove Lemma 2. Due to the space constraints, we defer the proof of
Lemma 16, 17, and 18 to the full version of this paper.

We begin with the following simple lower bound on the adversary.

I Lemma 15. E OPT ≥ E
∑
j Pj.

Motivated by this lower bound, from now on we assume w.l.o.g. that E
∑
j Pj = 1 by scaling

jobs sizes uniformly.
We now show that one can assume that every job is instantiated to a size at least 1/n2.

Let I1 be the instance obtained from the original instance I0 := I by replacing Pj with
Pj + 1/n2. We show that the optimal completion time can only double in the transition
from I0 to I1. Let OPT(I) denote the adversary or its objective on instance I.

I Lemma 16. E OPT(I1) ≤ 2 · E OPT(I0).

I Lemma 17. Given an algorithm A1 for I1, one can derive an algorithm A0 for I0 with
the same expected total completion time or smaller.

Hence assuming all jobs have sizes at least 1/n2 only loses factor 2 in the approximation
ratio. Now we argue that if a job is instantiated to have a very large size, we can ignore such
a bad case since it contributes to the algorithm’s cost very little. To simplify our argument,
we will assume that our algorithm is the worst anticipatory fixed-priority algorithm. That
is, the worst algorithm does the following: it observes each job’s realized size, and finds
the worst ordering between jobs in J such that assigning each job to the earliest available
machine according to the ordering maximizes the total completion time. If we can show
that the event that there is a job that has a huge size can contribute to the expected total
completion time by only a fraction of E

∑
j Pj = 1, then we will be able to ignore such

an event. Let Bad denote the worst algorithm we will consider, or its total completion
time depending on the context. In the following, Bad(w) denote Bad’s objective when
an outcome (realization of job sizes) w occurs. Intuitively, Bad can have a huge total
completion time only when at least two jobs are realized to have huge sizes, which can
happen with a very small probability. This is where we use the fact m ≥ 2.

I Lemma 18. Let E be the event that maxj Pj ≥ n8. Then
∑
w∈E Bad(w) Pr[w] ≤

O(1) EOPT.

6 LP-based Algorithm with Machine Augmentation

I Theorem 19. Suppose m ≥ 36
ε2 logn. Then there is a polynomial time O(1)-approximation

that schedules n stochastic jobs non-preemptively on (1 + ε)m identical machines, when
compared against the adversary using m machines, with the goal of minimizing the total
completion time in expectation.

Proof. Let xi,τ be the probability that the adversary schedules job i at time τ . Let qi,d
denote the probability that job i has size no smaller than d. The following LP relaxation is
due to [13].

min
∑
i,τ

τ · xi,τ s.t.
∑
τ≥0

xi,τ ≥ 1 ∀i;
∑
i,τ≤t

qi,t−τ · xi,τ ≤ m ∀t ≥ 0; xi,τ ≥ 0 ∀i, τ ≥ 0

The objective is the total expected starting time of all jobs. The first constraints say
that each job must be scheduled. The second constraints ensure that at any time at most



12 Stochastic Scheduling of Heavy-tailed Jobs

m machines are used. These are valid constraints due to the nonanticipatory nature of the
adversary: job i’s size is realized independent of when it is started.

We now show a simple algorithm using m′ = (1 + ε)m machines. Since {xi,τ}τ is a
distribution over job i’s starting times, we naturally set i’s starting time Si to τ with
probability xi,τ . We order jobs in increasing order of Si, and schedule job i on any available
machine at time t – we will show that this is always possible with a high probability. If not
possible, we switch to an arbitrary fixed-priority algorithm.

We first claim that we only need to consider times 1 ≤ t ≤ n5 in the LP. Unfortunately,
we cannot use Lemma 2 here since this LP-based algrotihm is not a fixed-priority algorithm.
However, we can use most of the simplifying argument in Section 5.1 with small tweak. We
can show that one can assume without loss of generality that all jobs have sizes at least 1 and
n ≤ E

∑
j Pj ≤ n2. Then, we know that any non-idle algorithm has total completion time

at most n2Emaxj Pj ≤ n4 in expectation. This implies no optimal LP solution schedules
a job by more than 1/n after time n5, i.e.

∑
t′≥n5 xi,t′ ≤ 1/n for all i. This is because

the second constriant of the LP is trivially satisfied for any optimal solution for all times
after n5. Hence we only need to consider times 1 ≤ t ≤ n5. This proves the LP has a size
polynomial in n.

We will show that for each 1 ≤ t ≤ n5, the number of jobs whose intervals (Si, Si + Pi)
intersect time t is at least m′ with a probability of at most 1/n23; let Bt refer to the bad
event with respect to time t. To show Pr[Bt] ≤ 1/n23 fix a time t ∈ [0, n5]. Observe that
the probability that job i’s interval intersects time t is

∑
i,τ≤t qi,t−τ · xi,τ , and let Xi is the

0-1 random variable that becomes 1 if such an event happens. By the second constraints of
the LP, we have E

∑
iXi ≤ m. By the applying Bernstein inequalities (Theorem 21) with

∆ = m′−m, b = 1, and V ≤ m, we can upper bound the probability by exp(− ∆2

2V+2b∆/3 ) ≤
exp(− ε2m

2+2ε/3 ) ≤ 1
n12 . when m ≥ 36

ε2 logn and ε ≤ 1.
Now consider a fixed job i. The probability job i can be started at time Si as suggsted

by the LP is at least 1 − 1/n18 via a simple union bound over all times between 1 and
n5. If it is the case, we can charge i’s starting time to the LP cost. Otherwise, we can
still charge i’s expected starting time when it starts before time n10 to EPi ≥ 1. Now let
E(q) denote the event that job i starts between time nq and nq+1. Note that for event
E(q) to happen, there must be at least m jobs that have size at least nq−2 blocking all m
machines. Hence Pr[E(q)] ≤

(
n
m

)
· ( 1
nq−4 )m ≤ 1

nm(q−5) ; here Markov inequliay was used with
EPi ≤ n2. Hence the expected starting time of job i when it is at least n10 is at most∑
q≥10 n

q+1 · Pr[E(q)] ≤ o(1) when m ≥ 3. Again, we can charge this to EPi ≥ 1. J

7 Concentration Inequalities

I Theorem 20 ([6]). Let the random variables X1, X2, ..., Xn be independent, with 0 ≤
Xi ≤ 1 for each i. Let Sn =

∑
Xi, let µ = E(Sn). Then, any δ > 0, Pr[Sn ≥ (1 + δ)µ] ≤

exp(− δ2µ
2(1+δ/3) ) and Pr[Sn ≤ (1− δ)µ] ≤ exp(− 1

2δ
2µ).

I Theorem 21 ([6]). Let X1, X2, ..., Xn be n independent random variables such that for all
i ∈ [n], Xi ≤ b. Let Y =

∑n
i=iXi, µ := E[Y ], and V := Var[Y ]. Then it follow that

Pr[Y − µ ≥ ∆] ≤ exp(−∆2/(2V (1 + (b∆/3V )))).

Acknowledgements We thank Marc Uetz for bringing this problem to our attention, for
helpful discussions through the research process, and for his assistance during the writing
process.



S. Im, B. Moseley, and K. Pruhs 13

References
1 L. A. Adamic and B. A. Huberman. Zipf’s law and the internet. Glottometrics, 3:143–150,

2002.
2 Foto N. Afrati, Evripidis Bampis, Chandra Chekuri, David R. Karger, Claire Kenyon,

Sanjeev Khanna, Ioannis Milis, Maurice Queyranne, Martin Skutella, Clifford Stein, and
Maxim Sviridenko. Approximation schemes for minimizing average weighted completion
time with release dates. In FOCS, pages 32–44, 1999.

3 David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, New York, NY, USA, 2010.

4 W. Horn. Minimizing average flowtime with parallel machines. Operations Research,
21:846– 847, 2006.

5 Blachander Krishnamurthy and Jennifer Wexford. Web Protocols and Practice: HTTP/1.1,
Networking Protocols, Caching, and Traffic Measurement. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2001.

6 Colin McDiarmid. Concentration. In Michel Habib, Colin McDiarmid, Jorge Ramirez-
Alfonsin, and Bruce Reed, editors, Probabilistic Methods for Algorithmic Discrete Mathem-
atics, volume 16 of Algorithms and Combinatorics, pages 195–248. Springer Berlin Heidel-
berg, 1998.

7 N. Megow, M. Uetz, and T. Vredeveld. Models and algorithms for stochastic online schedul-
ing. Mathematics of Operations Research, 31(3):513–525, 2006.

8 R. H. Möhring, A. S. Schulz, and M. Uetz. Approximation in stochastic scheduling: The
power of LP-based priority policies. Journal of the ACM, 46:924–942, 1999.

9 Michael Pinedo. Scheduling Theory, Algorithms, and Systems. Springer, 2008.
10 M. H. Rothkopf. Scheduling with random service times. Management Science, 12:703–713,

1966.
11 A. S. Schulz. Stochastic online scheduling revisited. In B. Yang, D.-Z. Du, and C. Wang,

editors, Combinatorial Optimization and Applications, volume 5165 of Lecture Notes in
Computer Science, pages 448–457. Springer, 2008.

12 M. Skutella and M. Uetz. Stochastic machine scheduling with precedence constraints. SIAM
Journal on Computing, 34:788–802, 2005.

13 Martin Skutella, Maxim Sviridenko, and Marc Uetz. Stochastic scheduling on unrelated
machines. In STACS, pages 639–650, 2014.

14 Gideon Weiss. Approximation results in parallel machines stochastic scheduling. Annals of
Operations Research, 26:195–242, 1990.

15 Gideon Weiss. Turnpike optimality of Smith’s rule in parallel machines stochastic schedul-
ing. Mathematics of Operations Research, 17:255–270, 1992.

16 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.


	Introduction
	Our Results and Contributions
	Other Related Work

	Lower Bound for SEPT
	Intuitive Overview of the Design and Analysis of the Algorithm LS
	Algorithm LS
	Analysis
	Proof of the Simplifying Assumption (Lemma 2)

	LP-based Algorithm with Machine Augmentation
	Concentration Inequalities

