
On the Randomized Competitive Ratio of
Reordering Buffer Management with

Non-Uniform Costs

Noa Avigdor-Elgrabli1, Sungjin Im2?, Benjamin Moseley3, and Yuval Rabani4

1 Yahoo! Labs Haifa, MATAM, Haifa 31095, Israel. noaa@yahoo-inc.com
2 University of California, Merced, CA 95344. sim3@ucmerced.edu

3 Washington University in St. Louis, MO, 63130. bmoseley@wustl.edu
4 The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

yrabani@cs.huji.ac.il.

Abstract. Reordering buffer management (RBM) is an elegant theoret-
ical model that captures the tradeoff between buffer size and switching
costs for a variety of reordering/sequencing problems. In this problem,
colored items arrive over time, and are placed in a buffer of size k. When
the buffer becomes full, an item must be removed from the buffer. A
penalty cost is incurred each time the sequence of removed items switches
colors. In the non-uniform cost model, there is a weight wc associated
with each color c, and the cost of switching to color c is wc. The goal
is to minimize the total cost of the output sequence, using the buffer to
rearrange the input sequence.
Recently, a randomized O(log log k)-competitive online algorithm was
given for the case that all colors have the same weight (FOCS 2013).
This is an exponential improvement over the nearly tight bound of
O(
√

log k) on the deterministic competitive ratio of that version of the
problem (Adamaszek et al. , STOC 2011). In this paper, we give an
O((log log kγ)2)-competitive algorithm for the non-uniform case, where γ
is the ratio of the maximum to minimum color weight. Our work demon-
strates that randomness can achieve exponential improvement in the
competitive ratio even for the non-uniform case.

1 Introduction

Motivation and background. In the reordering buffer management problem
(RBM) a stream of colored items enters a buffer of limited capacity k, which
is used to permute the input stream. Once the buffer is full, any item can be
removed from the buffer to the permuted output stream to make room for the
next input item. This is repeated until the buffer is empty. The goal is to mini-
mize the context switching cost of the output stream due to color changes. The
literature considers various cost models. The simplest version is the uniform cost
model, where each color switch costs 1. In this paper, we are concerned with the

? Supported in part by NSF grant CCF-1409130.



so-called non-uniform cost model, where each color c has a weight wc, and a
switch in the output stream to color c costs wc. In the online version of the
problem, the decision on which item to remove from the buffer must be made
on-the-fly without knowing the future input stream. In the offline version of the
problem, the entire input stream is known in advance.

RBM models a wide range of applications in production engineering, logis-
tics, computer systems, network optimization, and information retrieval (see,
e.g., [6,15,14,12]). In essence, RBM, introduced in [15], gives a nice theoretical
framework which allows us to study the tradeoff between buffer size and context
switching costs. This tradeoff is evident in many applications. From the perspec-
tive of the theory of algorithms, this seemingly simple problem is NP-hard [8],
and it presents significant algorithmic challenges both in the offline and the on-
line settings. For instance, simple algorithms such as greedy or FIFO are known
to have poor performance.

RBM was studied mostly in the online setting [15,10,11,9,3,1,5]. The perfor-
mance guarantees for uniform RBM were essentially resolved in a sequence of
papers. There is a deterministic O(

√
log k)-competitive online algorithm and a

nearly matching Ω(
√

log k/ log log k) lower bound [1]. The randomized compet-
itive ratio is Θ(log log k). The lower bound is from [1] and the upper bound was
recently proved in [5]. So, similar to some other online problems such as paging,
randomness gives an exponential improvement in the competitive ratio. In the
offline setting, there is an O(1)-approximation algorithm [4] (see alternative algo-
rithms in [5,13]), but no hardness of approximation result beyond NP-hardness
of the exact solution.

In contrast, there is a wide gap in our understanding of non-uniform RBM.
The best known upper bound on the competitive ratio of non-uniform RBM is
min{log k/ log log k,

√
log kγ}, where γ is the ratio of maximum to minimum color

weight. This bound combines the results for two deterministic algorithms from [3]
and [1]. For γ which is polynomial in k, the algorithm in [1] nearly matches the de-
terministic lower bound for the uniform case. The above-mentioned uniform case
upper bounds of O(log log k) on the randomized competitive ratio and of O(1) on
the approximation guarantee seem to use uniformity inherently. So the random-
ized competitive ratio and the approximability of non-uniform RBM were far
from settled. Very recently, an offline approximation guarantee of O(log log kγ)
was shown [13]. Hence, the looming question concerning non-uniform RBM was
if randomness can give an exponential improvement of the competitive ratio as
it did for the uniform case. (We note that in the case of paging, for instance,
the analogous question regarding the randomized competitive ratio of weighted
caching remained open for a very long time.)

Our results. In this paper, we answer the above question in the affirmative.
Specifically, we prove the following theorem.

Theorem 1. There is a randomized O((log log kγ)2)-competitive online algo-
rithm for the non-uniform RBM problem.



Our algorithm is based on the online primal-dual schema (see [7] for a sur-
vey). The algorithm consists of two phases. In the first phase, the algorithm
computes deterministically a feasible fractional solution to an LP relaxation for
non-uniform RBM. The LP solution is computed online. In parallel, the algo-
rithm examines the partial LP solution and rounds it online using randomness
to get an integral RBM solution which is the output of the algorithm. We lose
a factor of O(log log kγ) in each of the two phases. Interestingly, both phases
use a resource augmentation argument to bound the cost of the online solution
they produce. In the first phase, the cost of the online generated LP solution is
compared against the cost of a dual LP solution for a smaller buffer (see [10,2,5]
for previous application of this idea in similar contexts). In the second phase,
resource augmentation is used to give the integral solution a bit more buffer
space than the LP solution that is rounded to generate it. Overall, the integral
solution uses a buffer of size k (thus respecting the buffer capacity constraint),
the LP primal solution uses a buffer of size k − k

log kγ , and the LP dual that

is used for bounding the LP cost is for a buffer of size roughly k − 2k
log kγ . We

note that all the previous resource augmentation proofs for RBM either did not
apply to the non-uniform case, or they did not prove sufficiently tight bounds.
Our proof is new and different from previous proofs.

The first phase of computing the LP solution is generally framed after the al-
gorithm for the uniform case in [5]. The algorithm combines two methods. One
method uses the online version of the multiplicative weights update method
(see [7]) and works well as long as the color blocks in the buffer do not ex-
ceed a size of O(k/ log kγ). The other method uses an integral dual fitting-
based algorithm that works well when all the color blocks in the buffer have size
Ω(k/ log kγ) when they are removed. In [5], the main difficulty was to combine
the two algorithms to work well when the buffer contains a mixture of the two
types of color blocks. However, the way the two algorithms were combined in [5]
inherently uses uniformity, because whenever there was a switch between the
two types in one color, other completely arbitrary colors could be charged. In
order to facilitate the combination in the non-uniform case, the algorithm and
its analysis had to be modified. The result happens to be a simpler and cleaner
algorithm and analysis.

The second phase of the algorithm is motivated by the recent offline approxi-
mation algorithm in [13]. There, a solution to a slightly different LP was rounded
to give an O(log log kγ) approximation guarantee (without using resource aug-
mentation). However, the algorithm in [13] had several steps that rely crucially
on offline information about the LP solution. In particular, that algorithm makes
decisions based on when the LP removes certain items in the future. Here we
show how to round an LP solution without using future information, exploiting
resource augmentation instead. The algorithm is substantially different, simpler
than the offline rounding algorithm, and even simpler than the rounding al-
gorithms for the uniform case. (The uniform case rounding algorithms relied
crucially on uniformity, and it does not seem that they could be modified to
handle color weights.)



Due to lack of space, most of the proofs are deferred to the full version of
the paper. We give some informal intuition on the analysis.

2 Preliminaries

In the reordering buffer management problem we consider, there is a sequence I
of n items that arrive over time online. Each item i is associated with a specific
color c(i) which stands for the item’s type. A single item arrives at every time
step from 1 to n and we assume items are indexed in increasing order. Each color
c has a positive weight wc and we denote the ratio of maximum to minimum
weight by γ. There is a buffer of size k, and we are allowed to hold items up to
the buffer size. Once the buffer becomes full, we are forced to output an item.
The goal is to reorder the items using the buffer to minimize the total cost of
color switches in the output. Each color switch costs the weight of the color
switched to.

Another useful view of the output is to view the sequence of items output
as a partition of items into color blocks – a color block or simply block refers
to a sequence of items of the same color. In this view, each block of color c
contributes wc to the objective. We assume without loss of generality that each
block I is a contiguous sequence of items of the same color ordered in first-in-
first-out manner starting with the first arriving item in I. Let c(I) denote the
color of the items in I. When a block I is associated with the time t that its
first item is removed from the buffer, we call the pair (I, t) a batch. For a batch
b = (I, t) and an item i ∈ I, we denote by Mb(i) the time that i is removed from
the buffer. Note that the total number of all possible blocks is polynomial in n,
and so is the total number of possible batches.

For a given input instance, we let OPTk denote the optimal solution with
a buffer of size k. Throughout the analysis, we will compare an algorithm with
a buffer of size k to an optimal or linear program solution with a buffer of size
smaller than k. This will be clearly indicated when we are making the compari-
son. We appeal to the following theorem when comparing against a solution with
a smaller buffer size. A similar theorem was shown for the unweighted version
of the problem and we extend this to the weighted version. In our analysis, we
will set k′ to be roughly k − k

log kγ , which can increase the cost of the optimal
solution by at most a constant factor.

Theorem 2. For any input sequence and k′ < k, respectively, OPTk′ ≤ O(1) ·
( kk′ +(k−k′) log k′γ

k′ )OPTk, where OPTs denotes the cost of the optimal solution
using a buffer of size s.

We use the following linear programming relaxation for the problem, which
is defined over x ≥ 0. It is similar to the relaxation introduced in [3].

min
∑
I,j

wc(I)xI,j s.t.
∑

(I,j),i∈I

xI,j ≥ 1 ∀i = 1, 2, . . . , n (1)

∑
(I,j′):j′≤j<j′+|I|

xI,j′ ≤ 1 ∀j = k + 1, . . . , k + n (2)



The quantity xI,j , which we call the height of batch (I, j), refers to the
amount by which the batch (I, j) is scheduled. It is an easy exercise to see this
is a valid LP relaxation. The first constraint ensures that each item is processed
by an amount of 1. The second constraint ensures that the total height of the
intervals at a time step is at most 1. Put βi,j =

∑
xI,j′ , where the sum is

taken over batches (I, j′) such that i ∈ I and MI,j′(i) ≤ j. So βi,j denotes the
total amount item i is processed by time j. Also put vi,j = 1 − βi,j ; this is the
remaining “volume” of item i that still needs to be processed at time j. The dual
of the linear program is over y, z ≥ 0 and is given as follows.

max

n∑
i=1

yi−
k+n∑
j=k+1

zj s.t.
∑
i∈I

yi −
j+|I|−1∑
j′=j

zj′ ≤ wc(I) ∀(I, j) (3)

We will denote the LP for a buffer of size k as lpk and the dual for a buffer of
size k as dpk.

Our online algorithm will use this LP to guide its decisions. In particular,
the algorithm approximately solves this LP in an online fashion. The algorithm
simultaneously rounds this LP online to construct the solution. Formally the
following is what we mean by solving the LP online. Consider any fixed time t.
All batches considered so far end no later than time t – at the next time step
t + 1, some of batches reaching this time moment t can be extended to time
t + 1 by adding an extra element to the batch if there is an available element
of the same color to be scheduled. In this case, the height of such a batch must
remain the same. Note that formally, the batch changes to a larger batch. Also,
new batches can start at the current time, and Constraints (2) must be satisfied
at each time until time t. Finally, Constraints (1) must be eventually satisfied.
Our algorithm and analysis are split into two parts. In Section 3 we show how
to construct the LP solution online and in Section 4 we show how to round the
LP solution in an online fashion.

3 Solving the LP Online

3.1 The algorithm

We give an online algorithm that constructs a primal fractional LP solution x
for a buffer of size k. We prove that the cost of x, which is

∑
(I,j) wc(I) · xI,j

is at most O(log log(kγ)) times the optimal cost. In order to prove this bound,
the algorithm also constructs a dual solution (y, z) for a buffer of a smaller
size k′ = k − k

2 ln(kγ) . The bound is then obtained by comparing the costs of

the primal and dual solutions. The construction of (y, z) is done by scaling an
infeasible solution (ŷ + ȳ, ẑ), where (ŷ, ẑ) is generated through a version of the
online primal-dual schema, and ȳ is an extra penalty imposed via a dual fitting
procedure. Informally, (ŷ, ẑ) pays for removing from the buffer “small” blocks,
and ȳ pays for removing “large” blocks. The meaning of “small” and “large”
will be made precise in the discussion below. In addition to all of the above



variables, we also maintain pseudo-primal variables x̃ that will help us construct
the fractional solution x.

The algorithm proceeds as follows. Initially, all primal and dual variables are
set to 0 (this includes x, y, z, x̃, ŷ, ẑ, ȳ). Our initial output slot is t = k+ 1, and
the first k input items are fully in the buffer. We raise some of the dual variables
at a uniform rate, so it is convenient to think about the solution as a function of
µ ∈ [0,∞), where µ = 0 denotes the initial state. (Of course, the implementation
is not a continuous process—there is a finite sequence of “interesting” values of
µ where something happens, and the algorithm can compute those thresholds.
However, it is convenient to describe the continuous process.)

The algorithm increases all the variables ŷi for all input items i in that are
in the buffer and have not been scheduled to be removed completely from the
buffer (see below), and all the variables ẑj for all output slots j ≥ t at the same
rate dµ. Notice that this affects future i-s and j-s. We don’t need their values
until we reach them, and at that point the value can be computed given the past.
Raising some of the variables in (ŷ, ẑ) changes the primal solution x. In order
to see how this is done, consider the buffer’s contents. Of the total volume of k,
there might be some volume that we already decided to remove, but its removal
will happen past the current output slot t. We’ll call it phantom volume and the
rest real volume. Part of the real buffer volume is kept as frozen volume (it will
consist only of integral items). We’ll call the real volume that is not frozen active
volume.

Consider a dual constraint indexed (I, j). Put σI,j =
∑
i∈I ŷi−

∑j+|I|−1
j′=j ẑj′ .

This is the current dual cost of the batch (I, j). Notice that we know the current
dual cost even if the batch is matched to output slots we haven’t yet reached
(and even if it includes items we haven’t yet seen). As we raise (ŷ, ẑ), the dual
cost of some of the batches may increase. We want to measure only part of this
increase, the part that is due to items that contribute to the active volume in
the buffer. We call this part the pseudo-dual cost and we denote it by σ̃I,j . In

order to explain this, notice that
dσI,j

dµ is precisely the number of items of color

c(I) that contribute to the real volume and are scheduled by (I, j) before the

current output slot t. Thus, we raise σ̃I,j at a rate
dσ̃I,j

dµ which is the number

of items of color c(I) that contribute to the active volume (i.e., excluding items
that are frozen) and are scheduled by (I, j) before the current output slot t.
This is what normally happens with σ̃. However, there are special “events” that
trigger a reset of σ̃I,j to 0. After a reset, σ̃I,j grows again at the rate defined
above.

The pseudo-dual costs determine the values of the pseudo-primal variables.
We maintain at all times the equation

x̃I,j =

{
1

ln(kγ) ·
σ̃I,j

wc(I)
σ̃I,j < wc(I),

1
ln(kγ) · e

σ̃I,j/wc(I)−1 σ̃I,j ≥ wc(I).

(It should be noted that when we reset σ̃I,j this also resets x̃I,j . However, the
reader will soon notice that by Equation (4) this does not reset any actual primal



variable—such a reset would violate our intention to construct the solution on-
line.) Now, the items that contribute to the active volume are further classified
as fractional or integral. For each color present in the active volume there are
either fractional or integral items (contributing to the active volume), but not
both. We say that the active items of a specific color constitute an active block
in the buffer, which is either a fractional active block or an integral active block.

We are now ready to explain how the schedule up to time t− 1 is extended
(i.e., how to update the primal solution x). It will be convenient to present
the algorithm as choosing batches to schedule and then increasing their height
continuously until some event stops the increase and sets the final height of the
scheduled batch. Also, when we decide to schedule a batch, we may not know
its full extent, because it may end with items that we haven’t yet reached in the
input stream. However, we will be able to extend the batch as we go along, so
in describing the algorithm, we also specify the rule that determines the extent
of the batch, and this rule is checked as we go along. Notice that the current
output slot t might be already partially filled with previously scheduled batches
that haven’t reached their end (the partial schedule from t onward is precisely
the phantom volume). So our goal is to fill up output slot t and then move on
to the next output slot that is not completely filled up.

If an output slot gets filled up, or an item gets scheduled completely, this stops
the increase of the height of the current batches, and we execute the following
procedure, depending on the event.

Filling up an output slot: When we fill up the output slot t, we have to
advance to a later output slot and start the extention process afresh. In this
case, new items enter into the buffer, replacing the volume that is removed from
the buffer in the filled up output slots (t and possibly later slots). When an
item enters the buffer, it is usually frozen, unless the buffer contains an integral
active block of this color. In the latter case, the item is sometimes appended to
the integral block, according to the rule that specifies the end of the batches
that will remove this block from the buffer. If the item is not appended to the
integral block, it is frozen as usual.

Scheduling an item entirely: At some point, the initial items of some batch
may get scheduled with total height 1. This means that they are either removed
from the buffer, or (if they are scheduled in the future) they no longer contribute
to the real volume (but they still contribute to the phantom volume). In this
case the height of the relevant batch is fixed, and we may continue scheduling
a new batch of this color that begins with the items that still contribute to the
real volume.

We now describe how an output slot t gets filled up. There are a few cases
to consider:

Evicting integral blocks: We first consider the integral active blocks. If there
exists (I, j) for which x̃I,j reached 1 and the items of color c(I) in the buffer are
an integral active block B, we set ȳi =

wc(I)

2|B| for all i ∈ B. We reset σ̃I′,j′ (and

hence x̃I′,j′) for all (I ′, j′) of color c(I). Then, we schedule batches consisting of
this block followed by all the items that can be appended to it assuming it is



removed starting from output slot t. The total height of the batches we schedule
is 1 (i.e., we remove the block and the appended items completely from the
buffer), but we may have to split the height across several batches because some
of the output volume beyond time t − 1 might be already taken by previously
scheduled batches.

Releasing frozen items: We next consider the frozen items in the buffer. We
release frozen items in two cases. Firstly, if there is a color c with more than

k
100 ln(kγ) frozen items in the buffer, we first schedule batches to remove all the

volume of the fractional active block of color c from the buffer (they all end
with the same last unfrozen item of color c; notice that while we schedule these
batches, t might move forward). Then, we reset σ̃I,j to 0 for all batches (I, j)
with c(I) = c. Finally, we move the frozen items (including additional items that
may have been added while removing the preceding fractional volume) to form
an integral active block. Secondly, if there is a fractional active block with fewer
than k

10 ln(kγ) items, we add all the frozen items of this color to the fractional

active block. Notice that this event can happen while we are filling up output
slot t (because some items get scheduled completely).

Scheduling fractional blocks: We finally consider fractional active blocks (as-
suming none of the above cases can now be applied). We schedule them in batches
in parallel. Such a batch (J, t) consists of the sequence of items in the fractional
active block, followed by the items of this color that are in the fractional active
block at the time that they are needed to continue the batch. Thus, a fractional
batch ends in one of three cases: (i) we haven’t reached the next input item of
this color; (ii) the next input item of this color is frozen (in this case we say that
the batch is interrupted); (iii) the next input item of this color begins an integral
block. (Notice, that when a batch is being scheduled, we may know only a prefix
of the sequence of items in the batch. However, we can extend this sequence on-
the-fly and transfer the fractional weight from the prefix to the extended batch
as we go along. This does not change the packing of the items in the past time
slots, only in future time slots.)

All these fractional batches are scheduled in parallel. Their height is increased
as µ grows by the following rate.

dxJ,t
dµ

= max
(I,j)

{
dx̃I,j
dµ

: c(I) = c(J)

}
. (4)

We increase their height until, as explained above, some event triggers a change
in the batch or in t. A batch (J, t) is said to be relevant to (the dual cost of)
(I, j) for every (I, j) that has at some point µ a positive value in the right-hand
side of the above expression (i.e., c(I) = c(J) and x̃I,j grows while xJ,t grows).

Regular resets: Occasionally while scheduling fractional batches, we reset
some σ̃I,j to 0. We will call this a regular reset (to distinguish it from other
resets that happen while dealing with integral blocks). Suppose that a fractional
batch (J, t) is interrupted at output slot t′ > t. Let i be the interrupting item
(i.e., i is frozen when we reach t′). We consider the set of batches that (J, t) is
relevant to. For such a batch (I, j) we reset σ̃I,j if and when the following three



conditions hold: (i) The block I contains i; (ii) item i is the first item of I that
ever interrupted a batch that is relevant to (I, j); (iii) more than half of the
items of color c(i) that contribute to the real volume are frozen. Notice that for
any (I, j), a regular reset happens at most once. We denote the value of µ at
the time of this regular reset by µ0(I, j) and the interrupting item i by f(I, j).
If (I, j) never experiences a regular reset, we put µ0(I, j) =∞. Also recall that
if σ̃I,j is reset to 0, automatically x̃I,j is reset to 0.

Occasional cleanup: We sometimes clean up the buffer of a color c. The con-
dition for cleaning up color c is as follows: since the previous execution of this
step, we just moved past the end of scheduled fractional batches of color c of to-
tal height at least 1

10 . (For this purpose we count only batches that are removed
while µ increases and not batches that are removed during cleanup.) In this
case, we append the frozen items of color c to the color c batches that occupy
the current output slot. Then, if there are still items of color c that contribute
to the real volume, we schedule additional batches to remove all color c items
from the real volume. Obviously, all the frozen items of color c will now be part
of the phantom volume.

3.2 Competitive analysis

Clearly, the algorithm computes a feasible primal solution x. We show that the
primal cost of x (which uses a buffer of size k) is proportional to the dual cost
of the infeasible solution (ŷ + ȳ, ẑ) (which uses a smaller buffer size k′). Then
we prove an upper bound on the factor that is needed to scale (ŷ + ȳ, ẑ) to a
feasible solution (y, z).

Properties of the primal solution. We begin with a bound on the phantom vol-
ume. This justifies the choice of k′.

Lemma 1. At any time during the execution of the algorithm, the phantom
volume never exceeds 12k

100 ln(kγ) .

Lemma 1 immediately implies the following corollary.

Corollary 1. At any given time, the real volume in the buffer is more than
k − 12k

100 ln(kγ) ≥ k
′.

Next we show that the pseudo-primal variables are bounded.

Claim. For every batch (I, j), it holds that x̃I,j ≤ 11
10 always.

The main idea behind the proof is that x̃I,j is bounded by the total height of
color c(I) batches that are removed since the last reset of x̃I,j . The total height
of batches that extend beyond the current output slot is at most 1, and the total
height of batches that ended is less than 1

10 , otherwise we would have executed
a cleanup step.



Bounding the primal cost. We show that the primal cost of x is proportional to
the dual cost of (ŷ + ȳ, ẑ).

Lemma 2. At the end,
∑

(I,j) xI,j = O(1) ·
(∑n

i=1 ŷi +
∑n
i=1 ȳi−

∑k′+n
j=k′+1 ẑj

)
.

The main idea of the proof is the following. We bound separately the cost
of scheduling fractional blocks, the cost of evicting integral blocks, and the cost
of cleanup. For fractional blocks, we relate the rate by which the primal cost
is increased to the rate by which the dual cost is increased. We use the gap
between the primal and dual buffer size and the fact that the real volume is
most of the buffer (Corollary 1) to show that the dual cost increases sufficiently
fast. For integral blocks, the increase in

∑n
i=1 ȳi directly bounds the primal cost

of evicting those blocks. The cleanup cost is charged against the primal cost of
the fractional batches that caused the cleanup.

Dual feasibility. Here we show that if we scale (ŷ + ȳ, ẑ) by a factor of
O(log log(kγ)), then we get a feasible dual solution (x, y), namely, for every

batch (I, j),
∑
i∈I yi−

∑j+|I|−1
j′=j zj′ ≤ wc(I). So fix a batch (I, j). The main idea

of the proof is to partition I into segments, according to what the algorithm
does with these items. A segment is a maximal substring of items that were
all scheduled as a fractional block or an integral block. So there are alternat-
ing fractional and integral segments. (Notice that a fractional segment includes
also items that were removed during cleanup.) We then partition (I, j) into two
sub-batches (I1, j), (I2, j

′) as follows. Let i ∈ I be the first item that still con-
tributes to the real volume when the algorithm reaches the output slot that (I, j)
matches to i. Then, I1 contains all the items in I that precede i, and I2 contains
the rest of I’s items (so j′ = MI,j(i)). The cost of each sub-batch is bounded
using a different argument. Roughly speaking, in (I1, j) the fractional segments
do not incur a positive cost, and at most O(log log(kγ)) integral segments incur
a positive cost of O(wc(I)). In (I2, j

′) there are O(1) segments, and each frac-
tional segment incurs a cost of O(wc(I)) · log log(kγ)). This discussion leads to
the following lemma.

Lemma 3. The pair (y, z) is a feasible dual solution for a buffer of size k′.

We conclude with the main result of this section.

Theorem 3. The primal cost of the output x of the LP algorithm is within a
factor of O(log log(kγ)) of the LP optimum.

Proof. Notice that
∑
I,j wc(I) ·xI,j ≤ O(1)·

(∑n
i=1 ŷi +

∑n
i=1 ȳi −

∑k′+n
j=k′+1 ẑj

)
=

O(log log(kγ)) ·
(∑n

i=1 yi −
∑k′+n
j=k′+1 zj

)
≤ O(log log(kγ)) ·dpk′ = O(log log(kγ)) ·

lpk′ ≤ O(log log(kγ)) · lpk. The first inequality uses Lemma 2. The second
inequality uses Lemma 3. The third inequality uses Theorem 2.



4 Rounding the LP Online

In this section we give an algorithm that rounds the linear program solution of
the previous section in an online fashion. Our online rounding requires a sam-
pling which we name α-sampling. The α-sampling is essentially a “boosted-up”
independent rounding. Let 0 < α ≤ 1 be a constant to be fixed later. We sample
each batch b starting at time t independently with probability min{α, xb}/α,
and add it to a pool Bag. Define an item i’s α-ready time, tαi as the first time t
such that there is a batch b ∈ Bag that schedules i at time t – if no such batch b
exists, then set tαi =∞. At any time t ≥ tαi , we say that i is α-ready at time t.

To see that we can do the sampling online, note that each batch in the LP
keeps the same height from when it starts until it ends. Hence we can immediately
decide whether to add a batch to Bag or not when the batch starts in the LP
solution.

4.1 Online Rounding Algorithm

The online rounding algorihtms takes as input an online LP solution with a
buffer of size k′ = k − k

log kγ and returns an online algorithm using a buffer of

size k. Recall that reducing the optimal solution’s buffer by k
log kγ only increases

its cost by a O(1) factor, as we have shown in Lemma 2. In the previous section,
we presented how to construct an LP solution online assuming the buffer size is
k for notaitonal simplicity. The actual LP solution should has a buffer of size k′

and the dual LP’s buffer size should be scaled appropriately.

The algorithm at any time always outputs an item for the color that was
previously output in the last time step if possible. Otherwise, the algorithm needs
to decide which color to switch to. The algorithm has several rules on which color
to switch to at time t and attempts to execute the rules in the following order.
The first three rules are easy cases and the crux of the algorithm is the final two
rules. The rules are similar to the algorithm in [13]. However, the algorithm in
[13] required an additional rule and also the main rules in their algorithm used
future offline information from the LP.

We require some notation to define formally the algorithm. Let ε be any
constant between 0 and 1/100 and α be a constant at most ε. We will later set
ε = 1/100 and α = ε. Let B(t) denote (the set of items in) the algorithm’s buffer
at time t. Let nAc (t) denote the number of items for color c in B(t). Let nOc (t)
be the number of items in the LP at time t for color c that have been processed
by at most 1/2 + ε. Let Cs(t) contain all colors c where 0 < nAc (t) ≤ k

log3 kγ
and

Cb(t) contain all colors c where nAc (t) > k
log3 kγ

. Let EO(t) be the set of items

that have been processed by at most 1/2 + 2ε in the LP at time t that are not in
B(t), i.e. EO(t) := {i 6∈ B(t) | i ≤ t, βi,t ≤ 1/2 + 2ε}. Let c∗(t) be the color such
that batches in the LP for color c∗(t) that intersect time t is greater than 1/2,
if it exists. Let vOc,t =

∑
i,c(i)=c 1− βi,t denote the remaining volume of items for

color c in the LP at time t.



Algorithm:

Rule (i)If there is an item in i ∈ B(t) processed by ε in the LP, switch to color c(i).

Rule (ii)If there is an item i ∈ B(t) that is α ready at time t, switch to color c(i).

Rule (iii)If there is a color c where nAc (t) ≥ k/10, switch to color c.

Rule (iv)If the LP has processed items in B(t) corresponding to colors in Cs(t) by a

total of at least |E
O(t)|
8

+ k
2 log kγ

by time t then switch to the color of minimum weight
that is not c∗(t).

Rule (v)We perform this rule if none of the others apply. In this case, the algorithm
switches to a color c ∈ Cb(t) such that nAc (t) ≥ 10

11
vOc,t. (We can show that such a color

exists.)

References

1. Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. Almost
tight bounds for reordering buffer management. In STOC, pages 607–616, 2011.

2. Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. Optimal
online buffer scheduling for block devices. In STOC, pages 589–598, 2012.

3. Noa Avigdor-Elgrabli and Yuval Rabani. An improved competitive algorithm for
reordering buffer management. In SODA, pages 13–21, 2010.

4. Noa Avigdor-Elgrabli and Yuval Rabani. An improved competitive algorithm for
reordering buffer management. In FOCS, pages 1–10, 2013.

5. Noa Avigdor-Elgrabli and Yuval Rabani. An optimal randomized online algorithm
for reordering buffer management. CoRR, 1303.3386, 2013.

6. Dan Blandford and Guy Blelloch. Index compression through document reorder-
ing. In Proceedings of the Data Compression Conference, DCC ’02, pages 342–,
Washington, DC, USA, 2002. IEEE Computer Society.

7. Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via
a primal-dual approach. Foundations and Trends in Theoretical Computer Science,
3(2-3):93–263, 2009.

8. Ho-Leung Chan, Nicole Megow, René Sitters, and Rob van Stee. A note on sorting
buffers offline. Theor. Comput. Sci., 423:11–18, 2012.

9. Matthias Englert, Harald Räcke, and Matthias Westermann. Reordering buffers
for general metric spaces. Theory of Computing, 6(1):27–46, 2010.

10. Matthias Englert and Matthias Westermann. Reordering buffer management for
non-uniform cost models. In ICALP, pages 627–638, 2005.

11. Iftah Gamzu and Danny Segev. Improved online algorithms for the sorting buffer
problem on line metrics. ACM Transactions on Algorithms, 6(1), 2009.

12. K. Gutenschwager, S. Spiekermann, and S. Vos. A sequential ordering problem in
automotive paint shops. Intl J. of Production Research, 42(9)(9):1865–1878, 2004.

13. Sungjin Im and Benjamin Moseley. New approximations for reordering buffer
management. In SODA, pages 1093–1111, 2014.

14. Jens Krokowski, Harald Räcke, Christian Sohler, and Matthias Westermann. Re-
ducing state changes with a pipeline buffer. In VMV, page 217, 2004.

15. Harald Räcke, Christian Sohler, and Matthias Westermann. Online scheduling for
sorting buffers. In ESA, pages 820–832, 2002.


	On the Randomized Competitive Ratio of Reordering Buffer Management with Non-Uniform Costs
	Noa Avigdor-Elgrabli (Yahoo! Labs Haifa), Sungjin Im (UCMerced), Benjamin Moseley (WashU), Yuval Rabani (Hebrew Univ.) 

