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Abstract
In the paper we consider minimizing the `k-norms of
flow time on a single machine offline using a preemp-
tive scheduler for k ≥ 1. We show the first O(1)-
approximation for the problem, improving upon the pre-
vious best O(log logP )-approximation by Bansal and
Pruhs (FOCS 09 and SICOMP 14) where P is the ratio
of the maximum job size to the minimum. Our main tech-
nical ingredient is a novel combination of quasi-uniform
sampling and iterative rounding, which is of interest in its
own right.

1 Introduction
Client-server scheduling is a central problem in various
fields and there is a wide range of research on the topic
[26, 28]. Typically there is a server, or alternatively ma-
chine, which receives n requests for jobs to be processed
on the machine. Each job j requires pj time to be pro-
cessed, arrives at some time rj and can only begin pro-
cessing after the job arrives. In some cases, the jobs have
priorities. In this case, each job j is associated with a pos-
itive weight wj where a higher weight implies a higher
priority. The goal is for the scheduler to process the jobs
in order to optimize a quality of service metric for the
clients. In this work, we consider scheduling jobs that ar-
rive over time on a single machine that are to be scheduled
preemptively offline where the job arrivals and processing
times are known in advance.

Given a scheduler, a job is completed at the first time
Cj when the scheduler performs pj units of processing
on job j. Many objective functions are considered in
scheduling theory because different systems have differ-
ent needs. A widely considered class of objective func-
tions are those that depend on the completion time of
jobs, such as total completion time

∑
i Ci, total weighted

completion time
∑
i wiCi and maximum completion time

(makespan) maxi Ci. These objectives are well under-
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stood in many scheduling environments [16, 14, 1, 2, 23].
While completion time objectives have been widely

considered, in the client-server scheduling setting practi-
tioners and theoreticians usually consider scheduling met-
rics based on the flow time of the jobs. The flow time of
j is Cj − rj , which is the time the job j waits to be com-
pleted since its arrival. When jobs arrive over time, it is of
more interest to consider the flow time of a job rather than
the completion time. This is because the completion time
ignores when the jobs arrive, which is critical for captur-
ing the quality of service a client receives. In particular, a
client that submits jobs j would like j to be completed as
soon as possible. In other words, the client would like the
flow time of j to be minimized. In the client-server set-
ting, the scheduler typically considers a quality of service
metric over all the jobs’ flow times.

One of the most popular objectives is minimizing the
total (or equivalently average) flow time

∑
j(Cj − rj).

This objective focuses on optimizing the average quality
of service of the jobs or, alternatively, the average wait-
ing time of the system. In the case where the jobs have
priorities, the goal is to find a scheduler minimizing the
total weighted flow time

∑
j wj(Cj − rj). While total

(weighted) flow time is a fundamental objective, unfor-
tunately an algorithm that minimizes the total flow time
of a schedule may be unfair to individual jobs. Amongst
other priorities, fairness is one of the highest concerns in
almost all systems in practice [29]. Due to unfairness, it
is not surprising that many systems in practice do not use
algorithms that are designed to minimize total flow time
only.

To enforce fairness into the schedule, the most com-
monly considered metric is minimizing the `k-norm of the
flow times k

√∑
j(Cj − rj)k. For the `k-norms, typically

k ∈ [2, 3], in which case the schedule is optimizing the
variance of flow times of the jobs. By optimizing the vari-
ance, the scheduler enforces fairness among the clients.
Due to the importance of fairness criteria, the `k-norms of
flow time has been extensively studied in many machine
environments in search of discovering the most efficient
schedulers. For example: on a single machine [6, 7], mul-
tiple machines [12, 10, 8, 19, 24], in broadcast scheduling
[17, 13, 21], for parallel processors [17, 21] and on speed
scalable processors [22].

The setting we consider, preemptive job scheduling
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on a single machine, has been studied for decades. How-
ever, despite being well researched, the complexity of
some of the the most fundamental quality of service objec-
tives are not known. This is despite the fact that this is per-
haps the most basic environment considered in the client-
server setting. In particular, the complexity of the total
weighted flow and the `k-norms of flow time remain un-
resolved. The likely reason is that flow time based objec-
tives require fundamentally different, and in many cases
more sophisticated, algorithmic techniques than comple-
tion time objectives.

Two central open problems in the client-server
scheduling setting are if minimizing the total weighted
flow time and/or the `k-norms of flow time admit anO(1)-
approximation. It is known that unweighted total flow
time can be solved optimally in polynomial time using the
shortest-remaining-processing-time algorithm. Weighted
flow time was shown to be strongly NP-Hard [25] over
three decades ago. The `k-norms of flow time for k ≤
2 <∞ had resisted a hardness proof until recently it was
shown to be strongly NP-Hard for all k ≤ 2 < ∞ [27].
Neither problem is known to be APX-Hard.

The best known algorithms for both problems were
shown in [7] which gave a O(log logP ) 1 approximation
algorithm in both cases where P is the ratio of the max-
imum to minimum job size. If all jobs arrive at the same
time, the shortest job first algorithm is optimal for the `k-
norms of flow time and Smith’s rule is an optimal algo-
rithm for weighted flow time. A quasi-polynomial time
approximation scheme is known for weighted flow time
[15]. Due to the existence of this quasi-polynomial time
algorithm, it is reasonable to believe that total weighted
flow time admits an O(1)-approximation. As will be dis-
cussed shortly, the `k-norms of flow time is similar to
weighted flow time, so it is additionally reasonable to be-
lieve this problem admits an O(1)-approximation.

Similar techniques have been used to develop algo-
rithms for both problems [18, 5, 4, 3, 20]. This is natural
as the objectives behave similarly mathematically. Indeed,
consider the total weighted flow time objective and some
fixed schedule A. Let WA(t) denote the total weight of
the jobs that have arrived but are unsatisfied in A at time
t. Then the objective value of A is

∫∞
t=1

WA(t). Thus
the goal is to ensure the algorithm A has small aggregate
weight of jobs that are unsatisfied at each time step on av-
erage in the schedule. Similarly, for the `2-norm of flow,
let LA(t) denote the sum of the ages of the jobs that have
arrived and are unsatisfied in a schedule A at time t. The
age of a job j at time t is t − rj . The `2-norm objective

1More precisely, one can get a O((log logP )1/k)-approximation
for the `k-norm of flow using the algorithm in [7] since it gives a
O(log logP )-approximation for the kth power of flow, i.e.

∑
j(Cj −

rj)
k .

of A, ignoring the outer square root, is
∫∞
t=1

2LA(t). Here
the goal is to ensure the algorithm has small aggregate age
of jobs that are unsatisfied at each time step on average in
the schedule.

The similarity in the objectives is that the ages act
very much like weights. Due to this, algorithms for one
objective tend to lead to the discovery of an algorithm
for the other objective. Even the NP-Hardness reduction
for the `k-norm of flow time essentially releases jobs in
a very careful way to ensure that they simulate having
weights, effectively simulating the reduction used to show
weighted flow is NP-Hard.

While both objectives are similar, they are obviously
not the same. In particular, the ages of jobs change over
time, which can make them more challenging algorith-
mically than weights. Alternatively, the weights for jobs
can be arbitrary and need not depend on when jobs arrive,
whereas the ages of jobs depend on the jobs’ arrival time.
This fact makes the ages of the jobs less algorithmically
challenging than weights. Due to this, the problems are
mathematically incomparable.

In the research that has tried to answer whether
or not these two problems admit O(1)-approximation
algorithms, one pervasive question is whether or not one
of these problems is easier than the other.

Results: In this paper we consider the `k-norms of
flow time objective on a single machine. We show the
following theorem.

THEOREM 1.1. There is a randomized polynomial time
O(1)-approximation algorithm for the `k-norm of flow
time for all k ≥ 1 in the single machine setting.

To show the previous theorem, we strongly use a
key property of the `k-norms of flow time, which does
not hold in the case of average weighted flow time even
for the `1 norm. The property is the following: for any
two jobs i and j such that ri ≤ rj and pi < pj , one
can assume w.l.o.g. that i is completed before j in an
optimal schedule. This is because if j completes earlier,
then one could have finished i by j’s completion time
since it has smaller processing time. Further, since i
arrives earlier, it only costs the scheduler more for the
`k-norms objective by making i wait longer than j to
be satisfied (i’s age is more than j’s at any time). The
proof of this follows by this intuition and an elementary
swapping argument. While this property is simple, it is
the key underlying property which allows us to apply our
algorithm and analysis framework.

We note that this property does not hold in the
weighted case even for the `1-norm. In particular, if
ri ≤ rj and pi < pj one may need to complete j before
i if j’s weight is much larger than i’s weight. Perhaps
this property makes the `k-norms of flow time an easier
problem than weighted flow time.
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1.1 An Overview of the Analysis Techniques We now
discuss the core techniques we use at a high level. The
most relevant work to ours is that of [7]. The work
of [7] reduces the `k norm problem to a geometric set
cover problem so that their algorithm can leverage known
techniques for geometric set cover. Unlike this previous
work, we will consider the `k-norm problem directly.

We begin by using an integer program for the `k-
norms problem, which was introduced in [7]. The integer
program has a variable xi,t that is 1 if job i is satisfied at
time t and 0 otherwise. The last time t where xi,t = 1
is the time job i is completed. Effectively, this sets
‘deadlines’ for the jobs. The constraints of the program
ensure that a feasible schedule can finish the jobs by their
deadlines by enforcing that the amount of work that must
be done during every time interval does not exceed the
length of the interval. Our algorithm relaxes the program
to a linear program and solves this LP. Then the algorithm
rounds it to an integral solution whose expected cost is
bounded by a O(1) factor of the optimal LP cost.

To round the LP, we need to set integral completion
times of jobs and ensure all the constraints of the LP are
satisfied. To do this, our algorithm samples completion
times for jobs via randomized rounding, oversampling
a completion time by an O(1) factor more than the
fractional LP value. By oversampling by an O(1) factor,
we ensure the completion times sampled only cost O(1)
more than the optimal LP cost. Unfortunately, this may
leave some constraints unsatisfied. In particular, there
could be no way for a scheduler to meet the sampled
completion times for all the jobs. The algorithm needs
to push back the completion times of some jobs to later
times to obtain a feasible schedule.

At this point, we could recurse and use iterative
rounding to ensure the remaining constraints are satisfied.
However, we cannot recurse too many times using stan-
dard iterative rounding while keeping the cost to be at
most a O(1) factor larger than the LP’s cost. In the end,
the algorithm needs to ensure each job’s completion time
is only oversampled by anO(1) factor to be able to bound
the objective.

To circumvent this hurdle our algorithm defines for
each unsatisfied constraint, corresponding to an over-
loaded time interval I , a set of jobs NI that are critical
for satisfying this constraint. This set may not be all jobs
being used to satisfy the constraint for I in the LP, but
only the critical ones. The set is defined in such a way
to take advantage of the property of optimal solutions to
the `k-norm problem mentioned above. Intuitively, jobs in
NI are the most important jobs the LP used to satisfy the
constraint for I . Our algorithm does recurse and utilize
iterative rounding; however, the algorithm only considers
jobs that are in NI for some interval I whose constraint
is not satisfied. We show that the probability that a fixed

job is included in any set NI over all intervals I is a small
constant. Thus, in each iteration, the probability a com-
pletion time for a job is sampled decreases geometrically
because the probability a job remains in the LP decreases
geometrically. 2 This ensures that overall any completion
time is still sampled with O(1) extra boosting over the
fractional amount in the LP, as if only one iteration of ran-
domized rounding occurred. For this reason, we call our
approach iterative quasi-uniform sampling. After recurs-
ing O(log n) times, we will be able to show all intervals
are satisfied, even though we only considered jobs in NI
to satisfy the constraint for I .

Our technique is in similar spirit as the quasi-uniform
sampling technique of [30, 11] for geometric set cover;
however, this previous work does not consider LP round-
ing and is quite different.

2 Preliminaries
There is a set of n jobs that arrive over time. Each job
j has a processing time/size pj and arrives at some time
rj ≥ 0. Both quantities pj ≥ 1 and rj are assumed to be
integers. Times are slotted. During each time slot [t, t+1]
for an integer t ≥ 0, one can either process only one job
exactly by one unit or do nothing. The goal is to schedule
all jobs preemptively offline to minimize the `k norm of
flow time. A job j completes at the earliest time when
it is processed by pj units since its arrival. If job j is
completed at timeCj , the objective is (

∑
j(Cj−rj)k)1/k;

each individual job j’s flow time is Cj − rj . Note that
each job has flow time at least 1. Throughout the paper,
we will focus on minimizing the kth power of flow time∑
j(Cj − rj)

k ignoring the outer kth root. Note that if
one finds a schedule that isO(1)k-approximate for the kth
power of flow time, then it is an O(1)-approximation for
the kth norm of flow time. For an interval I = [s, t] with
integers 0 ≤ s ≤ t, |I| is defined as t− s, i.e., the number
of time slots in the interval. We let a(I) and b(I) denote
the interval I’s starting and ending times, respectively. So,
a(I) = s and b(I) = t if I = [s, t].

We begin by giving a linear programming relaxation,
LPmain for the kth power of flow time objective, which
was introduced in [7]. To make our presentation more
transparent, we assume that each job’s processing time
is polynomially bounded by n. This assumption allows
us to ensure the number of time steps considered in the
linear programming is polynomially bounded by n. This
simplifying assumption will be removed in Appendix C.
For completeness, we briefly discuss why LPmain is a

2More precisely, if a job j is almost complete at time t, then we show
that j’s completion time can be safely upper bounded by time t with
a constant probability in each iteration, making the LP solution more
integral by decreasing the LP cost due to fractional xj,t by a constant
factor.
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valid relaxation. To see this, restrict the values of xj,t
to 0 or 1. Then, the variable xj,t becomes an indicator
variable that is one if and only if j is alive at time t (more
precisely, during time slot [t − 1, t]). In other words, the
latest time t where xj,t = 1 after rj is the completion
time of j. The objective follows since a job j alive at
time t ≥ rj + 1 increases its kth power of flow time by
∆t−rj := (t−rj)k−(t−rj−1)k during time slot [t−1, t].
Let P (S) =

∑
j∈S pj denote the total processing time

of jobs in a set S. Let R(I) denote the set of jobs that
arrive during I = [t1, t2]. For a time interval I , define
V (I) := P (R(I)) =

∑
j,rj∈I pj as the total size/volume

of jobs arriving during I .
We only discuss Constraints (2.2) since other con-

straints are obvious. To gain an intuition, consider a sim-
pler constraint

∑
j∈R(I) pjxj,t ≥ V (I) − |I| by setting

S = ∅ and ignoring the min. Then, for any time inter-
val I = [s, t], at most |I| units of work can be processed.
Hence the total size of jobs that arrive during I and are
still alive at the end of I (the left-hand-side) must be no
smaller than the total size of jobs arriving during I minus
|I|, (the right-hand-side). Constraints (2.2) are standard
knapsack covering inequalities [9] for this covering con-
straint and requires the demand V (I) − |I| to be covered
by jobs not in S by at least V (I) − |I| − P (S), which
is clearly true for all integer solutions. The min truncates
each job’s size from pj to V (I) − |I| − P (S), and it has
no effect on the feasibility of integer solutions. We obtain
the LP relaxation by extending xj,t ∈ {0, 1} to xj,t ≥ 0.
So for each interval I , we have a collection of knapsack
covering inequalities. The LP can be solved using the El-
lipsoid method to arbitrarily close to the optimum; only
the objective achieved is approximate and all constraints
are satisfied. For more details, see [9].

Our algorithm solves LPmain and rounds the frac-
tional solution to an integral solution. Once we have an
integral solution, it is easy to transform this into a fea-
sible assignment. In particular, once jobs have integral
completion times, one can treat these completion times
as deadlines. By using the Earliest-Deadline-First (EDF)
algorithm we can ensure all jobs are completed by their
deadline. The proof is not difficult and is deferred to Ap-
pendix D.

LEMMA 2.1. For any feasible integral solution x to
LPmain, there is a polynomial time algorithm that con-
structs a schedule of cost no more than the LP cost of the
LP solution x.

Given the previous lemma, our goal is to round a
feasible solution to LPmain to a feasible integral solution.
If we can show that the integral solution has cost at most
anO(1)k factor larger than LPmain then this will complete
the proof of our main theorem. The goal of our algorithm

is to discover a completion time C∗j for each job j such
that the cost of these completion times for the jobs is
not too large. Our algorithm works by using several
procedures to set the completion time of the jobs. In
particular, in each step, we will set the completion time
of some jobs j to be at least some time. Then at the end
we set C∗j to be the maximum of all lower bounds to job
j’s completion time we set in all steps. This does not
affect the feasibility of the LP solution since increasing
a job’s completion time never decreases xj,t values, thus
guaranteeing Constraints (2.2) remain satisfied.

The algorithm begins by using threshold rounding.
Let c ≤ 1

16·2k be a constant. Let Cj,c be the latest
time t where xj,t ≥ c. For every job j, we set the
completion time of j to be at least Cj,c. Note that
this ensures that xj,t′ = 1 for all rj ≤ t′ ≤ Cj,c,
regardless of the remaining rounding steps. We note that
the increase of the objective due to this rounding can
easily be bounded by the cost of the LP. We let OPT(LP)
denote the optimum for the LP. The proof of the following
claim is straightforward and is deferred to Appendix D.

CLAIM 2.2. After the threshold rounding, the LP cost is
at most 1

c · OPT(LPmain).

For each interval I , let Sc,I be the set of jobs that ar-
rive during I that are given a deadline after the end of the
interval I by the threshold rounding, i.e. Sc,I := {j | rj ∈
I and Cj,c ≥ b(I)}. Note that this threshold rounding
may satisfy all constraints (2.2) for some intervals I . In
particular, for any interval I where P (Sc,I) ≥ V (I)−|I|.

Consider the remaining set of intervals. LetHI be the
set of jobs inR(I)\Sc,I where pj ≥ V (I)−|I|−P (Sc,I)
and let LI be the remaining jobs in R(I) \ Sc,I . We
say that an interval I = [t1, t2] that is not satisfied by
the threshold rounding is heavy if

∑
j∈HI

xj,t2 ≥ 1
2 and

the interval is light otherwise, i.e.
∑
j∈LI

pjxj,t2 ≥
1
2 (V (I) − |I| − P (Sc,I)). Let H be the set of heavy
intervals and L be the set of light intervals. In the
remaining sections, we set the completion times of jobs
separately to satisfy light intervals and heavy intervals.
By taking the maximum completion time from each case
for a job, we can ensure all constraints corresponding to
intervals are satisfied. The main technical challenge arises
in the heavy case. The proof for the light case is similar
to [7] and, for completeness, the proof can be found in
Appendix B.

To round both the heavy and light cases, we will
bound the cost of the completion times chosen by at most
a 1
cO(1)k factor larger than the optimum LP cost. This

will show that our algorithm is an 1
cO(1)k approximation

for minimizing the kth power of flow time. By taking
the outer kth root for the `k norm objective, we obtain
an O(1) approximation for the `k norm by fixing c to be

1
2k+4 .
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min
∑
j

∑
t>rj

(
(t− rj)k−(t− 1− rj)k

)
xj,t(LPmain)

s.t. xj,t ≤ xj,t−1 ∀j, t > rj(2.1) ∑
j∈R(I)\S

xj,t min{pj , V (I)− |I| − P (S)} ≥ V (I)− |I| − P (S)

∀I = [s, t],∀S ⊆ R(I) where V (I)− |I| − P (S) ≥ 0(2.2)
xj,rj = 1 ∀j
xj,t ≥ 0 ∀j, t ≥ rj

3 Heavy Intervals
In this section, our goal is to set the completion times of
jobs so that Constraints (2.2) for all intervals in H are
satisfied. To do this, we solve a second linear program,
which is more relaxed than the original LP, LPmain. Hence
the new LP, LPheavy will have an optimal solution cheaper
than LPmain. Further, the LP will be strong enough to give
a solution that satisfies all constraints corresponding to
heavy intervals. We use a more relaxed LP because we
will iteratively construct feasible solutions to this LP and
having a simpler LP makes this easier. Here we rename
variables to distinguish this new LP from LPmain, but they
have the same interpretation: yj,t = 1 if job j is alive
during time slot [t − 1, t] and 0 otherwise. Recall that
∆t−rj = (t− rj)k − (t− rj − 1)k.

min
∑
j

∑
t>rj

∆t−rjyj,t(LPheavy)

s.t. yj,t ≤ yj,t−1 ∀j, t > rj(3.3) ∑
j∈HI

yj,t ≥ 1 ∀I = [s, t] ∈ H(3.4)

yj,rj = 1 ∀j
yj,t ≥ 0 ∀j, t ≥ rj

LPheavy is a relaxation of LPmain. There are several
changes. First we simplify Constraints (2.2) to only con-
sider the heavy intervals; as mentioned, the constraints
regarding light intervals will be taken care of in Ap-
pendix B. Further, to satisfy the constraint for a heavy
interval I , we will only use jobs in HI . Recall that ev-
ery job j in HI has a size no smaller than the residual
demand, V (I)−|I|−P (Sc,I). In other words, we satisfy
Constraint (2.2) regarding a heavy interval I = [s, t] if
and only if the completion time of at least one job in HI

is set to be at least t. Hence we have Constraints (3.4).

CLAIM 3.1. OPT(LPheavy) ≤ 2
cOPT(LPmain).

Proof. Consider the fractional solution {xj,t} we ob-
tained in Section 2 after applying the threshold rounding.

As observed in Claim 2.2, the solution has cost at most
1
cOPT(LPmain). Set yj,t = xj,t. Note that the objective
of LPheavy for y is exactly the same as that of LPmain for
x. Then consider setting yj,t to be 2xj,t for all t > Cj,c
for all jobs j, which increases the LP cost by a factor of
at most two. This is well-defined since for such times
t, xj,t < c ≤ 1/2. This satisfies all constraints in the
LPheavy by definition of heavy intervals.

We now give a crucial definition of a property that is
true for any optimal solution to LPheavy. This definition
captures a key structural property of the `k norm of flow
time.

DEFINITION 3.2. We say that a solution y to LPheavy is
priority-preserving if the following property is satisfied:
for any two jobs j and i such that rj ≤ ri and pj < pi,
and any time t ≥ ri, if yj,t > 0, then yi,t = 1. (In
other words, if j is still alive at time t, then i has not been
fractionally completed at all at time t.)

We are now ready to introduce our key lemma,
but, before we do, we need to define several notions.
For a solution y′ to LPheavy, define LPheavy(y

′) to be
LPheavy’s objective for y′. We decompose the cost into
two parts, LPint

heavy(y
′) :=

∑
j

∑
t>rj ,y′j,t=1 ∆t−rj and

LPfrac
heavy(y

′) :=
∑
j

∑
t>rj ,y′j,t<1 ∆t−rjy

′
j,t. In words,

LPint
heavy(y

′) [LPint
heavy(y

′), resp.] denotes the total contri-
bution to the LP’s objective from jobs on time steps where
they are alive integrally [fractionally, resp.]. Clearly,
LPheavy(y

′) = LPint
heavy(y

′) + LPfrac
heavy(y

′).
We will show the following key lemma.

LEMMA 3.3. There exists a randomized polynomial time
algorithm which takes as input a feasible priority-
preserving solution y to LPheavy and constructs a new fea-
sible priority-preserving solution y∗ to LPheavy such that

1. E[LPint
heavy(y

∗)] − LPint
heavy(y) ≤ 23k+3

c LPfrac
heavy(y) =

O(1)kLPfrac
heavy(y).
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2. E[LPfrac
heavy(y

∗)] ≤ 22k+3 exp(−( 2
5c ))LP

frac
heavy(y) ≤

1
2LP

frac
heavy(y).

By repeatedly applying Lemma 3.3, we will convert
a fractional solution to LPheavy to a integral solution
without increasing the cost too much. Property (1) upper
bounds the increase of the integral LP cost byO(1)k times
the fractional LP cost of the current solution. Property
(2) states the fractional LP cost decreases by a constant
factor in each iteration, thus making the LP solution more
integral. To show these properties, we ensure the invariant
that the LP solution always remains priority-preserving
and crucially use it for our analysis.

To apply Lemma 3.3 we first need to have an initial
solution to LPheavy that is priority-preserving, which is
captured in the following lemma.

LEMMA 3.4. There is a feasible priority-preserving so-
lution y to LPheavy with cost at most 2

cOPT(LPmain).

Proof. We show that there is an optimal solution that is
priority-preserving and has cost at most 2

cOPT(LPmain).
For the sake of contradiction, suppose that this claim is
false. Consider an optimal solution y to LPheavy. Let
τ be the first time the claim is false for some two jobs
i and j where rj ≤ ri and pj < pi. This implies
that yj,τ > 0, but yi,τ < 1 and yi,τ−1 = 1. Let T ′

be the set of times t ≥ τ such that yj,t > 0. Let
α = mint∈T ′ min{yj,t, 1 − yi,t}. For each time t ∈ T ′,
we decrease yj,t by α and increase yi,t by α. Note that
this can only reduce the LP objective since we know that
rj ≤ ri, meaning that ∆t−rj ≥ ∆t−ri . If rj < ri, then
clearly this operation strictly reduces the LP objective.
Otherwise, by changing ∆j,t infinitesimally, we can still
ensure the LP objective strictly decreases. 3 Hence we
only need to show that the new LP solution y remains
feasible. We only show that Constraints (3.4) remain
satisfied since it is straightforward to see other constraints
are satisfied. To see this, consider any time t ∈ T ′.
Consider any interval I such that j ∈ HI and b(I) = t ∈
T ′. Since we decreased yj,t by α, the reader may wonder
if Constraint (3.4) is violated. However, note that j ∈ HI

implies that a(I) ≤ rj ≤ b(I) = t. Since rj ≤ ri, we
have a(I) ≤ ri. Further, since ri ≤ τ ≤ t = b(I), we
have that a(I) ≤ ri ≤ b(I). Knowing that pi > pj and
pj ≥ V (I) − |I| − P (Sc,I) since j ∈ HI , we conclude
that i ∈ HI . Hence the decrease of yj,t value can be offset
by the increase of yi,t. This is a contradiction to the fact
that y is an optimal solution to LPheavy.

3For example, we can use the following procedure. Let M be the
total number of time steps we need to consider. Rank jobs based on their
sizes breaking ties arbitrarily: the smallest job has rank 1 and the largest
job has rank n. Then, we decrease each ∆j,t, t > rj by 1/(nM)2k

times job j’s rank.

Thus, we have shown that there is an optimal LP
solution y to LPheavy that is priority-preserving, and the
cost must be at most 2

cOPT(LPmain) by Claim 3.1.

Using Lemma 3.3 and the pervious lemma, we can
find an integral solution to LPheavy with low cost.

COROLLARY 3.1. There exists a polynomial time algo-
rithm that produces a feasible integral solution to LPheavy

whose expected cost is at most 1
c ·O(1)kOPT(LPmain).

Proof. We first show that we only need to apply
Lemma 3.3 a logarithmic number of times to arrive at an
integral solution to LPheavy with high probability. To do
this, note that by Property (2) the cost of the fractional
portion of the LP decreases by a constant factor each it-
eration. Thus, we need only show that the procedure ter-
minates once the objective value is less than 1/poly(n).
Consider any interval I ∈ H that is not satisfied by the
current LP solution, y. Then there must be a job j ∈ HI

such that 1 > yj,b(I) ≥ 1/n due to Constraint (3.4) and
the fact that |HI | ≤ n. Hence job j contributes to the
fractional LP cost by at least (1/n)1k = 1/n. What this
implies is that if the objective is smaller than 1/n, then
every interval must be satisfied. Thus, it is easy to see the
number of iterations we need to apply Lemma 3.3 is poly-
nomially bounded by the input size with high probability.

Finally, note that the increase of the integral cost
of the LP solution in each iteration is upper bounded
by 1

c · O(1)k times the fractional cost of the current LP
solution (Property (1)), and the fractional cost decreases
by a factor of more than 1/2 in each iteration (Property
(2)) since c = 1

2k+4 . Hence by Lemma 3.4, we obtain the
claimed upper bound on the expected LP cost.

3.1 Iterative Quasi-Uniform Sampling (Proof of
Lemma 3.3) Our goal is to construct a new LP solution
y∗ that satisfies the properties claimed in Lemma 3.3. To
prove Lemma 3.3, fix a feasible priority-preserving so-
lution y to LPheavy, which we can assume wlog due to
Lemma 3.4. After each iteration of the randomized round-
ing, we will have to make the current fractional solu-
tion priority-preserving, which is non-trivial. To keep the
flow of presentation, we defer this transformation to Ap-
pendix A. First, we set y∗j,t = 1 if yj,t = 1. Next, we use a
randomized rounding which consists of the following two
steps.

Step (i). For each job j, define r′j be the latest time
when yj,t = 1. For each job j and i ≥ 0, define
βj,i := 2i+r′j ; also define βj,−1 = r′j . For each job j and
i ≥ 2, we sample the completion time βj,i independently
with probability min{1, 1

c · yj,βj,i−2} – this sampling is
done independent of sampling of other βj,i′ , i′ 6= i as
well as other jobs. Note that the probability that time
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βj,i is sampled is 1
c multiplied by the amount job j is

fractionally unsatisfied at the earlier time βj,i−2. When
βj,i is sampled, we make j’s completion time to be at
least βj,i by setting y∗j,t = 1 for all rj ≤ t ≤ βj,i. Note
that if multiple deadlines are sampled for a job, job j’s
completion is set to be at least the latest one sampled.

Step (ii). After step (i), some interval constraints (Con-
straints (3.4)) may be already satisfied. In particular, an
interval I = [a(I), b(I)] ∈ H is satisfied if any job j in
HI is given a completion time no earlier than the ending
time of I since then y∗j,b(I) = 1. For notational conve-
nience, we remove such intervals from H and focus on
the remaining intervals in H. Note that for any interval
I ∈ H, we have yj,b(I) ≤ c for all j ∈ HI . We de-
fine a set NI of jobs for each interval I ∈ H, which we
call critical jobs for interval I . The set NI for an interval
I in H is defined by removing the set EI of jobs in HI

with earliest arrival times until
∑
j∈HI\EI

yj,b(I) ≤ 3
5 .

For each interval I ∈ H (whose constraint is not sat-
isfied by step (i)) and for every job j ∈ NI , we set
y∗j,b(I) = max{y∗j,b(I), 2yj,b(I)}. 4 Also to ensure that
Constraints (3.3) is satisfied, we increase y∗j,t if necessary
for all rj ≤ t ≤ b(I) so that y∗j,t ≥ 2yj,b(I).

Intuition. Our iterative randomized rounding makes the
solution more integral in each iteration. Here the proce-
dure keeps the current solution feasible while decreasing
the cost of fractional part of the LP solution by a constant
factor in each iteration. In Step (i), we sample a com-
pletion time for each job. For ease of analysis, we will
only distinguish completion times only when they differ
by more than a constant factor in length. This is why we
sample j’s completion time to be one of the βj,i times for
some i. By using the threshold rounding and ‘boosted-
up’ randomized rounding, we ‘oversample’ the comple-
tion time by up to a constant factor. Sampling j’s comple-
tion time based on how much the job is alive in the current
solution at an earlier time βj,i−2 has a similar spirit. The
LP’s integral cost increases by O(1)k factor of its frac-
tional cost.

Step (ii) is concerned with intervals that are not
satisfied by Step (i), and is more interesting. Recall
that our goal is to decrease the fractional cost of the
solution by a constant factor. The cost is measured by
when jobs complete while each constraint is defined over
an interval which can be satisfied when jobs arriving
during the interval complete later than the end of the
interval. To safely remove a job from the current solution
(more precisely, fractional completion times for a job),

4This is well-defined since yj,b(I) ≤ c ≤ 1/2. To see this, for the
sake of contradiction, suppose yj,b(I) ≥ c. Consider any i ≥ 2 such
that βj,i−2 ≤ b(I) ≤ βj,i. Since yj,βj,i−2

≥ yj,b(I), βj,i is sampled
with probability 1, which forces yj,b(I) = 1 satisfying Constraint (3.4)
for I .

we should be able to find other jobs that still satisfy the
intervals (constraints) that the job was used to satisfy. This
is why we define critical jobs for each interval. Critical
jobs are sufficient to satisfy intervals if their contributions
to the constraints are increased by a constant factor. Using
the fact that a job is used for intervals only when the
job is critical for them, we show that a job is needed
after Step (i) with a small probability, which will be more
than enough to cancel the effect of increasing critical jobs
contributions.

We begin the analysis by showing y∗ is feasible.

PROPOSITION 3.1. For all I = [a(I), b(I)] ∈ H, we
have

∑
j∈NI

yj,b(I) ≥ 1
2 .

Proof. We use the fact that for any job j in HI , yj,b(I) ≤
c ≤ 1

10 which follows from the definition of c and the
threshold rounding.

LEMMA 3.5. y∗ is feasible to LPheavy.

Proof. It is easy to see that y∗ satisfies Constrains (3.3)
after both steps (i) and (ii). We only need to show that
if Constraints (3.4) for an interval I is not satisfied by
step (i), then it is fractionally satisfied by jobs in NI .
By Proposition 3.1, we have

∑
j∈NI

yj,b(I) ≥ 1
2 . Our

algorithm sets y∗j,b(I) ≥ 2yj,b(I), thus satisfies Constraint
(3.4) for I .

Next we upper bound the cost of the new LP solution
y∗ we constructed following steps (i) and (ii). First we
bound the cost for times set integrally by step (i). One
tricky issue is that y∗ as defined may not be priority-
preserving. We will modify y∗ later to make it priority-
preserving. We will first upper bound E[LPint

heavy(y
∗)] −

LPint
heavy(y) and E[LPfrac

heavy(y
∗)], and will show that the

modification increases neither of the costs.
The following inequality is useful for our analysis

and follows from an elementary algebra.

PROPOSITION 3.2. For all j and i ≥ 0, ∆βj,i+1−rj ≤
2k∆βj,i−rj . Also ∆l is non-decreasing in l.

LEMMA 3.6. E[LPint
heavy(y

∗)] − LPint
heavy(y) ≤

23k+3

c LPfrac
heavy(y).

Proof. To bound the cost, fix a job j and an inte-
ger i ≥ 2. If time βj,i is sampled to be j’s com-
pletion time, then y∗j,t will be set to 1 for all r′j ≤
t ≤ βj,i. The incurred cost is upper bounded by∑
r′j<t≤βj,i

∆t−rj ≤
∑
r′j<t≤βj,i

∆βj,i−rj = (βj,i −
r′j)∆βj,i−rj = 2i∆βj,i−rj , where the first inequality fol-
lows from Proposition 3.2. The probability of βj,i being
sampled for i ≥ 2 is at most 1

cyj,βj,i−2 . Thus the ex-
pected cost is at most 1

cyj,βj,i−22i∆βj,i−rj due to βj,i be-
ing sampled as j’s completion time. Thus, by summing

2607 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

11
/2

6/
17

 to
 1

00
.6

.7
3.

67
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



over all i ≥ 2 and j and by using the linearity of ex-
pectation, we upper bound the expected total increase of
the integral LP cost by 1

c

∑
j

∑
i≥2 2iyj,βj,i−2

∆βj,i−rj ≤
1
c ·4k+1

∑
j

∑
i≥0 2iyj,βj,i

∆βj,i−rj . The inequality is due
to Proposition 3.2. This, together with the following lower
bound, yields the lemma.

LPfrac
heavy(y)(3.5)

=
∑
j

(
∆βj,0−rjyj,βj,0

+
∑
i≥1

βj,i∑
t=βj,i−1+1

∆t−rjyj,t
)

≥
∑
j

(
∆βj,0−rjyj,βj,0

+
∑
i≥1

2i−1∆βj,i−1−rjyj,βj,i

)
≥ 1

2k+1

∑
j

(
∆β0−rjyj,βj,0 +

∑
i≥1

2i∆βj,i−rjyj,βj,i

)
≥ 1

2k+1

∑
j

∑
i≥0

2i∆βj,i−rjyj,βj,i ,

where the first inequality follows by Proposition 3.2 and
Constraints (3.3).

To show that the fractional LP cost decreases signif-
icantly in each iteration, we bound the probability that a
fixed job j is critical for some intervals whose constraints
are unsatisfied after step (i). That is, the probability that
j ∈ NI for an interval I whose constraint is not satisfied
by the randomized rounding. If we show that the probabil-
ity is significantly small, then we will be able to obtain a
new solution whose objective is much smaller than that of
the original LP solution. This is done separately for inter-
vals ending between (βj,i−1, βj,i]. Let Gi,j be the set of
intervals I ending during (βj,i−1, βj,i] such that j ∈ NI .
To make this well-defined, we include I inGi,j only when
yj′,b(I) < c for all j′ ∈ HI ; if not, Constraint (3.4) for I
is satisfied after step (i).

LEMMA 3.7. Fix any job j and any integer i ≥ 2. The
probability that any interval in I ∈ Gi,j is unsatisfied by
step (i) is at most exp(− 2

5c ).

Proof. Fix an interval I ′ = [a(I ′), b(I ′)] in Gi,j that has
the latest starting time. Note that this implies that I ′ is
the interval with the latest starting time such that j ∈ NI′
and βj,i−1 < b(I ′) ≤ βj,i. We know that by definition of
NI′ there is a set EI′ of jobs that arrive during I ′ and no
later than j such that

∑
j′∈EI′

yj′,b(I′) ≥ 2
5 . Further, by

Lemma 3.4 we know that y is priority-preserving which
implies that any job j′ ∈ EI′ with yj′,b(I′) > 0 has
pj′ ≥ pj . This is because yj,b(I′) < 1 since otherwise
I ′ is satisfied by job j, but then since rj′ ≤ rj it must be
that pj′ ≥ pj due to the fact that y is priority-preserving.
Also for the same reason note that for any j′ ∈ EI′ with

yj′,b(I′) > 0, we have r′j′ ≤ r′j since yj′,r′
j′

= 1 by
definition of r′j′ and due to the fact that yj,r′

j′
= 1. See

Figure 1 for a visualization of this setting.
Using the above properties, we want to show that if

any job j′ ∈ EI′ with yj′,b(I′) > 0 is given a completion
time later than βj,i by step (i) then every interval inGi,j is
satisfied. If we can show this and additionally show that
some job j′ ∈ EI′ is given a completion time later than
βj,i with a good probability then the lemma will follow.

To show this, we first need to show that every job
j′ ∈ EI′ with yj′,b(I′) > 0 has rj′ ∈ I = [a(I), b(I)]
for every interval I in Gi,j . Fix any I ∈ Gi,j . We
know that rj ≤ b(I) since I ∈ Gi,j , thus j ∈ NI , and
rj′ ≤ rj by definition of EI′ . Hence we have rj′ ≤ b(I).
Now we show a(I) ≤ rj′ . By definition of I ′, we know
that I ′ starts no earlier than I by definition of I ′, i.e.
a(I) ≤ a(I ′). Further, since j′ ∈ EI′ , by definition of
EI′ , j′ must arrive during I ′, so we have a(I ′) ≤ rj′ .
Thus we have shown that rj′ ∈ I = [a(I), b(I)] as
desired. Further, we noted above that pj′ ≥ pj . Hence job
j′ can be used to satisfy Constraint (3.4) for I since job j
is sufficiently large to satisfy the constraint, and pj′ ≥ pj .
Therefore, if any job j′ in EI′ is given a completion time
later than βj,i by Step (i) then the constraint for I is
satisfied. This follows from knowing that every interval
I ∈ Gi,j ends no later than βj,i, rj′ ∈ I = [a(I), b(I)]
and j′ is large enough to satisfy Constraint (3.4) for I .

It only remains to bound the probability that no job
in EI′ is given a deadline after βj,i. Consider that
any job j′ in EI′ with yj′,b(I′) > 0. Let i′ be an
integer such that βj′,i′−1 < βj,i ≤ βj′,i′ . Since r′j′ ≤
r′j , it must be the case that i′ ≥ i, which implies
βj′,i′−2 ≤ βj,i−1 And we know that completion time
βj′,i′ is sampled for job j′ with probability 1

cyj′,βj′,i′−2
,

which is greater than 1
cyj′,βj,i−1

≥ 1
cyj′,b(I′) due to

Constraint (3.3); note that yj′,b(I′) < c since I ′ ∈
Gj,i. Thus, the probability that no job in EI′ has a
completion time sampled no earlier than βj,i is at most∏
j∈EI′

(1 − yj′,b(I′)/c) ≤
∏
j′∈EI′

exp(−yj′,b(I′)/c) ≤
exp(

∑
j′∈EI′

−yj′,b(I′)/c) ≤ exp(− 2
5c ).

The previous lemma will allow us to bound the
fractional LP cost in the new LP solution y∗.

LEMMA 3.8. E[LPfrac
heavy(y

∗)] ≤
22k+3 exp(−( 2

5c ))LP
frac
heavy(y).

Proof. To prove the lemma, we first bound the cost for
each job j. Consider the case that an interval I ′ = [s′, t′]
in Gi,j is unsatisfied after step (i). This could increases
y∗j,t by at most 2yj,t′ for all r′j < t ≤ t′. Note that yj,t′ ≤
yj,βj,i−1 by Constraint (3.3). The total cost incurred due
to this operation is at most 2

∑
r′j<t≤βj,i

∆t−rjyj,βj,i−1 ≤
2i+1∆βj,i−rj · yj,βj,i−1

. By summing over all i ≥ 2
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Time

βj,iβj,i−1βj,i−2rj

I ′

Intervals in Gi,j

a(I ′) is later than a(I) for all I ∈ Gi,j

a(I ′) b(I ′)

Arrival of jobs in EI′

Arrival of jobs in NI′

Figure 1: Intervals in Gi,j . Note that all jobs in EI′ arrive during every interval in Gi,j . Due to this, if a job in EI′ is
given a completion time later than βj,i then all intervals in Gi,j are satisfied.

and j and using the linearity of expectation, the expected
increase of the cost is at most

2
∑
j

∑
i≥2

2i∆βj,i−rj · 2yj,βj,i−1

≤ 4
∑
j

∑
i≥1

2i∆βj,i+1−rj · yj,βj,i

≤ 2k+2
∑
j

∑
i≥1

2i∆βj,i−rj · yj,βj,i

by Proposition 3.2. This upper bound, together with (3.5)
and Lemma 3.7, yields the lemma.

As mentioned before, the solution y∗ we obtained by
performing steps (i) and (ii) is not necessarily priority-
preserving. If it is, then Lemmas 3.6 and 3.8 immediately
imply Lemma 3.3. In Appendix A we show how to ensure
that y∗ is priority preserving, completing the proof.
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A Ensuring y∗ is Priority-Preserving
Suppose y∗ is not priority-preserving. If there are two
jobs i and j where rj ≤ ri and pj < pi however there is
a time t ≥ ri where y∗i,t < 1 and y∗j,t > 0, we say this is a
priority inversion. We first observe that priority inversions
appearing in solution y∗ have special forms, which will
help make us make y∗ priority-preserving. Towards this
end, we set up some notations. We define a partial order
amongst jobs: j ≺ i if rj ≤ ri and pj < pi. Note that the
partial order is transitive and defines a DAG amongst jobs.
We say that two jobs j ≺ i preserve priorities at time τ
for solution a y′ if y′i,τ < 1 implies y′j,τ = 0, and denote
it as j ≺y′,τ i. If not, we denote it as j 6≺y′,τ i. Note
that y′ being priority-preserving means that for all j ≺ i,
j ≺y′,τ i for all times τ > ri. The following lemma states
that if at any time τ , a lower-priority job i does not have
y∗i,t = 1 while a higher-priority job j has y∗j,t > 0, then it
must be the case that job j has y∗j,t = 1.

LEMMA A.1. After steps (i) and (ii), suppose that there
are two jobs j ≺ i such that j 6≺y∗,τ i for a time τ > ri.
Then it must be the case that y∗j,τ = 1. Further, for all
times t ≥ τ , y∗j,t ∈ {0, 1}.

Proof. We restrict our attention to a pair of jobs j ≺ i
such that j 6≺y∗,τ i for some τ > ri. Since the solution
y given in Lemma 3.3 is priority-preserving, we have that
j ≺y,τ i. We consider two cases. The first case is that
a completion time no earlier than τ was sampled for job
j. Then, after step (i), y∗j,τ = 1. It is easy to see that
y∗j,τ remains to have value 1 after step (ii) since step (ii)
doesn’t decrease y∗ values. We also observe that yj,τ = 0.
Otherwise, since j ≺y,τ i, it follows that yi,τ = 1. Then
it must be the case that y∗i,τ = 1, meaning that j ≺y∗,τ i,
which is a contradiction. Hence for all t ≥ τ , we have
yj,t = 0. Thus the lemma follows in the case.

Now consider the other case which we will show
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never occurs. Since j 6≺y∗,τ i, after step (ii) we have
y∗i,τ < 1. Since once a y∗ variable becomes 1 during
steps (i) or (ii), it remains to be 1 until the end of these
steps, it must be the case that yi,τ < 1. Since j ≺y,τ i, it
must be the case that yj,τ = 0. This implies that y∗j,τ = 1
since y∗j,τ > 0 and step (ii) does not make a zero-valued y
variable to become non-zero, and step (i) can only make
y∗j,τ become 1. But this means that job j was given a
completion time no earlier than τ in step (i), which is a
contradiction to the assumption of this case. Hence only
the first case can occur for which we showed the lemma.

Note that the previous lemma implies any job j only
has integral variables if there is a job i and t such that
j 6≺y∗,τ i.

Using the previous lemma, we now define a proce-
dure to convert y∗ so that it becomes priority-preserving.
To do this, we define a new solution ȳ. Initially we set
ȳj,t = yj,t. We recursively do the following procedure
until there are no more priority inversions in the solution
ȳ. Consider the job j that arrives the earliest such that
there is a job i and time t where j 6≺ȳ,t i; in case of ties,
choose a job with the smallest size. Fix this job j and let T
be the set of times twhere there exists a job i and j 6≺ȳ,t i.
Consider times t ∈ T in increasing order and consider a
job i with the maximum ri such that j 6≺ȳ,t i; in case
of ties, choose a job with the largest size. Set ȳi,t = 1
and ȳj,t = 0. This is performed for all times in T . The
algorithm then recurses on another such job j so long as
there are priority inversions. We will show that this algo-
rithm must only reduce the number of priority inversions,
implying the procedure will terminate in polynomial time.

We first show that this procedure does not increase
the objective value. We will then show that the solution
remains a feasible solution. Finally, we show that the
procedure does not introduce any new priority inversions
and, therefore, will eventually terminate.

LEMMA A.2. After performing a modification to ȳ no
new priority inversions are introduced.

Proof. For the sake of contradiction consider the first
time we introduce a priority inversion when we were
considering jobs j and i and a time t such that j 6≺ȳ,t i.
There are two reasons this could happen. The first is
because we set ȳi,t to be 1. For this to create an inversion,
there must be a job i′ � i such that ȳi′,t < 1. However,
then before this operation we had j 6≺ȳ,t i′ because
j ≺ i ≺ i′. This implies that ri′ > ri, or pi′ > pi
and ri′ = ri, which contradicts the way we chose i.

The second reason there could be an inversion is
because we set ȳj,t = 0. In this case, it must be that
there is a job j′ ≺ j such that ȳj′,t > 0. However, then
j′ ≺ j ≺ i. This implies that j′ 6≺ȳ,t i contradicting the
assumption that j is a job with the smallest size amongst

all jobs with the earliest arrival times that have a priority
inversion at any time.

Now we bound the cost of the operations.

LEMMA A.3. The modification of y∗ does not increase
the objective of either LPint

heavy(y
∗) or LPfrac

heavy(y
∗).

Proof. We know LPint
heavy(y

∗) = LPint
heavy(ȳ) and

LPfrac
heavy(y

∗) = LPfrac
heavy(ȳ) before the modification. Note

when considering job j, job i and time t we decrease ȳj,t
from 1 to 0 and increase ȳi,t from at smallest 0 to 1. It
must be the case that ȳj,t was 1 because by Lemma A.1
if there is an inversion j 6≺ȳ,t i then ȳj,t is 1 before we
perform the modification. Further, we introduce no new
inversions by Lemma A.2. Now consider the change in
the objective in this operation. The change of the value is
upper bounded by −∆τ−rj + ∆τ−ri for the integral cost,
which is non-positive since rj ≤ ri. For fractional vari-
ables, we can only make them integral so the fractional
cost cannot increase.

Finally, we show that the new solution is feasible.

LEMMA A.4. The modified solution ȳ at the end of the
above procedure is feasible.

Proof. We consider constraints (3.3) and (3.4) separately.
First consider (3.3). For the sake of contradiction, con-
sider the jobs j and i and time t which is the first time the
algorithm makes the solution ȳ infeasible for a constraint
in (3.3). This can be caused by two cases. For the first
case, say this is because we set ȳi,t = 1. Then we know
that t > ri and there must be a t′ where ȳi,t′ < 1 and
ri ≤ t′ < t. This implies that at time t′ the algorithm
had j 6≺ȳ,t′ i. The algorithm considers times in increas-
ing order, so when the algorithm considered time t′ there
must have been another job i′ where j 6≺ȳ,t′ i′, and i ≺ i′
(i.e. ri < ri′ , or ri = ri′ and pi < pi′ ). Otherwise,
the algorithm would have set ȳi,t′ = 1. However, then
j 6≺ȳ,t i′ and ri′ > ri contradicting the algorithm choos-
ing a largest one amongst jobs with the latest arrival times
that j has a priority inversion with at t.

For the second case say that the solution becomes
infeasible due to setting ȳj,t = 0. This could indeed make
the solution infeasible if there is a later time t′ > t where
ȳj,t′ > 0. However, we know that for any t′ ≥ t that if
ȳj,t′ > 0 then j is in an inversion with i as the solution was
feasible before we considered job j, thus ȳi,t′ < ȳi,t < 1.
Thus, after we are done with considering steps for j, it
will be the case that for all t′ ≥ t we have ȳj,t′ = 0.

Finally we show that constraints (3.4) are satisfied.
Consider the first time a constraint in (3.4) becomes
unsatisfied for an interval I when we considered the jobs
j and i and time t. This constraint must become infeasible
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due to setting ȳj,t = 0. Thus, we know that j ∈ HI so
then a(I) ≤ rj ≤ t = b(I). We also know by definition
of an inversion that pj < pi and rj ≤ ri ≤ t. Thus i
has a bigger size than j, and i also arrives during I and
therefore i ∈ HI by definition of HI . However, then we
set ȳi,t = 1, so the constraint must be satisfied.

The previous lemmas complete the proof of the claim
in Lemma 3.3 that the new solution is priority-preserving.

B Light Intervals
In this section, we show that we can set jobs com-
pletion times so that all constraints for light intervals
are satisfied while keeping the objective to be at most
O(1)k

c OPT(LPmain). As mentioned before, this rounding
closely follows [7], but for completeness we include the
rounding procedure along with the analysis.

B.1 Preprocessing the LP solution We first preprocess
the solution to LPmain we had after the threshold rounding
in Section 2 to make the analysis easier. Recall that
after the threshold rounding, we partitioned intervals left
unsatisfied into two groups, H and L, and we wanted
to satisfy Constraints (2.2) for all light intervals, L. We
had an assignment x̃j,t such that

∑
j∈LI

pj x̃j,b(I) ≥
1
2 (V (I) − |I| − P (Sc,I)) for all I ∈ L where for every
j ∈ LI , pj < V (I) − |I| − P (Sc,I) and x̃j,b(I) < c. We
first increase all x̃j,t such that x̃j,t < c by a factor of 16.
For each job j and i ≥ 0, define βj,i := rj + 2i; also
define βj,−1 = rj . Then, for each j and i ≥ 1 for all
times t ∈ (βj,i−1, βj,i], we set x̃j,t = x̃j,βj,i−1

. This only
increases the value of every variable x̃j,t since x̃ satisfies
Constraints (2.2), thus keeping the solution feasible. It
is straightforward to see that other constraints remain
satisfied. Further, using the fact that (βj,i+1 − rj)

k ≤
2k(βj,i − rj)k, we can also show that the LP cost doesn’t
increase a lot.

LEMMA B.1. The LP solution remains feasible and the
cost increases by a factor of at most 23k+4.

Proof. Since we already verified that the new x̃ satisfies
all constraints, we only show the second claim. The first
step increases the objective by a factor of at most 16 as
mentioned. Before the second step, the objective is at least

∆βj,0−rj x̃j,βj,0 +
∑
i≥1

βj,i∑
t=βj,i−1+1

∆t−rj x̃j,βj,i

≥ ∆βj,0−rj x̃j,βj,0

+
∑
i≥1

(2ik − 2(i−1)k)∆βj,i−1−rj x̃j,βj,i .

Similarly, one can see that the objective increases by at

most

∑
i≥1

βj,i∑
t=βj,i−1+1

∆t−rj x̃j,βj,i−1

≤
∑
i≥1

(2ik − 2(i−1)k)∆βj,i−rj x̃j,βj,i−1

≤ 4k∆βj,0−rj x̃j,βj,0

+
∑
i≥2

(2ik − 2(i−1)k)∆βj,i−rj x̃j,βj,i−1

≤ 4k∆βj,0−rj x̃j,βj,0

+ 2k
∑
i≥1

(2ik − 2(i−1)k)∆βj,i+1−rj x̃j,βj,i

By using the fact that ∆βj,i+1−rj ≤ 4k∆βj,i−1−rj
and factoring in the factor 16 increase we had due to the
first step, we obtain the desired lemma.

Let DI = (V (I) − |I| − P (Sc,I)) be the resid-
ual demand for interval I . Now we have a fractional
solution x such that for every light interval I ∈ L,∑
j∈LI

pj x̃j,b(I) ≥ 8DI . We want to find an integral
solution x that satisfies all constraints, particularly Con-
straint (2.2) for each light interval I with residual demand
DI . From now on, for simplicity, we will assume that ev-
ery job have a size equal to a power of two. This can be
done by rounding up each job size to the nearest power
of two. Then it suffices to find a solution that satisfies
Constraint (2.2) for each interval I in L with demands
2DI . Since for each job j we partitioned times after j’s
arrival into (βj,i, βj,i+1], i ≥ 0, and we will require xj,t
has the same value for all t ∈ (βj,i, βj,i+1], it will be
convenient to further simplify the LP by introducing new
variables, zj,i. Let i0(j) be the smallest i such that we set
x̃j,βj,i

< 1. Since we will fix xj,βj,i
= 1 for all i < i0(j),

we will only consider variables zj,i, i ≥ i0(j); zj,i0(j)−1

is kept for notational convenience.
To summarize the above, every job has a size equal to

a power of two, and for the following LP,

min
∑
j

∑
i≥i0(j)

∆′j,izj,i(LPlight)

s.t.
∑

j:rj∈I,pj<DI

pj · zj,i(j,I) ≥ 2DI ∀I ∈ L
(B.1)

zj,i ≤ zj,i−1 ∀j, i ≥ i0(j)(B.2)
zj,i0(j)−1 = 1 ∀j(B.3)

zj,i ≥ 0 ∀j, i ≥ i0(j),

where ∆′j,i = (βj,i − rj)k − (βj,i−1 − rj)k and i(j, I) is
the smallest i′ such that βj,i′ ≥ b(I), we have a feasible

solution z̃i,j whose cost is at most O(1)k

c OPT(LPmain)
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(see Claim 2.2 and Lemma B.1) such that

(B.4)
∑

j:rj∈I,pj<DI

z̃j,i(j,I) ≥ 8DI

Notice that in the summation of Constraint (B.1) we
don’t have the condition j 6∈ Sc,I . It is true that j ∈ LI
if and only if j arrives during I , pj < Dj , and j 6∈ Sc,I .
However, j ∈ Sc,I only when x̃j,βj,i(j,I)

= 1, and we
don’t even consider such pair (j, i(j, I)) since i(j, I) <
i0(j) by definition of i0(j).

In the following section, we will show that one can
find an integral solution z̄i,j to LPlight whose cost is O(1)
times the cost of z̃i,j for LPlight, LPlight(z̃). We will set
xj,t = 1 for all rj ≤ t ≤ βj,i if z̄j,i = 1. Fix a job j
and let i′ be the largest i such that z̄j,i = 1. This implies
that z̄j,i0(j)−1 = z̄j,i0(j) = ... = z̄j,i′ = 1. So job j’s
kth power of flow time will be (βj,i′ − rj)

k. Part of it,
till time i0(j), was already taken care of in the threshold
rounding in Section 2 and Lemma B.1. The remaining
part, (βj,i′ − rj)k − (βj,i0(j) − rj)k, is exactly the cost
of the LPlight due to job j under the solution z̄. Hence,
an integral solution z̄i,j to LPlight will imply an integral

solution to LPmain with cost of O(1)k

c OPT(LPmain) that
satisfies all constraints for light intervals.

B.2 Reduction to a Geometric Covering Prob-
lem We now make a connection between LPlight and
the following geometric covering problem. We use
[x′1, x

′
2] × [y′1, y

′
2] to denote an axis-parallel rectangle

with points (x′1, y
′
1), (x′1, y

′
2), (x′2, y

′
1) and (x′2, y

′
2).

The R2M problem. The input is a collection Q of points
in 2D Euclidean space, each with an integer demand Dq ,
and a collection of axis-parallel rectangles B of the form
[0, xB ]×[y1

B , y
2
B ], each with costwB . The goal is to find a

minimum cost subset S of rectangles such that each point
q ∈ Q is covered by at least Dq rectangles in S.

We will show that finding an integral solution to
LPlight can be reduced to the R2M problem. We cre-
ate several instances of the R2M problem, I`, 0 ≤ ` ≤
log2 maxj pj . Each instance I` has rectangles corre-
sponding to jobs of size 2`. We create I` as follows.
For each interval I = [a(I), b(I)] ∈ L, create a point
qI = (a(I), b(I)). Its demand DI,` will follow soon.
For each job j of size 2`, create a collection of rectan-
gles {Bj,i}i≥i0(j) where Bj,i denotes rectangle, [0, rj ] ×
(βj,i−1, βj,i]. We set DI,` = b∑j,i:pj=2`,qI∈Bj,i

z̃j,ic.
This completes the description of R2M instances, {Il}.

It was shown that the R2M problem admits a constant
approximation [7]. Further, the approximation is based on
a standard LP. The following IP exactly captures the R2M
problem for instance I` where variable z′j,i = 1 if and

only if Bj,i is chosen.

min
∑

j:pj=2`

∑
i≥i0(j)

∆′j,iz
′
j,i(IP`)

s.t
∑

j,i:qI∈Bj,i,pj=2`

z′j,i ≥ DI,` ∀I ∈ L(B.5)

z′j,i ∈ {0, 1}

We get a LP relaxation LP` by allowing z′j,i ∈ [0, 1].
We observe that z̃j,i is a feasible LP solution for the
following reason. Observe that qI ∈ Bj,i if and only
if a(I) ≤ rj and βj,i−1 < b(I) ≤ βj,i. By definition
of DI,`, we have DI,` ≤

∑
j,i:pj=2`,qI∈Bj,i

z̃j,i, which
implies that z̃j,i satisfies Constraints (B.5).

Let {z̄′j,i}j:pj=2` be an integral solution to LP` we
obtain using a constant approximation based on LP re-
laxation. Hence we have LP`(z̄

′) = O(1)LP`(z̃). Ini-
tially we set z̄j,i = 0, and if z̄′j,i = 1, then set z̄j,i0(j) =
z̄j,i0(j)+1 = ... = z̄j,i = 1.

LEMMA B.2. LPlight(z̃) = O(1)k

c OPT(LPmain).

Proof. Knowing that ∆′j,i ≤ 1
2∆′j,i+1, we have LP`(z̄) =

O(1)LP`(z̄
′). Also, since the variables of LP` are only

defined over jobs of size 2`, we have LPlight(z̄) =∑
` LP`(z̄) = O(1)

∑
` LP`(z̄

′) = O(1)
∑
` LP`(z̃) =

O(1)LPlight(z̃) = O(1)k

c OPT(LPmain).

Now we show that z̄ is feasible to LPlight. It is easy
to see that z̄ satisfies Constraints (B.2) and (B.3). It only
remains to show that z̄ satisfies Constraint (B.1) for each
interval I ∈ L.∑
j:rj∈I,pj<DI

pj · z̄j,i(j,I)

≥
∑

`:2`<DI

2`
∑

j:rj∈I,pj=2`

z̄′j,i(j,I)

=
∑

`:2`<DI

2`
∑

i,j:qI∈Bj,i,pj=2`

z̄′j,i

≥
∑

`:2`<DI

2`DI,` [z̄′ is feasible to LP`]

=
∑

`:2`<DI

2`b
∑

j,i:qI∈Bj,i,pj=2`

z̃j,ic

≥
∑

`:2`<DI

2`
∑

j,i:qI∈Bi,j ,pj=2`

z̃j,i −
∑

`:2`<DI

2`

≥
∑

j:rj∈I,pj<DI

pj z̃j,i(j,I) − 2DI ≥ 6DI [Due to (B.4)],

as desired. We used the fact that rj ∈ I and βj,i−1 <
b(I) = βj,i if and only if qI ∈ Bj,i, and the definition that
i(j, I) is i′ such that βj,i′−1 < b(I) ≤ βj,i′
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C When jobs sizes or release times are not
polynomially bounded by n

In this section we show that we can assume w.l.o.g. that
all job sizes and arrival times are polynomially bounded
by n. Let pmax = maxj pj . Let be ε > 0 be an arbitrary
small constant such that 1/ε is an integer. We first observe
that we can assume w.l.o.g. that no two jobs have arrival
times that differ by more than 2npmax. Otherwise we can
decompose the input instance into sub-instances where
each sub-instance satisfies the simplifying assumption,
and solve each separately. Further, our schedule will
complete all jobs in each substance within 2npmax times
steps after the last job in the sub-instance arrives.

Hence we can assume w.l.o.g. that minj rj = 0 and
maxj rj is polynomially bounded by pmax and n. Also
assume that pmax ≥ n2/ε2 since otherwise jobs sizes
and arrival times are polynomially bounded by n. Define
δ := b ε2pmax

n2 c. Let I be the given instance. We modify
I so that jobs arrival times and sizes are integer multiples
of δ. More precisely, for each job j, let p̄j be an integer
multiple of δ such that pj−3δ ≤ p̄j ≤ pj−2δ; if pj ≤ 3δ,
then p̄j = 0. Also let r̄j be an integer multiple of δ such
that rj ≤ r̄j ≤ rj + δ. Let Ī denote this new instance.

We first show that for any schedule σ for I, there is
a schedule σ̄ for Ī where each job completes earlier than
in schedule σ. To see this, notice that one can process job
j during [rj , r̄j ] by at most δ units. However, job j’s size
in Ī is smaller than in I by at least 2δ. Hence even if we
ignore the work that was done for job j during [rj , r̄j ] in
schedule σ, we can complete job j earlier if we assume
that job j has size p̄j + δ.

Then, we scale down all parameters of I, jobs arrival
time and sizes uniformly by a factor of δ, and solve it.
Note that that all parameters in the resulting instance are
polynomially bounded by n. To justify the scaling, it
suffices to show that there is a nearly optimal schedule
for Ī where during any [iδ, (i + 1)δ] for integers i, no
more than one job is processed. This can be easily shown
by interpreting a schedule as a flow between intervals
R = {[iδ, (i + 1)δ] : i is an integer} and jobs. Let C̄∗j
be j’s completion time of an optimal schedule for jobs j
with size p̄j + δ and arrival time r̄j . Then, we can view
job j’s schedule as a flow of value 1+p̄j/δ from the job to
intervals in R intersecting [r̄j , C̄

∗
j ]. Using the integrality

of flow, one can easily find a schedule where no more than
one job is processed during any interval in R, and each
job j completes within C̄∗j + δ. Since this is a schedule
for jobs with sizes p̄j+δ, we can complete each job j with
size p̄j by time C̄∗j .

Finally, we need to show that if we have a schedule
for the modified instance Ī, then we can find a schedule
for the original instance I without increasing the objective
too much. Say C̄j is j’s completion time for Ī. Then, it

is easy to see that we can complete each job j in I by
time C̄j + 3nδ: For notational simplicity, assume that
jobs are ordered in increasing order of C̄j . Then, we
can complete job 1 by time C̄1 + p1 − p̄1, job 2 by time
C̄2 + (p1 − p̄1) + (p2 − p̄2), and so on. Let Fj denote j’s
flow time in I, and let F̄j denote the analogous quantity
for instance Ī. Note that we have Fj ≤ F̄j + 3nδ.

LEMMA C.1. Fj ≤ min{(1 + 3)F̄j , 4ε
pmax

n }.

Proof. To compare
∑
j Fj and

∑
j F̄j , we consider two

cases.
Case i): If F̄j ≥ εpmax

n . Fj ≤ F̄j+3nδ ≤ Fj+3ε2 pmax

n ≤
(1 + 3ε)F̄j .
Case ii): Otherwise. Fj ≤ F̄j+3nδ ≤ εpmax

n +3ε2 pmax

n ≤
4εpmax

n .
Hence the lemma follows.

By summing over all jobs, we have

∑
j

F kj ≤ (1 + 3ε)k
∑
j

F̄ kj +
(4ε)k

nk
pkmax · n

≤ (1 + 7ε)k
∑
j

F̄ kj

The last inequality follows from the fact that the kth
power of flow time is at least pkmax for any schedule. Thus,
we have shown that by solving the simplified instance Ī
where all parameters are polynomially bounded, we can
construct a schedule for the original instance I whose cost
is only 1 + 7ε factor larger.

D Omitted Proofs

Proof of [Lemma 2.1] To show the lemma, we simply
need to show an algorithm that completes each job only
earlier than LPmain in the given solution x. We use the
Earliest-Deadline-First algorithm (EDF), which always
schedules an unsatisfied job with the earliest deadline
at each time preemptively. Here the deadlines are the
completion times given by the integral LP solution. Let
dj be the deadline of job j. Note that xj,rj = xj,rj+1 =
... = xj,dj = 1 and xj,t = 0 for all t > dj .

For the sake of contradiction, say that some job j does
not get scheduled by its deadline dj . Let t1 be the earliest
time before dj such that at every time during the interval
[t1, dj ] the EDF algorithm is always scheduling a job with
deadline earlier than dj ; we can assume w.l.o.g. that jobs
have distinct deadlines by breaking ties in an arbitrary but
fixed way. Note that every job the algorithm schedules
during [t1, dj ] arrives during [t1, dj ] since otherwise the
value of t1 must be smaller contradicting the definition
of t1. Consider Constraint (2.2) with I = [t1, dj ] and
S being the subset of jobs that arrive during [t1, dj ] but
complete no earlier than dj . Note that V (I) − P (S)
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is the total size of jobs that arrive during [t1, dj ] and
complete earlier than time dj . Since EDF was always
busy processing those jobs during [t1, dj ] but couldn’t
finish them all, it must be the case that V (I)−P (S) > |I|,
which makes the right-hand-side of (2.2) strictly positive.
On the other hand, for any job j ∈ R(I) \ S, we
have xj,dj = 0 since the job completes earlier than
time dj . Hence the left-hand-side of (2.2) is 0, which
is a contradiction. Thus all jobs are completed by their
respective deadlines by EDF. 2

Proof of [Claim 2.2] Fix a job j. Note that we changed
xj,t only for times t ∈ [rj , Cj,C ]. The contribution of
job j to the LP objective during [rj , Cj,C ] is at least
1
c (Cj,c − rj)k. By setting j’s completion time to Cj,c, j’s
contribution to the objective during [rj , Cj,C ] increases to
(Cj,c − rj)k, proving the claim. 2
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