
Competitively Scheduling Tasks with Intermediate
Parallelizability

Sungjin Im
Electrical Engineering and

Computer Science
University of California

Merced, CA 95344
sim3@ucmerced.edu

Benjamin Moseley
Toyota Technological Institute

Chicago, IL 60637
moseley@ttic.edu

Kirk Pruhs
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260
kirk@cs.pitt.edu

Eric Torng
Dept. of Computer Science

and Engineering
Michigan State University
East Lansing, MI 48824

torng@msu.edu

ABSTRACT
We introduce a scheduling algorithm Intermediate-SRPT,
and show that it is O(logP)-competitive with respect to
average waiting time when scheduling jobs whose paralleliz-
ability is intermediate between being fully parallelizable and
sequential. Here the parameter P denotes the ratio between
the maximum job size to the minimum. We also show a gen-
eral matching lower bound on the competitive ratio. Our
analysis builds on an interesting combination of potential
function and local competitiveness arguments.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problem]: Se-
quencing and scheduling

General Terms
Algorithms, Theory

Keywords
Scheduling, Parallelization, Speedup curves.

1. INTRODUCTION
Due to the effects of Moore’s law, around a decade ago

chip makers such as Intel hit a thermal wall, where the cost
of cooling became prohibitive if all switches were devoted
to a single high speed processor. In response the chip mak-
ers abruptly switched to predominantly producing multipro-
cessor chips [11]. The advantage of multiprocessor chips is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’14, June 23–25, 2014, Prague, Czech Republic.
Copyright 2014 ACM 978-1-4503-2821-0/14/06 ...$15.00.
http://dx.doi.org/10.1145/2612669.2612682.

that k processors with speed s/k would use only about 1/k2

fraction of the dynamic power of a single speed s processor
(assuming the standard cube-root rule relationship between
dynamic power and speed), but potentially would have the
same processing capability; of course, fully utilizing the pro-
cessing capability of a multiprocessor is a grand challenge.
Our focus here is on one of these challenges, namely the
scheduling of tasks.

One (not universally accepted) vision of the future is ar-
ticulated by Anant Agarwal, CEO of Tilera [12].:

“I would like to call it a corollary of Moore’s Law
that the number of cores will double every 18
months.”

Tilera currently produces products with order of 102 pro-
cessors [1], and products with order of 103 processors are
in research and development [2]. In such settings, there
will likely often be more processors than tasks, and thus
a scheduler would have to partition the processors among
the tasks. To achieve optimal performance, the scheduler
must consider the parellizability of tasks when partitioning
and scheduling. For example, whereas some highly parallel
tasks might be sped up almost linearly when assigned addi-
tional processors and thus benefit greatly from being given
more processors, other highly sequential tasks might not be
sped up at all when assigned additional processors. In be-
tween these two extremes lie perhaps the majority of tasks
which have intermediate levels of parallelizability.

The initial motivating questions for the research that we
report on here are:

What is the best algorithm to schedule jobs with
intermediate parallelizability, and what worst-case
relative error guarantee does this algorithm give?

Under standard assumptions (which we will elaborate on
momentarily) it is clear how to optimally schedule n fully
parallelizable tasks on m processors: all m processors are
allocated to the task with the least amount of unprocessed
work. Let us call this algorithm Parallel-SRPT. Further
it is known how to schedule n fully sequential tasks on m
processors in an optimally competitive way: the up to m

tasks with the least unprocessed work are each allocated one
processor. Let us call this algorithm Sequential-SRPT. For
sequential jobs with sizes are between 1 and P , Sequential-
SRPT is O(logP)-competitive, with respect to the objective
of average waiting time [10]. Further, this competitive ratio
is best possible for online algorithms [10].

It was previously not known how to schedule jobs of in-
termediate parallelizability in an optimally competitive way,
and it was not clear a priori what the best scheduling policy
would be. Presumably the “right” algorithm should agree
with Parallel-SRPT when jobs are fully parallelizable, and
agree with Sequential-SRPT when the jobs are sequential.
After a moment’s reflection, the most obvious property that
both Parallel-SRPT and Sequential-SRPT share is that they
schedule jobs in such a way as to maximize the rate of reduc-
tion of the fractional number of unfinished jobs, under the
assumption that the original size of each job was its current
size. So perhaps the most natural candidate for the best
algorithm to schedule tasks with intermediate parallelizabil-
ity would again be to assume that the remaining unfinished
work of each job was its original work, and then greedily
maximize the rate that the fractional number of unfinished
jobs is being reduced by. Quite surprisingly (at least to us)
we show in Section 3 that the competitive ratio of this nat-
ural hybrid algorithm is large.

Our main result is a less obvious algorithm (though still
simple and natural), which we call Intermediate-SRPT, that
we show is optimally competitive for all intermediate levels
of parallelizability. We now describe the Intermediate-SRPT
algorithm, introduce our natural model for intermediate par-
allelizability, state our upper bound on the competitive ratio
of the Intermediate-SRPT algorithm, and finally state our
general matching lower bound on the competitive ratio of
any algorithm.

Intermediate-SRPT Algorithm Description: If there
are at least m tasks, the m tasks with the least unprocessed
work are each allocated one processor (this is like Sequential-
SRPT). If there are strictly fewer than m tasks, the proces-
sors are evenly partitioned among the tasks (this is essen-
tially the Round Robin or Processor Sharing Algorithm).

Modeling Intermediate Parallelizability: We assume
that for each job j there exists an αj ∈ (0, 1) such that the
speedup curve for job j is Γj(x) = x for x ≤ 1, and Γj(x) =
xαj for x ≥ 1. The speedup curve gives the rate that work is
processed if the job is allocated x processors. Note that αj =
0 corresponds to a sequential job and αj = 1 corresponds to
a fully parallelizable job. We believe speed-up curves of the
form xαj give a natural way of interpolating intermediate
degrees of parallelizability without being grounded in any
specific machine model.

Theorem 1. For jobs of intermediate parallelizability, the
algorithm Intermediate-SRPT has competitive ratio O(1) ·
41/(1−α) logP with respect to average waiting time, where
α = maxj αj. In particular, this holds for the special case
that each αj = α.

Theorem 2. For all α ∈ [0, 1), the competitive ratio of
every algorithm with respect to average waiting time, re-
stricted to instances with tasks with speedup curves of the
form Γj(x) = x for x ≤ 1, and Γj(x) = xα for x ≥ 1, is
Ω(logP).

Taken together, these results show (again somewhat sur-
prisingly to us) that scheduling jobs that are even slightly
less than fully parallelizable is more like scheduling sequen-
tial jobs than like scheduling fully parallelizable jobs. The
lower bound for the natural hybrid algorithm shows that its
“error” is that it will sometimes allocate too many proces-
sors to one job. This is the right strategy if the jobs are
fully parallelizable, but can lead to a large relative error if
the jobs are even a bit less than fully parallelizable. The al-
gorithm Intermediate-SRPT corrects this error by function-
ing as Sequential-SRPT when the system is underloaded,
and sharing the processors equally when the system is over-
loaded. Theorem 1 and Theorem 2 together establish that
the optimal competitive ratio jumps from 1 to Θ(logP) the
instant α < 1.

Theorem 1 is proved in Section 2. Theorem 2, is proved
in Section 4. But first, we review standard modeling as-
sumptions and notation, and review the most closely related
papers in the literature.

1.1 Standard Modeling Assumptions and No-
tation

There arem identical unit-speed processors. Each task/job
j has three characteristics: a release time rj when it arrives
in the system, a size or work amount pj ∈ [1, P] specifying
the amount of processing that has to be performed on job j
to finish it, and a speed-up curve Γj(x) specifying the rate
at which work on job j is processed if assigned x processors.
A job is fully parallelizable if Γj(x) = x, and is sequential
if Γj(x) = x for x ≤ 1, and Γj(x) = 1 for x ≥ 1. A job j
has intermediate parallelizability if there exists an α ∈ (0, 1)
such that the speed-up curve for j is Γj(x) = x for x ≤ 1,
and Γj(x) = xα for x ≥ 1. If pj(t) is the amount of unpro-
cessed work on job j at time t, then the fractional number

of jobs at time t is
∑
j

pj(t)

pj
.

The flow/waiting/response time for job j in a schedule S
is FSj = CSj − rj which is the length of time between when
the job is released and when the job is completed in sched-
ule S, and the average flow/waiting/response time of the
schedule is

∑
j F

S
j /n. Within the context of this paper, the

competitive (approximation/worst-case) ratio of an online
scheduling algorithm A is the maximum over all inputs I
with job sizes in the range [1, P], of the ratio between to-
tal flow time for the schedule produces by A on I and the
optimal flow time for instance I (this is essentially just a
measure of worst-case relative error).

1.2 Related Literature
The speedup curves models was introduced into the litera-

ture in [5], who showed that equally partitioning the proces-
sors among the jobs is 2-competitive for total waiting time if
jobs have arbitrary speedup curves and all jobs are released
at the same time.

The other standard way to measure the quality of an on-
line scheduling algorithm, beside competitive ratio, is re-
source/speed augmentation analysis [9, 13]. An online algo-
rithm A is s-speed c-competitive if for all inputs I, the cost
for A on I with s-speed processors is at most c times the
optimal cost for I on speed 1 processors. An algorithm is
scalable if it is (1 + ε)-speed O(1)-competitive for all fixed
constant ε > 0.

[4] showed that partitioning the processors equally amongst
the jobs is (2+ε)-speed O(1)-competitive with respect to av-
erage waiting time for jobs with arbitrary speedup curves. [6]
showed that the algorithm that partitions the processors
equally amongst the latest arriving jobs is scalable.

[3] gives essentially optimally competitive algorithms for
scheduling jobs with arbitrary speedup curves in a setting
of identical speed scalable processors where the objective is
total waiting time plus energy (in this setting one essen-
tially gets speed augmentation for free). As [3] focused on
non-clairvoyant scheduling algorithms, the competitive ra-
tios were super-constant. [7] shows a scalable algorithm is
achievable when the scheduler has access to a job’s paral-
lelizability. [14,16] give essentially optimally competitive al-
gorithms for scheduling jobs with arbitrary speedup curves
for the objective of maximum waiting time. [17] consid-
ers scheduling jobs with arbitrary speedup curves and with
precedence constraints.

[10] also shows that the competitive ratio with respect
to average waiting time of Sequential-SRPT is O(log n

m
),

and give a general matching lower bound for all online algo-
rithms.

There is a large literature on online scheduling. One good
survey for providing background on related results is [15].

2. ANALYSIS OF INTERMEDIATE-SRPT
Our goal in this section is to prove Theorem 1, which

upper bounds the competitive ratio for the Intermediate-
SRPT algorithm.

2.1 Analysis Overview
Our analysis will be based on a somewhat novel combi-

nation of potential function and local competitiveness argu-
ments. Let A(t) and OPT (t) be the unfinished jobs at time
t in the algorithm’s and optimal solution’s schedules, respec-
tively. In Subsection 2.3, we will define a potential function
Φ(t) that satisfies the following standard properties:

• Boundary Condition: Φ(0) = Φ(∞) = 0.

• Discontinuous Changes Condition: the potential func-
tion can only decrease when a job arrives, or is com-
pleted by our algorithm or the optimal solution.

• Continuous Changes Condition: at any time t when no
job arrives or completes, |A(t)|+ d

dt
Φ(t) ≤ c|OPT (t)|.

By integrating over time, one can see that the existence of
such a potential function suffices to show that the algorithm
is c-competitive for the total flow time objective. We refer
the reader to [8] for details.

The novelty in our analysis lies in proving the Continuous
Changes Condition. Most analyses based on potential func-
tions rely on resource (speed) augmentation to prove this
condition. We will partition time into overloaded and un-
derloaded times. Let O denote the set of overloaded times t
when A(t) ≥ m, and U denote the set of underloaded times
when A(t) < m. Theorem 1 then follows easily from the
following three lemmas. Intuitively Lemma 1 shows that
during the overloaded times, the unfinished jobs for the al-
gorithm can be charged to the unfinished jobs for optimal
at that time (a local competitiveness argument). Intuitively
Lemma 2 shows that during the overloaded times, the in-
crease in the potential function can be charged to the un-
finished jobs for optimal at that time. Together Lemma 1

and Lemma 2 show that the Continuous Changes Condition
holds at overloaded times. Lemma 3 then shows that the
Continuous Change Condition holds at underloaded times.

Lemma 1. At all times t ∈ O,

|A(t)| ≤ m(3 + logP) + 2|OPT (t)|

Lemma 2. At all times t ∈ O,
d

dt
Φ(t) ≤ O(1)41/(1−α) logP |OPT (t)|

Lemma 3. At all times t ∈ U ,

|A(t)|+ d

dt
Φ(t) ≤ O(1)21/(1−α) |OPT (t)|

In Subsection 2.2, we prove Lemma 1. In Subsection 2.3,
we define the potential function Φ and prove the Boundary
Condition, and the Discontinuous Changes Condition. In
subsection 2.4 we prove Lemma 2. In subsection 2.5 we
prove Lemma 3.

2.2 Local Competitiveness During Overloaded
Times

This section is devoted to proving Lemma 1 and is an
adaptation of a similar result from [10]. We will need to
define additional notation. At any time, we classify jobs
based on remaining length. A job whose remaining length is
in [2k, 2k+1) is in class k for integer 0 ≤ k ≤ kmax = blogP c.
Note that the number of initial job classes is dlogP e. We
define one special class −1 to denote jobs whose remaining
length is strictly less than 1.

For scheduling algorithm S, let δS(t) denote the number
of jobs that are alive at time t in schedule S and V S(t)
denote the total volume of this schedule, where the volume
is defined to be the sum of remaining lengths of jobs that
are still alive. Note that δA(t) = |A(t)| and δOPT (t) =
|OPT (t)|. We define the volume difference ∆V (t) = V A(t)−
V OPT (t). For function f ∈ {V,∆V, δ}, we define f≥h,≤k(t)
to be the function f restricted to jobs in class at least h and
at most k. We similarly define f=k(t). In Lemma 4 we bound
the volume by which our algorithm can be behind optimal,
and then use this Lemma in the proof of Lemma 5, which
bounds the number of jobs by which our algorithm can be
behind optimal. It is easy to see that Lemma 1 immediately
follows from Lemma 5 and the observation that the number
of jobs in class −1 is at most m.

Lemma 4. For any time t ∈ O,

∆V≤k(t) ≤ m2k+1

Proof. First, for time t, we define time t′ to be the ear-
liest time such that [t′, t) ∈ O. Next, we define tk to be the
latest time in [t′, t) prior to time t in which a job of class
strictly higher than k was processed by some machine. If
there is no such time tk, then we set tk = t′.

We first observe that ∆V≤k(tk) ≤ m2k+1. By the defini-
tion of tk, it follows that for any time tk − ε for any ε > 0,
δA≤k(tk − ε) ≤ m − 1. It may be the case that some job en-
ters class k at time tk by the algorithm’s processing, but this
only means that δA≤k(tk) ≤ m when restricted to jobs that
arrived strictly prior to time tk. The volume of such jobs
is restricted to at most m2k+1 because each such job has a
maximum remaining length of 2k+1. Finally, jobs that arrive

at time tk do not affect ∆V≤k(tk) since such jobs increase
both V OPT≤k (t) and V A≤k(t).

We next observe that ∆V≤k(t) ≤ ∆V≤k(tk). This follows
because by the definition of O, each machine is processing
one job during [tk, t] and by the definition of tk, each job
processed cannot be in a class larger than k. Thus, our
algorithm completes as much work on jobs in classes at most
k during this time period as OPT and the result follows.

Lemma 5. For any time t ∈ O,

δA≥0,≤kmax(t) ≤ m(kmax + 2) + 2δOPT≤kmax(t)

Proof. We formulate δA≥0,≤kmax(t) as follows:

kmax∑
k=0

δA=k(t) ≤
kmax∑
k=0

V Ak (t)

2k

=

kmax∑
k=0

∆V=k(t) + V OPT=k (t)

2k

=

kmax∑
k=0

∆V≤k(t)−∆V≤k−1(t)

2k
+
V OPT=k (t)

2k

≤ ∆V≤kmax(t)

2kmax
+

kmax−1∑
k=0

∆V≤k(t)

2k+1

−∆V≤−1(t)

20
+ 2δOPT≥0,≤kmax(t)

≤ 2m+

kmax−1∑
k=0

m+ δOPT≤−1 (t) + 2δOPT≥0,≤kmax(t)

≤ m(kmax + 2) + 2δOPT≤kmax(t).

The first inequality follows since 2k is the minimum re-
maining length of any job in class k. The fourth inequality
follows by assuming the jobs in δOPTk have remaining length
2k+1. The fifth inequality follows from the previous lemma,
observing that we can eliminate the negative term and add
a positive term δOPT≤−1 (t).

2.3 Potential Function Analysis
In this section, we define the potential function Φ, and

then we prove the Boundary Condition and the Discontinu-
ous Changes Condition.

Definition of the Potential Function: Let pAi (t) and
pOPTi (t) denote the remaining processing time of job i in
the algorithm’s and optimal solution’s schedules at time t,
respectively. Let zi(t) = max{pAi (t) − pOPTi (t), 0}. Recall
that A(t) and OPT (t) denote the unfinished jobs in the al-
gorithm’s and optimal solution’s schedules, respectively. Let
rank(i, t) = min{m,

∑
j∈A(t),rj≤ri 1} where without loss of

generality we assume that each job arrives at a unique time.
Note that rank(i, t) ≤ m for all i and t. We define the
potential function as follows:

Φ(t) = 16
∑
i∈A(t)

zi(t)

Γi(m/rank(i, t))

Throughout the analysis, the following simple lemma will
be useful.

Proposition 1. For any B and C where B ≥ C and any

job j, it is the case that
Γj(B)

Γj(B)
≤ B

C
.

Proof. The proposition follows immediately by the as-
sumption that Γj is a concave function and Γj(0) = 0.

Boundary Condition: It is easy to see that Φ(0) = Φ(∞) =
0 from the definition of the potential function Φ.

Discontinuous Changes Condition: First consider when
a job arrives at time t. In this case there is no change in
the potential function. This is because the rank for every
job remains the same for all jobs that arrive before time t.
Further, for the job i that arrives at this time, zi(t) = 0.
Thus, there is no change in the potential. Next observe
that optimal completing a job has no effect on the potential.
Now consider the case where the algorithm completes some
job i at time t. In this case, the potential function can
only decrease. To see that this is the case, consider any job
j ∈ A(t). If rj < ri, then there is no change in job j’s term
in the potential function. However, if rj > ri then rank(j, t)
may decrease by at most one. Since Γj is non-decreasing,
Γj(m/rank(j, t)) can only increase for a job j where rj ≥ ri.
Since this is in the denominator of the term in the potential
function corresponding to job j and zj(t) is non-negative,
the potential function can only decrease.

2.4 Potential Function Change During Over-
loaded Times

In this subsection we prove Lemma 2. If |A(t)| ≥ 10m logP ,
then Lemma 2 immediately follows from Lemmas 6 and 7. If
40·41/(1−α) logP |OPT (t)| ≥ |A(t)|, then Lemma 2 immedi-
ately follows from Lemma 7. If m ≤ |A(t)| ≤ 10m logP and

40 · 41/(1−α) logP |OPT (t)| ≤ |A(t)| (which in turn implies
that |OPT (t)| ≤ 1

4
· 1

41/(1−α)m), then Lemma 2 immediately
follows from Lemmas 8 and 9.

First we consider the case where the algorithm has a large
number of jobs compared to m.

Lemma 6. If |A(t)| ≥ 10m logP , then |OPT (t)| ≥ |A(t)|/2−
2m logP ≥ |A(t)|/4.

Proof. The lemma immediately follows from Lemma 1
by noticing that t ∈ O.

Lemma 7. At all times t, the rate of increase in the poten-
tial due to optimal processing the jobs is at most 16(|A(t)|+
|OPT (t)|).

Proof. Let qOPTi (t) be the number of machines assigned
to job i by OPT at time t. The change in the potential
due to optimal processing the jobs can then be bounded as
follows:

16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/rank(i, t))

≤ 16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/|A(t)|) [Since Γi is non-decreasing]

≤ 16|OPT (t)|+ 16
∑

i∈OPT (t)

qOPTi (t)

m/|A(t)| [By Proposition 1]

= 16|OPT (t)|+ 16|A(t)|
∑

i∈OPT (t)

qOPTi (t)

m

≤ 16(|A(t)|+ |OPT (t)|)

The second inequality holds since for each job i with
qOPTi (t)

m/|A(t)| ≤

1, it is the case that
Γi(q

OPT
i (t))

Γi(m/|A(t)|) ≤ 1.

Lemma 8. At any time t where |OPT (t)| ≤ m, the rate
of increase in the potential due to optimal processing the jobs
is at most 16mα|OPT (t)|1−α.

Proof. As before, let qOPTi (t) be the number of machines
assigned to job i by OPT at time t. Let Γ be a function such
that Γ(x) = x for 0 ≤ x ≤ 1 and Γ(x) = xα for x ≥ 1. Recall
that rank(i, t) ≤ m for all i and t from the definition of rank.
The change in the potential due to optimal processing the
jobs can then be bounded as follows:

16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/rank(i, t))

≤ 16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/m)
[Since Γi is non-decreasing]

= 16
∑

i∈OPT (t)

Γi(q
OPT
i (t)) [Since Γi(1) = 1]

≤ 16
∑

i∈OPT (t)

Γ(qOPTi (t))

≤ 16|OPT (t)|(m/|OPT (t)|)α [Due to the concavity of Γ]

= 16mα|OPT (t)|1−α

Lemma 9. At any time t where m ≤ |A(t)| ≤ 10m logP
and |OPT (t)| ≤ 1

4
· 1

41/(1−α)m, the rate of increase in the po-
tential due to the algorithm processing jobs is at most −4m.

Proof. When |A(t)| ≥ m the algorithm assigns the short-
est m jobs each on a unique machine. Let A′(t) denote these
m jobs. Notice that zi(t) decreases at a rate of one for each
job in A′(t)\OPT (t). Thus, we have that the change in the
potential due to the algorithm is at most:

−16
∑

i∈A′(t)\OPT (t)

1

Γi(m/rank(i, t))

≤ −16
∑

i∈A′(t)\OPT (t)

rank(i, t))

m

≤ −16

m

|A′(t)\OPT (t)|∑
i=1

i

≤ −16

m

(3m/4)2

2
≤ −4m

The first inequality easily follows from Proposition 1 and
by observing that m/rank(i, t)) ≥ 1 since rank(i, t) ≤ m.
The second to last inequality holds since |OPT (t)| ≤ (1/4)m
and |A′(t)| = m.

2.5 Underloaded Times
Our goal in this subsection is to prove Lemma 3. Let t be

a time such that |A(t)| ≤ m. If |OPT (t)| ≥ 1
16
|A(t)|, then

Lemma 3 immediately follows from Lemma 7; the potential
can only decrease when the algorithm processes jobs. Hence
we assume that |OPT (t)| ≤ 1

16
|A(t)|.

First we bound the increase in the potential function due
to the processing of optimal. Again, let qOPTi (t) be the
number of processors assigned to job i at time t by OPT .
The increase in the potential is at most the following.

16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/rank(i, t))

≤ 16
∑

i∈OPT (t)

Γi(q
OPT
i (t))

Γi(m/|A(t)|) [Since Γi is non-decrasing]

≤ 16|OPT (t)|+ 16
∑

i∈OPT (t),qOPTi (t)≥m/|A(t)|

(qOPTi (t))αi

(m/|A(t)|)αi

≤ 16|OPT (t)|+ 16
∑

i∈OPT (t)

(qOPTi (t))α

(m/|A(t)|)α

The second to last inequality holds for the following rea-

son. Consider any job i such that
qOPTi (t)

(m/|A(t)|)αi ≤ 1. Then

we have
(qOPTi (t))αi

(m/|A(t)|)αi ≤ 1. Hence the total contribution of

such jobs is at most 16|OPT (t)|. Since our goal is to bound
the total change of the potential plus |A(t)| by |OPT (t)|,
we will ignore 16|OPT (t)|, and proceed with our string of
inequalities.

16
∑

i∈OPT (t)

(qOPTi (t))α

(m/|A(t)|)α ≤ 16
∑

i∈OPT (t)

(m/|OPT (t)|)α

(m/|A(t)|)α

= 16|OPT (t)| (m/|OPT (t)|)α

(m/|A(t)|)α

≤ 16|OPT (t)|1−α|A(t)|α

≤ 16
(1

2α+2
|A(t)|+ 2

α+2
1−αα|OPT (t)|

)
The first inequality is immediate from the fact that 0 ≤ α <
1. The last inequality can be easily shown by considering

two cases whether |A(t)| ≥ 2
α+2
1−α |OPT (t)| or not.

Now we consider the decrease in the potential function
due to the algorithm processing jobs. When |A(t)| < m
then the algorithm gives each job equal share of every pro-
cessor. Thus, for all i ∈ A(t) \ OPT (t) it is the case that
zi(t) decreases at a rate of Γi(m/|A(t)|). Thus, we have the
decrease due to the algorithm is as follows.

−16
∑

i∈A(t)\OPT (t)

Γi(m/|A(t)|)
Γi(m/rank(i, t))

≤ −16
∑

i∈A(t)\OPT (t),rank(i,t)≥|A(t)|/2

Γi(m/|A(t)|)
Γi(2m/|A(t)|

≤ −16(|A(t) \OPT (t)| − |A(t)|/2)(1/2)α

≤ −16(1− 1

2
− 1

16
)|A(t)|(1/2)α

≤ −6|A(t)|(1/2)α

So far we have shown that

d

dt
Φ(t) ≤ 16

(1

2α+2
|A(t)|+ 2

α+2
1−αα|OPT (t)|

)
− 6|A(t)|(1/2)α

≤ −|A(t)|+O(1)21/(1−α)|OPT (t)|

This completes the proof.

3. LOWER BOUND FOR GREEDY ALGO-
RITHM

In this section, we prove that the following natural greedy
hybrid of Parallel-SRPT and Sequential-SRPT has a super-
logarithmic lower bound on its competitive ratio.

Description of Greedy Algorithm: At all times allocate
processors to jobs in such a way as to maximize the instan-
taneous rate at which the fractional number of unfinished
jobs would be decreased, if it was the case that the original
work of each job was its remaining unprocessed work. Using
a simple exchange argument one can prove that if each job
j has a speedup curve of the form Γj(x) = xα for α ∈ (0, 1),
then this policy can be implemented in the following greedy
way: We arbitrarily number the processors from 1 to m.
At each decision point, the machines schedule jobs in order
from machine 1 to machine m. When it is machine i’s turn
to schedule a job, let p(i, j) be the number of processors
from 1 to i− 1 that have been assigned to job j. Processor

i chooses job j that maximizes Γ(p(i,j)+1)−Γ(p(i,j))
pj(t)

.

Lemma 10. This Greedy algorithm has a competitive ra-
tio that is Ω(max{P, n1/3}).

Proof. Let ε = 1−α. Consider an input instance where
m−m1−ε jobs of size m are released at time 0. From time
0 to time m− 1

m1−ε , one job of size 1 is released every 1
m1−ε

time units. Finally, at time m + 1, we release a job of size
1 every 1

m1−ε time units for X = m2 time units (a total of

Xm1−ε jobs are released in this final phase).
This greedy algorithm will devote all m machines to the

1 job of size 1 and complete it just as the next size 1 job
arrives. This follows by considering the last processor m. It

balances the choice of m
1−ε−(m−1)1−ε

1
versus 1

m
. Given that

ε > 0, it will always choose to assign the machine to the size
1 job.

At time m, this greedy algorithm will still have all m −
m1−ε jobs of size m remaining. In this next unit of time, it
can only complete at mostm units of work on thesem−m1−ε

jobs; in particular, it cannot finish any of these jobs and
cannot reduce the processing time to less than 1. After time
m + 1, it will assign all m processors to the newly arrived
job until the stream ends. The total flow time incurred
will thus be m for the jobs of size 1 released prior to time
m, X for the jobs of size 1 released after time m + 1, and
(m−m1−ε + 1)(X +m+ 1) for the jobs of size m up to the
end of the long stream. We ignore the flow time incurred to
complete these long jobs after the end of the stream. The
dominant term is (m −m1−ε)X for the size m jobs during
the long stream.

On the other hand, an alternative algorithm (not necessar-
ily optimal but simple to conceptualize) will assign m−m1−ε

machines to the size m jobs from time 0 to time m complet-
ing them by time m. On the remaining m1−ε machines, it
assigns one machine to each job of size 1 as that job ar-
rives. Because it operates efficiently, each such machine will
complete its assigned size 1 job exactly 1 time unit later.
During this time, each job will complete just as its machine
is needed to schedule the next arriving size 1 job because the
number of jobs that arrive during 1 unit of time is exactly
m1−ε. By time m + 1, this algorithm will have completed
all of these jobs and will now devote all m machines to the
stream of size 1 jobs that arrive completing each one just as
the next arrives. Before time m+ 1, this algorithm incurs a

total time of m2−ε for the size 1 jobs since each of these jobs
is scheduled immediately on one processor. The large jobs
each complete within m time units of arrival for a total flow
time of m2 −m2−ε. Finally, during the stream of length X,
each job incurs a flow time of 1

m1−ε for a total flow time of
X.

The Ω(P) bound follows from the observation that P =

m. The Ω(n1/3) bound follows from the observation that
n = Θ(m3−ε).

4. GENERAL LOWER BOUND
Our goal in this section is to prove Theorem 2, which gives

a logarithmic lower bound on the competitive ratio of any
algorithm. This lower bound is an adaptation of the lower
bound proof from [10]. The proof is slightly more complex
because online algorithms can exploit the fact that the jobs
have intermediate parallelizability to catch up on jobs that
they should have finished earlier.

We construct a family of input instances parameterized
by α where each instance is composed of two parts. In the
first part, jobs are released in phases. Each phase has long
jobs and short jobs that force the online algorithm to choose
between completing almost all of the short jobs before the
halfway point of a phase or completing all the jobs in the
phase by the end of the phase. The family of input instances
is structured such that any deterministic online algorithm
on at least one instance in the family must face a time T
where it has at least Ω(m logP) unfinished jobs whereas the
optimal algorithm at the same moment in time will have
at most m/2 unfinished jobs. The second part of the input
instance starts at time T and presents a stream of m jobs of
size 1 for P 2 consecutive starting times.

We formally define the family of input instances as follows.
First, we need to define the following terms. Let ε = 1− α.
We define a length reduction factor r = 1/2(1 − 1

2ε
); the

length of the long jobs will be multiplied by r (equivalently
divided by a factor of 1/r) in each phase of the input in-
stance. We choose the number of machines m such that
1
2

2ε−1
2ε+1

m
2

is an integer. We choose the longest job length P

such that the maximum number of phases L = 1/2 log 1
r
P

is an integer and log2
1
r
P < 1

4
2ε−1
2ε+1

P 1/2.

The first part has at most L = 1/2 log 1
r
P phases num-

bered from 0 to L−1. Each phase 0 ≤ i ≤ L−1 has a phase
length pi = Pri and a start time si =

∑i−1
j=0 pj . During

phase i, m/2 long jobs of length pi are released at time si,
and m short jobs of length 1 are released at times si + j for
0 ≤ j ≤ pi/2− 1.

The adversary begins by releasing the jobs in phase 0
starting at time s0 = 0. In general, suppose the adversary
has released the jobs in phase i starting at time si where
i ≤ L− 1. The adversary decides at time si + pi/2 whether
or not to (i) begin the second part of the input instance at
time si + pi/2 or (ii) to release the next set of jobs start-
ing at time si+1 as follows. If the online algorithm has at
least m log 1

r
P remaining work from length 1 jobs released

in phase i at time si + pi/2, then the adversary begins the
second part of the input instance at time si + pi/2. Other-
wise, if i < L − 1, then the adversary releases the jobs in
phase i + 1 starting at time si+1. If i = L − 1, then the
adversary starts the second part of the input instance at
time si + pi. This leaves us with two possible cases. In the

first case, the adversary starts the second part of the input
instance at some time T = si + pi/2 where 0 ≤ i ≤ L − 1.
In the second case, the adversary starts the second part of
the input instance at time T = sL−1 + pL−1.

We now argue that for both cases, the optimal flow time
is bounded by O(mP 2). As in [10], we define a notion of a
standard schedule for phase i that has the goal of completing
all jobs released in phase i by time si + pi. Each of the m/2
long jobs are processed non-preemptively by one machine for
the entire phase. For the m length 1 jobs released at time
si + k where 0 ≤ k ≤ pi/2− 1, m/2 of them are completed
by using m/2 machines at time si + k and the other m/2
are completed using m/2 machines at time si + k + pi/2.
The total flow time of this standard schedule for phase i is
2mpi +m/2(pi/2)2.

We now show that the optimal flow time is O(mP 2) for
the first case by giving a specific schedule with flow time
O(mP 2). The standard schedule is used for all phases up to
but not including phase i. For phase i, the m/2 long jobs are
ignored and each length 1 job is assigned its own machine
immediately upon arrival. Thus, by time T = si+pi/2, only
the m/2 long jobs of phase i remain. For time T + k where
0 ≤ k ≤ P 2−1, the m jobs of length 1 released at time T +k
are each assigned their own machine and completed by time
T + k + 1. Finally, at time T + P 2, each of the m/2 long
jobs of size pL−1 are assigned to 2 machines and completed
by time T + P 2 + pi/2

α. Clearly, the overall flow time for
this feasible schedule is O(mP 2).

We now show that the optimal flow time is O(mP 2) for
the second case by giving a specific schedule with flow time
O(mP 2). The standard schedule is used for all phases.
Thus, by time T = sL−1 + pL−1/2, no jobs remain. For
time T + k where 0 ≤ k ≤ P 2 − 1, the m jobs of length 1
released at time T + k are each assigned their own machine
and completed by time T + k + 1. Clearly, the overall flow
time for this feasible schedule is O(mP 2).

We now show that the online flow time for both cases
is at least Ω(mP 2 log 1

r
P). By the definition of the first

case, the online algorithm has at least m log 1
r
P remaining

work from the length 1 jobs released in phase i at time T =
si + pi/2. Thus, the online algorithm has at least m log 1

r
P

unfinished jobs from time T to time T + P 2. Using only
the flow time from this time interval, we see that the online
algorithm incurs a total flow time of at least mP 2 log 1

r
P

and the theorem follows for this case.
We now consider the second case. In our analysis, we opt

for simplicity rather than proving the most accurate bound.
The first key observation is that in phase i for 0 ≤ i ≤
L−1, online completes at least mpi/2−m log 1

r
P of the total

available work from the length 1 jobs by time si + pi/2, the
halfway point of phase i. This means that at most m log 1

r
P

work can be completed on the long jobs, possibly from earlier
phases, during the time interval [si, si + pi/2].

We will prove that at time T , the amount of unfinished
work from the m/2 long jobs from phase i for 0 ≤ i ≤ L− 1

is at least 1
2

2ε−1
2ε+1

m
2
pi. This implies that the number of long

jobs with remaining length at least 1 from phase i at time
T is at least 1

2
2ε−1
2ε+1

m
2

. Given that there are L = 1/2 log 1
r
P

phases, we have that the total number of jobs with remain-
ing length at least 1 at time T is at least L 1

2
2ε−1
2ε+1

m
2

=

1
2
(log 1

r
P) 1

2
2ε−1
2ε+1

m
2

which is Ω(m log 1
r
P). Thus, the total

flow time incurred in interval [T, T +P 2] is Ω(mP 2 log 1
r
P).

Consider the m/2 long jobs from phase i. From our previ-
ous observation, we can complete at most (L−i)m log 1

r
P ≤

m
2

log 1
r

log 1
r
P ≤ 1

2
2ε−1
2ε+1

m
2
P 1/2 ≤ 1

2
2ε−1
2ε+1

m
2
pi work on these

m/2 jobs during the first half of phases i to L − 1. Dur-
ing the second half of phases i to L − 1, the best we can
do is devote 2 machines to each job for the entire second
half of these phases; note that we ignore the processing re-
quired by any unfinished length 1 jobs from phase i in the
second half of phase i. Given that the phase lengths form
a geometric progression with multiplicative factor r, the to-
tal time available in these second halves of phases is strictly
less than pi

2
1

1−r . Thus, the total amount of work that can
be completed in the second half of these phases is strictly
less than m

2
2α pi

2
1

1−r which is equal to m
2

2
2ε+1

pi. Thus, con-
sidering only the second half of these phases, there is strictly
more than 2ε−1

2ε+1
m
2
pi unfinished work for these m/2 long jobs

from phase i at time T . Taking into account how much work
can be done in the first half of these phases, we see that the
total unfinished work on the m/2 long jobs from phase i at

time T is at least 1
2

2ε−1
2ε+1

m
2
pi, and the theorem follows for

the second case.

Acknowledgment
Sungjin Im’s work was supported in part by NSF Award
CCF-1008065, and was partially done while the author was
at Duke. Kirk Pruhs’ work was supported in part by NSF
grants CCF-1115575, CNS-1253218, and an IBM Faculty
Award.

5. REFERENCES
[1] http://www.tilera.com/.

[2] http://projects.csail.mit.edu/angstrom/.

[3] Ho-Leung Chan, Jeff Edmonds, and Kirk Pruhs.
Speed scaling of processes with arbitrary speedup
curves on a multiprocessor. Theory Comput. Syst.,
49(4):817–833, 2011.

[4] Jeff Edmonds. Scheduling in the dark. Theor. Comput.
Sci., 235(1):109–141, 2000.

[5] Jeff Edmonds, Jarek Gryz, Dongming Liang, and
Renée J. Miller. Mining for empty spaces in large data
sets. Theor. Comput. Sci., 296(3):435–452, 2003.

[6] Jeff Edmonds and Kirk Pruhs. Scalably scheduling
processes with arbitrary speedup curves. ACM
Transactions on Algorithms, 8(3):28, 2012.

[7] Kyle Fox, Sungjin Im, and Benjamin Moseley. Energy
efficient scheduling of parallelizable jobs. In SODA,
pages 948–957, 2013.

[8] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A
tutorial on amortized local competitiveness in online
scheduling. SIGACT News, 42(2):83–97, 2011.

[9] Bala Kalyanasundaram and Kirk Pruhs. Speed is as
powerful as clairvoyance. J. ACM, 47(4):617–643,
2000.

[10] Stefano Leonardi and Danny Raz. Approximating
total flow time on parallel machines. Journal of
Computer and Systems Sciences, 73(6):875–891, 2007.

[11] John Markoff. Intel’s big shift after hitting technical
wall. New York Times, May 2004.

[12] Rick Merritt. CPU designers debate multi-core future.
EE Times, February 2008.

[13] Cynthia A. Phillips, Clifford Stein, Eric Torng, and
Joel Wein. Optimal time-critical scheduling via
resource augmentation. Algorithmica, 32(2):163–200,
2002.

[14] Kirk Pruhs, Julien Robert, and Nicolas Schabanel.
Minimizing maximum flowtime of jobs with arbitrary
parallelizability. In WAOA, pages 237–248, 2010.

[15] Kirk Pruhs, Jiri Sgall, and Eric Torng. Handbook of
Scheduling: Algorithms, Models, and Performance
Analysis, chapter Online Scheduling. 2004.

[16] Julien Robert and Nicolas Schabanel. Non-clairvoyant
batch sets scheduling: Fairness is fair enough. In ESA,
pages 741–753, 2007.

[17] Julien Robert and Nicolas Schabanel. Non-clairvoyant
scheduling with precedence constraints. In SODA,
pages 491–500, 2008.

