
Weighted Reordering Buffer Improved via
Variants of Knapsack Covering Inequalities

Sungjin Im1? and Benjamin Moseley2

1 University of California at Merced, Merced, CA 95344. sim3@ucmerced.edu
2 Washington University in St. Louis, St. Louis MO, 63130, USA.

bmoseley@wustl.edu

Abstract. We consider the weighted Reordering Buffer Management
problem. In this problem a set of n elements arrive over time one at a
time and the elements can be stored in a buffer of size k. When the buffer
becomes full, an element must be output. Elements are colored and if two
elements are output consecutively and they have different colors then a
switching cost is incurred. If the new color output is c, the cost is wc.
The objective is to reorder the elements to minimize the total switching
cost in the output sequence.
In this paper, we give an improved randomized O(log log log kγ)-
approximation for this problem where γ is the ratio of the maxi-
mum to minimum weight of a color, improving upon the previous best
O(log log kγ)-approximation. Our improvement builds on strengthening
the standard linear program for the problem with non-standard knap-
sack covering inequalities. In particular, by leveraging the structure of
these inequalities, our algorithm manages to render several random pro-
cedures more powerful and combine them effectively, thereby giving an
exponential improvement upon the previous work.

1 Introduction

Buffer management theory focuses on studying how a buffer, typically of limited
size, can be used to support an application. Due to the numerous applications
of buffers, such as in networking and memory management, a rich and diverse
theory has been developed. One well studied problem is the Reordering Buffer
Management problem. In this problem, there is a set of n elements that arrive
over time and the elements are colored. It is assumed that one element arrives at
each time from 1 to n. There is a buffer of size k where the arriving elements can
be stored in, and when the buffer becomes full an element must be output. If an
element is output that has the same color as the previous element output, then
there is no cost for outputting the element. Otherwise when the color changes,
if the element output has color c then a cost of wc is incurred. The goal is to
reorder elements in the buffer to minimize the total cost incurred. Note that if
wc = 1 for all colors c, then the goal is just to minimize the number of times the
color changes in the output sequence.

? Supported in part by NSF grant CCF-1409130.

The Reordering Buffer Management problem, which was elegantly formulated
in [20], seeks to understand the fundamental tradeoff between the limited buffer
size and the context switching cost. This simple, yet powerful, model captures
several practical problems seen in paint shops, graphics rendering, as well as
network buffering. For example, consider a server that forwards messages to
clients. When switching from sending messages from one client to another, a cost
is paid representing the overhead of the context switch. One may desire to limit
the number of times the server switches between clients by buffering messages
and reordering them to minimize the context switches. See [20,10,19,3] for more
applications of this model. Besides the practical importance of the model, the
model has been well studied theoretically. The main theoretical interest comes
from the simplicity of the model and the fact that, yet being simple, the model
is algorithmically challenging. Indeed, the model has been extensively studied
both online and offline [20,13,6,7,8,2,12,4,1]. However, even though this problem
has been rigorously studied for over a decade, the complexity of the problem is
not well understood.

The challenges of the model emerge even when the weights of the colors are
uniform. The uniform weight problem is known to be NP-Hard [12,4]. Further,
algorithms that initially would seem to be ideal candidates for the problem fail to
have a small approximation ratio. For example, simple algorithms such as Largest
Color First, which outputs color that has the largest number of elements in the
buffer, First-In First-Out and Least Recently Used all have strong lower bounds
on their approximation ratios [20]. Due to this, previous work has focused on
developing more sophisticated algorithms for the problem.

Initially an O(log2 k)-approximation was shown for the problem when the
weights are all uniform [20]. This been improved through a sequence of woks
[13,6,2,8]. Recently, the complexity of the unweighted case has been resolved up
to constant factors and O(1)-approximation algorithms are known [7,16]. For
the weighted version of the problem, the currently best known approximation
is a randomized O(log log kγ)-approximation where here γ is the ratio of the
maximum to minimum weight of a color [16]. Several algorithms are known which
use resource augmentation where the algorithm is given a larger buffer than the
optimal solution [12,20]. A key open question in the area is determining the right
approximation ratio for the non-uniform weight version of the problem.

Results: In this work we improve upon the best known approximation ratio
for the non-uniform weighted Reordering Buffer Management problem. We de-
velop an algorithm that exponentially improves upon the best previously known
algorithm’s approximation guarantee of O(log log kγ). Our main result is the
following.

Theorem 1. There exists a randomized O(log log log kγ)-approximation algo-
rithm for the weighted Reordering Buffer Management problem where γ is the
ratio of the maximum to minimum weight of a color.

For the online version of the problem, anΩ(log log k) lower bound is known on
randomized algorithms as well as an O((log log kγ)2) upper bound [2,5]. This is

the first case where the offline problem has been shown to have an approximation
ratio better than the best possible competitive ratio. To show the main result,
we introduce new linear program rounding techniques. In particular, we add
knapsack covering inequalities to the standard linear program for the problem.
See [11] for details on knapsack covering inequalities. We extend the definition
of traditional knapsack covering inequalities by adding additional parameters
to the inequalities, which prove to be very useful. By leveraging the structural
properties given to us by these inequalities, we can circumvent barriers faced
in previous rounding techniques. The inequalities were used in the context of
unweighted reordering buffer in the authors’ previous work [16]. However, they
were only able to use the inequalities to give a small constant factor improvement
for the unweighted case, but did not know how to use them for the weighted case.
In this work, we demonstrate the power of our variants of knapsack covering
inequalities by giving an exponential improvement for the weighted case. The
inequalities will be further discussed in Section 2 and 3. We will give an overview
of our algorithm and analysis in Section 3 together with the discussion on how
this work is differentiated from the previous work.

Related Work: Besides the mentioned work on the offline buffer reordering
problem, the problem has also been considered online. It is known that in the

online setting that there is lower bound of Ω(
√

log k
log log k) on the competitive ratio

of deterministic schedulers and Ω(log log k) on randomized schedulers [2]. The
work of [2] gave the first O(

√
log k)-competitive deterministic online scheduler,

essentially resolving the deterministic case when colors are unweighted. The re-
cent work of [8] has resolved the randomized case when colors are unweighted
by giving an O(log log k)-competitive online algorithm. For the weighted ver-
sion of the problem, previous the best known online algorithm is a determin-
istic O(

√
log kγ)-competitive algorithm, which has recently been improved to

O((log log kγ)2) randomized algorithm [5]. The problem has also been consid-
ered in the stochastic setting [14].

The Reordering Buffer Management problem has been generalized and been
studied in several other settings. Most generalizations consider extending the
definition of the cost function when switching colors. The work of [17,15] consid-
ers when the cost of switching between two colors forms a line metric and [18,9]
considers when the costs form a general metric.

Organization: The paper is organized as follows. In Section 2 we start by intro-
ducing the linear programming relaxation we will consider throughout the paper
as well as some useful lemmas and a simple randomized sampling procedure. In
Section 3 we give a high-level sketch of our algorithm and analysis to show the
intuition guiding our work. In Section 4 we formally introduce our algorithm
and finally in Section 5 we give the formal proof of the algorithm’s guarantees.

2 Preliminaries

In this section, we introduce our linear program, a few useful lemmas as well as a
simple sampling scheme that our algorithm will utilize. We begin by introducing
our linear program. We call a continuous sequence of elements of the same color
in the output sequence a color block. We require elements for a color are output
in first-in first-out order without loss of generality. Each color block (or simply
block) b is a triple (i, t, `) specifying the first element in the color block ei, the
time the block is scheduled t and the length of the sequence `. Note that one can
deduce all ` elements that are output in the block from the triple, and we let
(i′, t′) ∈ b if element ei′ is output at time t′ in the color block. Let B be the set
of all possible color blocks in the output sequence. Note that B is polynomial in
n. Let E denote the set of all elements.

Below is an integer programming formulation for the problem. The variable
xb specifies if the color block b is in the output sequence. The variable yi,t specifies
if element ei is output at time t and βi,t specifies if the element ei was output
at or before time t. We use the notation Eb,≤t to denote all the elements in the
color block b which were output in b at or before time t. For a color block b let
c(b) be the color of the elements in b and, likewise, let c(ei) denote the color
of the element ei. Let p(i) to denote the element for color c(ei) which is the
previous element of this color that arrives before ei – that is, the latest arriving
element for color c(ei) that arrives before ei.

min
∑
b∈B

wc(b)xb (IP)

s.t. yi,t =
∑

(i,t)∈b

xb ∀i, t (1)

∑
i∈[n]

yi,t = 1 ∀t ≥ k + 1 (2)

∑
t∈[k+1,k+n]

yi,t = 1 ∀i ∈ [n] (3)

βi,t =
∑
i,t′≤t

yi,t′ ∀i ∈ [n], t ∈ [k + 1, k + n] (4)

βp(i),t−1 ≥ βi,t ∀i ∈ [n], t ≥ k + 1 (5)∑
b∈B\B′

(|Eb,≤t \ E′|)xb ≥ (t− k − |E′|)(1−
∑
b∈B′

xb) ∀t ∈ [k + 1, k + n], B′ ⊆ B,E′ ⊆ E

(6)

xb ∈ {0, 1} ∀b ∈ B (7)

Constraint (2) ensures that at most one element is output at each time.
Constraint (3) ensures that each element is output at some time. Constraints
(1) and (4) set the y and β variables according to the x variables. Constraint (5)
ensures that elements are output in first-in-first-out order. Finally, the knapsack

covering inequality is given in Constraint (6). We obtain an LP relaxation by
replacing (7) with xb ∈ [0, 1].

Variants of Knapsack Covering Inequalities: The key constraints (6) deserve
special attentions. The constraints are over all B′ ⊆ B and E′ ⊆ E; therefore,
there are exponentially many such constraints. To get a feel of the constraints,
consider the simplest case that B′ = ∅ and E′ = ∅ with a fixed time t. Then the
left-hand-side is simply the total number of elements output by time t, where
each color block counts the number of elements it outputs by time t, and adds it
to the summation. The right-hand-side is t−k, hence (6) states that at least t−k
elements must be output by time t due to the space limit of k for the buffer. Now
consider an arbitrary E′ with B′ = ∅. Then, (6) lower bounds the total number
of elements that has to be output in individual blocks by time t with the elements
in E′ excluded. In fact, (6) is a standard knapsack covering inequality if B′ = ∅.
Intuitively, this prevents the LP from cheating with elements.

In contrast, the power of having B′ does not seem immediate – if there
is a b ∈ B′ where xb = 1, then the inequality is trivially satisfied, otherwise
it becomes a standard knapsack inequality. However, having B′ turns out to
be very useful in randomized rounding. Recall that in the Reordering Buffer
Problem the costs are determined by color blocks output, hence the complexity
cannot be understood well without having a good control over blocks. In the
fractional LP solution, we will be able to exclude some fractional color blocks
and focus on “good” fractional blocks to derive nice probabilistic properties. The
overall analysis is done with carefully chosen E′ and B′.

To see why having B′ 6= ∅ is useful, consider adding a color block b which
has k2 elements in it output by time t, but xb = 1

k in an LP solution. From
this color block, a total ‘volume’ of elements output is k. However, the color
block is chosen by very little in the LP. By adding b to B′, the right hand side
decreases by a multiplicative factor of 1 − 1

k while the left hand side decreases
by an additive factor of k. This strengthens the LP. For instance, in the case
that E′ is chosen such that, t − k − |E′| ≤ k, then the right hand side only
decreases by an additive k · 1k = 1, while the left hand side decreases by k. The
added power is that the LP cannot output a large volume of elements using color
blocks with many elements, but only choosing those color blocks themselves by
a small amount.

Finally, we discuss the separation oracle regarding the constraints (6). Un-
fortunately, we do not know if there is a polynomial-time separation oracle when
the constraint is defined over all B′ ⊆ B,E′ ⊆ E. However, there is a very easy
separation oracle if either B′ or E′ is fixed. It turns out that we only need to
consider polynomially many different E′ for our analysis. That is, even though
such a collection of E′ is determined by {xb}, we only need to look at polynomi-
ally many E′, and this will allow us to solve the LP in polynomial time to the
extent of our need. We defer the proof of solving the LP in polynomial time to
a full version of this paper.

Useful Lemmas and Observations: Now we show some lemmas that will be
useful throughout the paper. We will refer to xb as the height of the color block

b in the LP solution. The following lemma will allow our algorithm to output a
color at time t if the elements in the algorithm’s buffer for the color at time t
have been processed by a set of color blocks of substantial height in the LP by
time t. This is similar to lemmas used in [2,16] and is standard for the problem.
The proof is omitted.

Lemma 1. Consider any color block b output by our algorithm A which starts
at time t and ends at time t′′. Let t′ ≥ k + 1 be the earliest time before t such
that A scheduled no element of color c(b) during [t′, t). Suppose that the LP has
a set of color blocks S of total height at least ε (i.e.

∑
b′∈S xb′ ≥ ε) that each

have processed at least one element in b by time t – in particular, such a set S
exists if the first element ei in b is processed by at least ε by time t in the LP.
Then there is a set of color blocks of total height at least ε for color c(ei) in the
LP’s solution that end during (t′, t′′].

The following proposition follows from constraint (1) in the LP.

Proposition 1. Suppose that the LP has a set I of color c color blocks of color
c and total height at least h, all starting no later than some time t. Further, sup-
pose that each of blocks scheduled after time step t at least ` (possibly different)
elements that entered the buffer no later than time step t. Then it is the case
that LP has at least a total volume of h` of elements of color c in its buffer at
time t.

Next we state a lemma that will allow us to compare against an LP with
a slightly smaller buffer size. In particular, we will solve the LP with a buffer
of size k′ = k − k

log kγ . This can be done by losing only an O(1) factor in the

approximation ratio as the lemma shows. The following lemma was shown in [5]
and similar lemmas are known for the unweighted version of the problem. The
proof of the lemma is omitted.

Lemma 2. For any input sequence and k′ < k, respectively, OPTk′ ≤ O(1) ·
(kk′ +(k−k′) log k′γ

k′)OPTk, where OPTs denotes the cost of the optimal solution
using a buffer of size s.

Finally we introduce a sampling scheme which was originally used in [5] which
is independent rounding coupled with a threshold rounding. We refer to a color
block as maximal in the algorithm’s output sequence if when the color block
ends there are no more elements of the same color in the buffer at that time. In
the sampling we will sample a color block b in the LP solution with probability
1
αxb if 1

αxb < 1 and with probability 1 if 1
αxb ≥ 1. We call this the α-sampling.

Let Bag denote the pool of color blocks sampled. Let tαi denote the earliest time
that a color block in Bag schedules the element ei and if no such color block
exists set tαi = ∞. We say that element ei is α-ready at time tαi or at any time
later. The proof of the following lemma is an extension of a proof found in [5].
The proof is deferred to a full version of this paper. For any set of color blocks
A, let xi,A(t) denote the amount by which the element ei is processed by color
blocks in A by time t.

Lemma 3. For any constant 0 < α < 1, the α-sampling satisfies the following
properties :
• For any set of blocks A, the element ei is α ready by time t with probability
at least (1− 1/e) min{xi,A(t)/α, 1}. For any distinct elements ei and ej that
are not processed by the same blocks in A by time t, the events that they
become α ready by sampling color blocks from A are independent.
• The previous property implies that that for any element ei and time step t
such that βi,t ≤ α, Pr[tαi ≤ t] ≥ (1−1/e)βi,t/α. This probability occurs inde-
pendently for two elements if they are not processed by the same color blocks
ever by time t. In particular, this is always true for elements of different
colors.
• Consider any collection B′ of disjoint maximal color blocks where each block
b′ ∈ B′ schedules at least one element i at time t ≥ tαi . The expected total
cost of the blocks in B′ is at most (1/α)CostLP.

The properties of the sampling scheme will be very useful for our analysis.
The first property ensures that an element ei can be scheduled by time t with
probability proportional to amount it has been processed by the LP at time t,
βi,t. The second property ensures that the sampling is independent for elements
of different colors or for elements where we can identify a set of color blocks
that do not process both of them. The third property shows that the cost of
outputting elements after their α-ready time can be charged to the LP.

3 Algorithm and Analysis Overview

In this section we give an outline of our algorithm and the analysis. Due to
space constraints, the main analysis is deferred to a full version of this paper.
The actual analysis is more involved but our goal here is to give the underlying
intuition while ignoring lower level details.

Our algorithm begins by solving the linear program for the problem where the
buffer size is set to be k′ = k− k

log kγ . The solution to the linear program is used
to guide the algorithm on how elements should be output. The algorithm itself,
works like an online algorithm that outputs elements sequentially from time k+1
to time n+ k. At any time t where there is an element in the algorithm’s buffer
B(t) that has the same color as the previous element output, the algorithm will
output such an element. Otherwise, the algorithm needs to choose a color to
switch to. At these points in time, the algorithm will use a set of rules to decide
which color to switch to. These rules on the color to switch to are guided by the
LP solution.

We now discuss the rules that the algorithm uses to decide the color to switch
to. These rules are inspired by the previous work of [16] on the Buffer Reordering
Management problem. The first set of rules are simple and similar to previous
work. The algorithm is free to switch to any color c where (1) the elements in
B(t) for color c have been processed by color blocks in the LP of total height at
least ε (2) there is a an element for color c in B(t) that is α-ready or (3) there

are more than k/10 elements in B(t) for color c. The cost of execution rule (1) is
easily charged to the LP using Lemma 1 and the same is holds for rule (2) using
Lemma 3. The cost of rule (3) can by charged to the LP using observations used
in [16]. Intuitively, a color cannot be output many times if it occupies Θ(k) space
in the buffer without the LP also needing to output the color. This is because
the LP would need to store all of these elements, contradicting its buffer size
and, therefore, we can charge to the LP.

The first three simple rules are used to give structural properties on the
algorithm and LP’s status when these rules cannot be applied. The interesting
rules are the final two rules to be mentioned soon. Recall that the LP solution
has buffer of smaller size than the algorithm. This implies that at any time t, the
LP must have processed the elements in B(t) by a k

log kγ aggregate amount. The
final two rules are based on whether this aggregate amount of work is focused
mostly on elements for colors which occupy a large portion of the algorithm’s
buffer or a smaller portion of the buffer.

Let Cs(t) be the set of colors where the algorithm has less than k
log3 kγ

ele-

ments for each of these colors in its buffer and let Cb(t) be the remaining colors
where the algorithm has more than k

log3 kγ
elements for these colors. In [16] it was

shown that if a constant fraction of the work the LP has done on elements in
B(t) are for colors in Cs(t) then we should have sampled an element in B(t) for
a colors in Cs(t) with probability at least 1 − 1

k2 . Intuitively, a large volume of
work was focused on these colors. Further, knowing that color blocks for colors
in Cs(t) can only include k

log3 kγ
elements from B(t), one can use concentration

inequalities to show that we should have sampled such an element. Since we fail
to sample an element with low probability, it can be shown that there is some
color we can switch to such that the expected cost of switch to this color is small
compared to the LP’s cost. This will be rule (4).

The final rule and analysis of this rule is where our work differs from [16] and
is where the knapsack covering inequalities proves to very useful. The algorithm
will only perform this rule so long as the previous rules do not apply. In partic-
ular, since we do not execute rule (4), we know that a constant fraction of the
work the LP has done by time t on the elements in B(t) are on elements that
have colors in Cb(t). Let nAc (t) denote the number of elements for color c in B(t).
Let nOc (t) be the number of elements in the LP at time t for color c that have
been processed by at most 1/2+2ε. The first step is showing that there is a color
c ∈ Cb(t) where nAc (t) ≥ 3

5n
O
c (t). This will follow from the fact that if it were not

true, then the LP has many elements the algorithm does not have for colors in
Cb(t). But then, we also know that no element in B(t) is processed by ε, since we
did not use rule (1). Thus, the LP must have all elements in B(t) and these extra
elements in its buffer, but this will cause a contradiction to the LP’s buffer size.
Rule (5) will allow the algorithm to switch to a color c where nAc (t) ≥ 3

5n
O
c (t).

Then we will show that we can execute this rule at most O(log log kγ) times
for a fixed color before the LP must output this color, allowing us to charge
to this point in time in the LP. The argument follows by observing that if we
output a color with at least k

log3 kγ
elements and nAc (t) ≥ 3

5n
O
c (t) more than

O(log log kγ) times and the LP does not do this color, then the LP must have
(k
log3 kγ

)(1 + 3
5)O(log log kγ) > Ω(k) elements for this color in its buffer at some

time. This will draw a contradiction and therefore we can only output a color
O(log log kγ) times using this rule before we can find a time to charge to in the
LP solution.

Naively, rule (5) will show our algorithm is a O(log log kγ)-approximation.
However, we can improve this by showing that, in fact, we only perform rule (5)
with low probability. Say with probability at most 1

log log kγ . This will allow us

to show that in expectation we only need to charge O(1) to the LP. Showing
this event happens with low probability will follow from the knapsack covering
inequalities and by bosting the probability a block is randomly sampled in the LP
by a Θ(log log log kγ) factor. We note that these knapsack inequalities were not
used in [16] to show a O(log log kγ)-approximation and this is how we circumvent
hurdles faced in the analysis of [16]. In particular, it seems perfectly plausible
using the standard LP that we could output a color O(log log kγ) in this step with
good probability. To see why this event happens with low probability, consider
the knapsack covering inequality for time t.∑

b∈B\B′

(|Eb,≤t \ E′|)xb ≥ (t− k′ − |E′|)(1−
∑
b∈B′

xb) ∀B′ ⊆ B,E′ ⊆ E

Our goal is to show that there is Ω(1) height of color blocks the LP has
scheduled on elements in B(t) if we execute rule (5). We will use this coupled
with setting α < 1

Θ(1) log log log kγ for the sample. If we can find such a height on

color blocks in the LP, then the probability no element in B(t) is α-ready is at
most 2−Θ(log log log kγ) = 1

(log log kγ)Θ(1) by Lemma 3. Further, if we did sample

such an interval then an element in B(t) would be α ready at time t. Thus, we
will have the desired probability and here one can see why we required that
we boosted the probabilities in the sampling by a factor of Θ(log log log kγ).
To see why such a such a height exists, consider setting E′ to be all elements
that arrived by time t except those B(t) and B′ to be the height of color block
including that process at least one element in B(t) before time t. The left hand
side must be 0, but (t − k′ − |E′|) = k

log kγ since |E′| = t − k. Thus, it must be

the case that
∑
b∈B′ xb = 1.

This is the intuition on how we can show that the cost accumulated by the
algorithm by rule (5) is at most O(1) multiplied by the cost of the LP in ex-
pectation. Unfortunately, the actual proof is much more involved. In particular,
there is a dependency at different times on whether or not elements are α-ready.
The proof needs to deal with these dependencies delicately. We handle this by
showing that, in fact, a very large number of elements will become α-ready with
good probability. Then using this we can group time steps together in such a
way that if we succeed at a particular time, we will succeed at the later times
where there are significant dependencies. This will then allow us to bound the
cost of rule (5).

4 Algorithm

We require some notation to define formally the algorithm. Let ε be
Θ(1

log log log kγ) and α at most ε. We will later set ε = 1
220 log log log kγ and α = ε.

Let B(t) denote (the set of elements in) the algorithm’s buffer at time t. Let
nAc (t) denote the number of elements for color c in B(t). Let nOc (t) be the num-
ber of elements in the LP at time t for color c that have been processed by at
most 1/2 + 2ε. Intuitively, one should think of these elements as the ones not
done by the LP. Let Cs(t) contain all colors c where 0 < nAc (t) ≤ k

log3 kγ
and

Cb(t) contain all colors c where nAc (t) > k
log3 kγ

. Let EO(t) be the set of elements

that have been processed by at most 1/2 + 2ε in the LP at time t that are not
in B(t), i.e. EO(t) := {ei |ei 6∈ B(t), i ≤ t, βi,t ≤ 1/2 + 2ε}. Let c∗(t) be the
color such that color blocks in the LP for color c∗(t) that intersect time t have
height greater than 1/2, if it exists. Note that there can only be one such color.
Let vOc,t =

∑
i,c(ei)=c

1 − βi,t denote the remaining volume of elements for color
c in the LP at time t.

Let tc,1 be the first time the LP accumulates cost εwc for color c. That is,
there exists a set of color blocks for color c of height at least ε which start
at time tc,1 or earlier. Assuming tc,i−1 is defined, let tc,i be the earliest time
that the LP accumulates cost εwc for color c since time tc,i−1. That is, during
(tc,i−1, tc,i] there exists a set of color blocks for color c of total height at least ε
that start during (tc,i−1, tc,i] . Let Tc be the set of such times for color c. With
these definitions in place, the algorithm can be defined as follows. The algorithm
attempts to execute the rules in the order presented.

Algorithm:

Rule (i) If there is a set of color blocks S in the LP of total aggregate height
ε (i.e.

∑
b∈S xb ≥ ε) that each processes at least one element in B(t) for color

c by time t then output color c. In particular, in a special case, if there is an
element in ei ∈ B(t) processed by ε in the LP, then switch to color c(ei).

Rule (ii) If there is an element ei ∈ B(t) that is α ready at time t then switch
to color c(ei).

Rule (iii) If there is a color c where nAc (t) ≥ k/10, switch to color c.

Rule (iv) If the LP has processed elements in B(t) corresponding to colors
in Cs(t) by a total of at least (|EO(t)| + k

log kγ)/10 by time t then switch to a

color c ∈ Cs(t) such that earliest time t′ ∈ Tc after t is also the earliest time in
∪c′∈Cs(t)Tc′ after t.

Rule (v) We perform this rule if none of the others apply. Let L be the set of
colors c ∈ Cb(t) such that nAc (t) ≥ 3

5n
O
c (t). The algorithm switches to a color

c ∈ L such that the earliest time t′ in Tc after t is also the earliest time in
∪c′∈LTc′ after t. We will show that L 6= ∅ if the earlier rules cannot be used.

5 Analysis

In this section our goal is to prove Theorem 1 by analyzing the algorithm given
in the previous section. Recall that we solve the LP with a buffer size k′ :=
k − k

log k and our algorithm has a buffer of size k. Throughout the proof, we
will let LP denote the cost of the LP solution. To prove the approximation
ratio of our algorithm, we bound the cost of each of the rules in the algorithm
separately. First consider Rule (i). The following lemma is immediately implied
by Lemma 1.

Lemma 4. The total cost accumulated by the algorithm due to executing Rule
(i) is at most O(1

ε)LP.

Next consider the cost accumulated by Rule (ii). By applying Lemma 3, we
have the following lemma.

Lemma 5. The total expected cost incurred when the algorithm executes Rule
(ii) is at most O(1

α)LP.

Next we consider the cost accumulated by Rule (iii) and Rule (iv). In this
case, we appeal to the proofs shown in [16]. We note that this proof relies on
structural properties in the elements in B(t) have since the algorithm did not use
Rule (i) or Rule (ii). These structural properties are sufficient for the proofs
shown in [16].

Lemma 6 ([16]). The total cost incurred when the algorithm executes Rule
(iii) is at most O(1

ε)LP.

Lemma 7 ([16]). The total expected cost incurred when the algorithm executes
Rule (iv) is at most O(1

ε)LP.

We now focus on bounding the expected number of times an element can be
output due to Rule (v). The main analysis focuses on proving the following
lemma.

Lemma 8. Consider any time t1 ∈ T and let t2 be the next time in T after
t1. The expected number of times we execute Rule (v) is at most O(1) during
[t1, t2).

Once we have this lemma, combining it and the previous four lemmas proves
Theorem 1. This is because between any two times t1 and t2 in Tc the LP
accumulates a cost of at least εwc and we can charge to this cost to bound
the expected cost of executing Rule (v) by O(1)LP. Showing this lemma will
complete the analysis. Due to space constraints, the proof is deferred.

References

1. A. Aboud. Correlation clustering with penalties and approximating the reordering
buffer management problem. Masters thesis, Computer Science Department, The
Technion - Israel Institute of Technology, 2008.

2. Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. Almost
tight bounds for reordering buffer management. In STOC, pages 607–616, 2011.

3. Houman Alborzi, Eric Torng, Patchrawat Uthaisombut, and Stephen Wagner. The
k-client problem. J. Algorithms, 41(2):115–173, 2001.

4. Yuichi Asahiro, Kenichi Kawahara, and Eiji Miyano. Np-hardness of the sorting
buffer problem on the uniform metric. Discrete Applied Mathematics, 160(10-
11):1453–1464, 2012.

5. Noa Avigdor-Elgrabli, Sungjin Im, Benjamin Moseley, and Yuval Rabani. On the
randomized competitive ratio of reordering buffer management with non-uniform
costs. Manuscript, 2014.

6. Noa Avigdor-Elgrabli and Yuval Rabani. An improved competitive algorithm for
reordering buffer management. In SODA, pages 13–21, 2010.

7. Noa Avigdor-Elgrabli and Yuval Rabani. A constant factor approximation algo-
rithm for reordering buffer management. In SODA, 2013.

8. Noa Avigdor-Elgrabli and Yuval Rabani. An improved competitive algorithm for
reordering buffer management. In 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages
1–10, 2013.

9. Reuven Bar-Yehuda and Jonathan Laserson. Exploiting locality: approximating
sorting buffers. J. Discrete Algorithms, 5(4):729–738, 2007.

10. Daniel K. Blandford and Guy E. Blelloch. Index compression through document
reordering. In DCC, pages 342–351, 2002.

11. Robert D. Carr, Lisa K. Fleischer, Vitus J. Leung, and Cynthia A. Phillips.
Strengthening integrality gaps for capacitated network design and covering prob-
lems. In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete
algorithms, SODA ’00, pages 106–115, Philadelphia, PA, USA, 2000. Society for
Industrial and Applied Mathematics.

12. Ho-Leung Chan, Nicole Megow, René Sitters, and Rob van Stee. A note on sorting
buffers offline. Theor. Comput. Sci., 423:11–18, 2012.

13. Matthias Englert and Matthias Westermann. Reordering buffer management for
non-uniform cost models. In ICALP, pages 627–638, 2005.

14. Hossein Esfandiari, MohammadTaghi Hajiaghayi, Mohammad Reza Khani, Vahid
Liaghat, Hamid Mahini, and Harald Räcke. Online stochastic reordering buffer
scheduling. In ICALP (1), pages 465–476, 2014.

15. Iftah Gamzu and Danny Segev. Improved online algorithms for the sorting buffer
problem on line metrics. ACM Transactions on Algorithms, 6(1), 2009.

16. Sungjin Im and Benjamin Moseley. New approximations for reordering buffer
management. In SODA, pages 1093–1111, 2014.

17. Rohit Khandekar and Vinayaka Pandit. Online sorting buffers on line. In STACS,
pages 584–595, 2006.

18. Jens S. Kohrt and Kirk Pruhs. A constant approximation algorithm for sorting
buffers. In LATIN, pages 193–202, 2004.

19. Jens Krokowski, Harald Räcke, Christian Sohler, and Matthias Westermann. Re-
ducing state changes with a pipeline buffer. In VMV, page 217, 2004.

20. Harald Räcke, Christian Sohler, and Matthias Westermann. Online scheduling for
sorting buffers. In ESA, pages 820–832, 2002.

	Weighted Reordering Buffer Improved via Variants of Knapsack Covering Inequalities
	 Sungjin Im(UCMerced) and Benjamin Moseley(WashU)

