
Partitioned Feasibility Tests for Sporadic Tasks on
Heterogeneous Machines

Shaurya Ahuja
Computer Science and Engineering

Washington University in St. Louis

St. Louis, MO 63130

shaurya.ahuja@wustl.edu

Kefu Lu
Computer Science and Engineering

Washington University in St. Louis

St. Louis, MO 63130

kefulu@wustl.edu

Benjamin Moseley
Computer Science and Engineering

Washington University in St. Louis

St. Louis, MO 63130

bmoseley@wustl.edu

Abstract—In this paper we consider feasibility tests for par-
titioned scheduling sporadic tasks on a set of heterogeneous
machines with different speeds. Previously a 3-approximate
feasibility test was known. The feasibility test is a natural, fast and
efficient algorithm which greedily assigns the tasks to machines
and uses Earliest-Deadline-First (EDF) on each machine. The
algorithm is 3-approximate even when compared against any
schedule which need not be partitioned and therefore additionally
bounds the loss due to using a partitioned scheduler. In our
work, we consider the case where the adversary is required to be
partitioned. We show that this natural algorithm has an improved
approximate feasibility factor of 2. Building on our techniques,
we further improve on the best known approximate algorithm
when the adversary is partition and show the algorithm achieves a
ratio better than 3. In particular, we show it is 2.98 approximate.

We then consider the case where the partitioned scheduler is
required to use Rate-Monotonic-Scheduling (RMS) on each of the
machines. Previously, it was known that this algorithm is 3.41-
approximate when compared to a non-partitioned adversary. We
improve this to 2.41 when comparing to a partitioned adversary.
Further, we build on these ideas to improve the best known result
when compared against a partitioned adversary and show the
algorithm is a 3.34 approximation.

I. INTRODUCTION

Feasibility tests for scheduling sporadic real time tasks is
a fundamental challenge in real time systems and, due to this,
there is a vast literature on the topic. See [8] for a survey. In
a typical scenario, there is a task set τ consisting of n tasks
τ1, τ2, . . . τn. Each task generates an infinite set of jobs that
are to be scheduled and each individual job has a deadline.
A feasibility test for a task system has two components.
The first is a scheduler which determines how the jobs will
be scheduled. The second is another algorithm that checks
whether the scheduling algorithm will be able to complete all
jobs by their deadline or not.

In this work, we consider feasibility tests for implicit-
deadline sporadic task systems. In a sporadic task system, each
task τi generates a jobs. Each job has a relative hard deadline
pi time steps after its arrival. It is assumed that the task τi
cannot generate a second job until at least pi units after the
time it generated the last job. Due to this, sometimes pi is
referred to as the period of i. We assume that all jobs can
start being generated at time 0. Each job generated by task
τi has computation (processing) time ci. There has been a
considerable amount of work on sporadic task systems.

In the most basic setting, there is a single machine to
scheduled the jobs on. In this setting, it is well known that
the scheduling algorithm Earliest-Deadline-First (EDF) can
feasibly schedule all of the jobs by their deadline, if any
algorithm can. Further, it is known that there is a feasibility test
for EDF. The feasibility test states that if the total utilization
of all of the tasks is at most 1 then EDF can schedule all
of the jobs [15]. The utilization of a task is ci

pi
and the total

utilization of the task set is
n∑

i=1

ci
pi

. Another popular algorithm

considered is Rate-Monotonic-Scheduling (RMS). The RMS
algorithm gives tasks priorities where the priority of a task
is the inverse of its period. The algorithm always schedules
the job for the tasks which is assigned the highest priority.
This algorithm is highly desirable because it assigns static
priorities which means that jobs for one task always have the
same relative priority when compared to jobs of other tasks.
For a task set of size n, it has been shown that if the total
utilization of the tasks is at most n(21/n − 1) ≥ ln 2 then
RMS will feasibly schedule all of the jobs by their deadlines
[15].

A more challenging scheduling environment is when the
tasks are required to be scheduled on a set of machines.
When scheduling tasks on multiple machines, the most basic
environment is the identical machine setting where the tasks
can be scheduled on m identical machines. Much previous
work in the multiple machine setting has focused on the case
where the tasks have to be partitioned across the machine. That
is, a partitioned scheduler always schedules all of the jobs of
any fixed task on exactly one machine. Partitioned scheduling
in the identical machine setting is challenging and, unlike the
single machine setting, it is known that it is strongly NP-Hard
to determine if a set of task set can be feasibly scheduled. If
EDF is used to schedule jobs on each individual machine, the
problem essentially becomes bin-packing.

Due to the inability to efficiently compute an exact feasi-
bility test in the multiple machine setting, previous work has
focused on approximate feasibility tests. A feasibility test is
said to be an α-approximation if the test returns ‘feasible’
when the task set can be scheduled on a set of processors of
speed an α factor faster. The test returns “infeasible” if no
scheduler can schedule the task set on a set of processors of
their original speed. There have been several works that have
considered approximate partitioned scheduling on identical
machines [4], [5], [7].

2016 IEEE International Parallel and Distributed Processing Symposium

1530-2075/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPS.2016.47

1013

Today, most commercial chip architectures have a collec-
tion of identical processors on them. However, it is widely
believed that future architectures will consist of heterogeneous
processors [17], [16], [14], [13]. Heterogeneous architectures
are viewed to be advantageous because they allow processors
of variable power to be used to processes specialized tasks.
These chips are thought to consist of a large number of
low power and lower performance processors for processing
less demanding jobs. Then there are also a smaller set of
high power and high efficiency processors to process more
demanding jobs. Such a system of heterogeneous processors
delivers significantly better performance for the same energy
cost, an advantage over a system of homogeneous processors.
Due to this, there has been an increasing interest in scheduling
on machines with heterogeneous processors [12], [10], [9], [1],
[6], [2], [3].

One of the most widely studied heterogeneous machine
settings is when the processors have different speeds. This is
known as the uniform or related machines setting. For this
setting it is known that there is a 3-approximate feasibility test
for partitioned scheduling of sporadic implicit deadline tasks
[2]. This algorithm compares against any schedule which is
allowed to migrate the jobs across the machines and, therefore,
additionally bounds the loss due to forcing the algorithm to be
partitioned as well. It is also known that the problem reduces to
bin packing when bins can have different sizes and this implies
a (1 + ε)-approximate feasibility test for any ε > 0 [11]. This
approximation algorithm compares against an adversary which
also must be partitioned. Unfortunately, the algorithm for the
(1 + ε)-approximation is quite complicated and the running
time depends exponentially on 1

ε making it difficult to use in
practice.

The work of [2] gave a simple and elegant feasibility
test for heterogenous machines, which is quite practical. The
algorithm first sorts the processors in increasing order of their
speed and then sorts the tasks in decreasing order of their
utilization. Then, in this order, the algorithm performs first-fit
packing. Each machine runs EDF for the tasks assigned to it.
If ever the algorithm is unable to assign a task to a machine
(the utilization of all machines exceeds 3 when attempting
to assign the task) then it is guaranteed that the task set is
infeasible on processors with the original speeds. The same
partitioning strategy has been used when each machine runs
RMS and a 3.41-approximate feasibility test was shown [3].

For this line of work, several questions loom. The previous
work has compared against an adversary which is not required
to be partitioned. This, perhaps, is an unfair advantage given
to the adversary. In particular, it is more revealing on the true
loss to compare to an adversary which is also forced to be
partitioned. The main question is, what can be shown when
the adversary is required to be partitioned? Can 3 be beaten
for EDF or 3.41 for RMS? Further, what is the best possible
approximation factor that can be shown for a natural algorithm
when the adversary is possibly non-partitioned?

Results: In this work, we present feasibility tests for parti-
tioned scheduling of sporadic tasks with implicit deadlines on
heterogenous processors. The focus of our algorithms is to
keep the algorithms fast, efficient and easily implementable.
Our work begins by improving on the results in [2] and [3]. In

particular, the main question we desire to answer, is what can
be shown for an efficient practical algorithm when compared
against an adversary which is required to be partitioned.

We begin by considering the same algorithm of [2] where
each machine runs EDF. We show the following improve
result.

Theorem I.1. There exists a 2-approximate partitioning feasi-
bility test that uses EDF on each machine and runs in O(nm)
time. The approximation ratio is relative to a partitioned
optimal solution.

Building on these result, we give a feasibility test when
Rate-Monotonic-Scheduling is used on each machine. Again
we consider a non-partitioned adversary.

Theorem I.2. There exists a 2.41-approximate partitioning
feasibility test that uses RMS on each machine and runs in
O(nm) time. The approximation ratio is relative to a possibly
non-partitioned optimal solution.

Then we try to answer whether or not the results of [2] and
[3] are the best possible when comparing against an optimal
solution which need not be partitioned. We are able to improve
on both of their results by doing a careful analysis, while
keeping the algorithm the same. First we consider when EDF
is used on each machine.

Theorem I.3. There exists a 2.98-approximate partitioning
feasibility test that uses EDF on each machine and runs in
O(nm) time. The approximation ratio is relative to a possibly
non-partitioned optimal solution.

Finally we consider the case where each machine is
required to use RMS when compared to a non-partitioned
adversary.

Theorem I.4. There exists a 3.34-approximate partitioning
feasibility test that uses RMS on each machine and runs in
O(nm) time. The approximation ratio is relative to a possibly
non-partitioned optimal solution.

Our results follow by a careful analysis of the standard
linear program (LP) for these scheduling problems. We note
that while our analysis relies heavily on the linear program,
one need not solve the LP for the feasibility test.

II. PRELIMINARIES

In the problem considered we have a task set τ with n tasks
τ1, τ2, . . . τn. Each task τi is sporadic with a relative deadline
(or period) of pi. The jobs generated by any task may start at
time 0. Each job for task τi has a hard deadline pi time steps
after its arrival. We let wi =

ci
pi

be the utilization of job τi if it
were scheduled on a unit speed machine. We will refer to this
as the utilization of a task. The jobs are to be scheduled on a set
M of m machines m1,m2, . . . ,mm of speeds s1, s2, . . . sm.
We assume the machines are sorted such that si ≤ si+1 for
all i. The tasks are to be assigned to each of the machines
and when a task is assigned to a machine then that machine
processes all of the jobs generated by that task. Our algorithm
will be given some speed augmentation α ≥ 1. In this case,
machine mi has speed αsi in the algorithm’s schedule.

1014

As observed in previous work [2], a given task system
can only be feasibly scheduled on a set of machines if there
is a feasible solution to the following natural linear program
for the problem. There is a variable ui,j for each job which
is intuitively the amount of task i’s utilization assigned to
machine j. The value of

ui,j

wi
denotes the fraction of task i’s

jobs that are assigned to machine j.

∀i ∈ {1, 2, . . . , n} :
m∑
j=1

ui,j =
ci
pi

(1)

∀i ∈ {1, 2, . . . , n} :
m∑
j=1

ui,j

sj
≤ 1 (2)

∀j ∈ {1, 2, . . . ,m} :
n∑

i=1

ui,j

sj
≤ 1 (3)

∀i ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . ,m} : ui,j ≥ 0 (4)

The first constraint ensures that all tasks are scheduled.
The second constraint ensures that no job for the same task is
scheduled on more than one machine simultaneously. Finally
the third constraint ensures that each machine can process all of
the jobs assigned to it. For our analysis, we will use compare
to this linear program to determine if a feasible schedule is
possible or not. Note that this LP may schedule tasks on
multiple machines and is only feasible if some scheduler can
feasibly assign the task set allowing migration of jobs between
machines. We note that we do not need to explicitly solve the
LP, but rather use it only for the analysis.

We now state a useful lemma which was shown in [2], [3].
This lemma helps to bound the total amount tasks must be
processed on some of the ‘faster’ machines in any feasibly LP
formation. The full proof can be found in [2] and it follows
immediately by the LP formulation.

Lemma II.1 ([2]). Fix any α ≥ 1 and any feasible solution
u to the LP . Consider any task τi and let machine k be
any machine where wi ≤ αsk+1. Then it is the case that
wi ≤ α

α−1

∑m
j=k+1 ui,j .

To analyze our algorithm the following well known theo-
rems about EDF and RMS will be useful.

Theorem II.2 ([15]). A set of tasks S can be feasibly sched-
uled on a machine of speed s by EDF if

∑
τi∈S wi ≤ s.

Theorem II.3 ([15]). A set of tasks S can be feasibly
scheduled on a machine of speed s by RMS if

∑
τi∈S wi ≤

|S|(2 1
|S| − 1)s. In particular, S can be feasibly scheduled if∑

τi∈S wi ≤ (ln 2)s.

III. ALGORITHMS

We now describe our algorithm and say it has some speed
augmentation α ≥ 1. The algorithm uses any algorithm
A to schedule tasks that are assigned to a machine. This
algorithm will be set to EDF or RMS in the later sections. The
algorithm sorts the tasks τ1, τ2, . . . τn such that wi ≥ wi+1.
The algorithm then sorts the machines m1,m2, . . . ,mm in
increasing order of their speeds. Then the algorithm runs first
fit. A task τj can be feasibly scheduled on a machine of

speed s that has been assigned a set S of tasks when A is
EDF if

∑
τi∈S∪{τj} wi ≤ αs. Similarly, a task τj can be

feasibly scheduled on a machine of speed s that has been
assigned a set S of tasks when A is RMS if

∑
τi∈S∪{τj} wi ≤

(|S| + 1)(2
1

|S|+1 − 1)αs. In either case, if there is no such
machine the algorithm declares failure. Note that this algorithm
runs in O(n∗ log n+nm) time, since tasks and machines also
need to be sorted.

1: Sort the tasks tasks τ1, τ2, . . . τn such that wi ≥
wi+1

2: Sort the machines m1,m2, . . . ,mm such that si ≤
si+1

3: for i = 1 to n do
4: Assign τi to the machine mj for the smallest j

such that the jobs assigned to mj pass a single
machine feasibility test.

5: end for

In the following section, we analyze this algorithm when
A is EDF and then the following section when A is RMS.

IV. EDF ON RELATED MACHINES

In this section we analyze the algorithm given in the
previous section when A is set to be EDF. In this proof we
will first define four constants cs, cf , df , ff whose values will
be given at a later point. We will assume that our algorithm
is given speed augmentation α ≥ 1. The value of α depends
on whether we are comparing against the LP, a non-partitioned
adversary, or a partitioned adversary. When the adversary is the
LP, we set α = 2.98 and, if it is partitioned, we set α = 2. In
the algorithm’s schedule each machine mi has speed αsi. The
machine has speed si in the the optimal schedule we compare
against.

Notice that if our algorithm does not declare failure, then
all the tasks can be feasible scheduled due to Theorem II.2.
Thus, we only need to show that if the algorithm declares
failure then the tasks cannot be feasibly scheduled by the
adversary without speed augmentation. As mentioned, we
will consider both an adversary scheduler which is either an
arbitrary schedule or partitioned. For the the arbitrary schedule
we compare against the LP given in the previous section and
show it must be infeasible. For the partitioned scheduler, we
only need to argue that any partitioned scheduler will have
some machine of speed s whose utilization is greater than s
implying the schedule is infeasible.

Consider any set of tasks and assume the algorithm declares
failure. Let the task τn be the task for which the algorithm fails.
Notice that we can assume that the only tasks are those already
scheduled by the algorithm and the task τn. Let Si be the
set of tasks assigned to machine mi by the algorithm. Notice
that since that algorithm declared failure, for any machine
mi it is the case that

∑
τi∈Si∪{τn} wi > αs by definition of

the algorithm. That is, we cannot feasible assign τn to any
machine.

For analysis we order the machines m1 . . .mm such that
the speed of the machines obey s1 ≤ s2 ≤ . . . ≤ sm. We
define the fast machines to be the set Mf where any machine
has speed at least sf where we define αsf = wncs using the

1015

first constant. Similarly, we define the slow machines to be the
set Ms where any machine has speed less than ss where αss =
wn. The machines with speed between ss and sf we group as
the medium machines Mm. Clearly M = Mf∪Mm∪Ms where
M is the set of all machines. Note that because of the ordering
of the machines by speed, these sets are contiguous. Therefore
{m1, . . . ,mk}, {mk+1, . . . ,mj−1} and {mj , . . . ,mm} are the
members of the slow, medium, and fast machines respectively.

Now we are ready to divide our proof into two cases
depending on whether the aggregate speed of the fast machines
is large or small compared to the overall total speed of all
machines. The bulk of the analysis is for the case where the
adversary is non-partitioned, but along the way we will be able
to bound the performance against a partitioned scheduler.

A. Powerful Fast Machines

In this section, we will show that the task set can-
not be feasible for any algorithm if

∑
m�∈Mf

αs� >
1
cf

∑
m�∈(Mm∪Mf)

αs�. This is effectively the case where the

aggregate speed of the fast machines is large compared to the
total speed of all machines. For this first section the initial
two constants are used heavily. The values of the two will be
established later to be cs = 2.868 and cf = 28.412. The rest
of the section will be devoted to proving the main lemma:

Lemma IV.1. If
∑

m�∈Mf
αs� > α

cf

∑
m�∈(Mm∪Mf)

s� and
our algorithm declares failure then there is no feasible solution
to the LP when α ≥ 2.98.

To simplify notation we will define a function S(M ′) =∑
m�∈M ′ s� on a set of machines is the sum of the speed

of all the machines in M ′. Now assume for the sake of
contradiction that the lemma is not true, that is, suppose
αS(Mf) > α

cf
S(Mm ∪Mf) and there is a feasible solution

to the LP.

In our algorithm, τn cannot be assigned to any of the
machines in Ms even if they have no tasks because those
machines are too slow (recall the tasks are partitioned in our
algorithm). We now consider the other two sets.

Medium Machines: Knowing that the algorithm reported
failure, there is at least one task on each machine in Mm,
otherwise the algorithm could assign τn to an empty machine
m� ∈Mm with speed αs� ≥ wi. Furthermore, consider a spe-
cific machine m� ∈ Mm. We argue that

∑
τi∈S�

wi ≥ 1
2αs�.

Suppose this is not true, then wn > 1
2αs� since the algorithm

fails to assign τn to m�. However, recall that all the assigned
tasks τi have wi ≥ wn and that there is at least one task
assigned to m�. Therefore, m� has a task assigned to it. This
is a contradiction since wi ≥ wn ≥ 1

2αs�. This is true for every
machine in Mm therefore

∑
m�∈Mm

∑
τi∈S�

wi ≥ α
2S(Mm).

Fast Machines: By definition, these machines have speed at
least αwncs. Again we consider a machine m� ∈ Mf . We
will show that

∑
τi∈S�

wi ≥ (1 − 1
cs
)αs�. For the sake of

contradiction, if this is not so, then notice that
∑

τi∈S�
wi ≤

(1− 1
cs
)αs�. However, then the algorithm could feasibly assign

task τn to machine m�, a contradiction. This is again true

for every machine in Mf so therefore
∑

m�∈Mf

∑
τi∈S�

wi ≥
(1− 1

cs
)αS(Mf).

Together, the previous two arguments imply.

Lemma IV.2.
∑j

�=k+1
α
2 s� +

∑m
�=j(1− 1

cs
)αs� <

∑n−1
i=1 wi

Proof: The lemma directly follows from combining the
analysis of the two groups.

Now we are ready to relate the utilization of the jobs to
the aggregate speeds of the machines. Note that the following
corollary holds true even if the fast group contains very few
or even no machines (i.e j = m). The corollary will be useful
for the other case where there are not many fast machines.

Corollary IV.3. α
2

∑m
�=k+1 s� ≤

∑n−1
i=1 wi

Proof: Note that since cs > 2 this corollary is straight-
forward given the previous lemma.

Now before we prove Lemma IV.1, we can show The-
orem I.1. The previous corollary shows that the sum of
the speeds of the medium and fast machines are less than∑n−1

i=1 wi. We know our algorithm cannot schedule any of the
tasks on a machine m� where � ≤ k because the utilization
would be greater than αs�. In this case, a partitioned adversary
cannot as well. Thus, by setting α = 2, the previous corollary
implies that a partitioned advisory also cannot schedule the
tasks and we get Theorem I.1. Note that we will choose a
larger α when considering a non-partitioned adversary.

Proof of Lemma IV.1 (main) We will arrive at a contradiction
by proving that the tasks which are assigned before τn will
necessary cause there to be no solution to the LP. We set
α ≥ 2.98 and we use the analysis of the previous two sets
of machines to bound the utilization requirements of the tasks.
Recall by assumption that the fast machines have more than a
fraction 1

cf
of the total speed of the medium and the fast sets

together. Also note that the speed of the machines in the LP
are an 1

α factor slower than the algorithm.

n−1∑
i=1

wi >

j∑
�=k+1

1

2
αs� +

m∑
�=j

(1− 1

cs
)αs� (Lemma IV .2)

≥
m∑

�=k+1

1

2
αs� +

m∑
�=j

(
1

2
− 1

cs
)αs�

>
1

2

m∑
�=k+1

αs� +
1

cf
(
1

2
− 1

cs
)

m∑
�=k+1

αs�

n−1∑
i=1

wi >

(
1

2
+

1

2cf
− 1

cscf

) m∑
�=k+1

αs�

We then invoke Lemma II.1 on the left side of the equation
for any feasible solution to the LP u.

1016

n−1∑
i=1

α

α− 1

m∑
�=k+1

ui,� > α

(
1

2
+

1

2cf
− 1

cscf

) m∑
�=k+1

s�

1

α− 1

n−1∑
i=1

m∑
�=k+1

ui,� >

(
1

2
+

1

2cf
− 1

cscf

) m∑
�=k+1

s�

n−1∑
i=1

m∑
�=k+1

ui,� > (α− 1)

(
1

2
+

1

2cf
− 1

cscf

) m∑
�=k+1

s�

From the choice of constants we obtain that (α −
1)

(
1
2 + 1

2cf
− 1

cscf

)
≈ 1.005 > 1 which implies:

n−1∑
i=1

m∑
�=k+1

ui,� >

m∑
�=k+1

s� (5)

This requires that for some machine,
∑n−1

i=1 ui,� > s′�. Rewrit-

ing this contradicts one of the LP conditions:
∑n−1

i=1
ui,�

s′�
> 1.

This directly means that no scheduling algorithm can feasibly
schedule the set of tasks. �

B. Powerful Slow Machines

In this section, we will show that the task set can-
not be feasible for any algorithm if

∑
m�∈Mf

αs� ≤
1
cf

∑
m�∈(Mm∪Mf)

αs�. This is effectively the case where the

aggregate speed of the fast machines is small compared to
the total speed of all machines. In this section two more
constants are used, fw and ff . We will later establish that
fw = 0.811 and ff = 0.125. Importantly we have 0 ≤ fw ≤ 1
and 0 ≤ ff ≤ 1. Recall we have defined the notion of fast
machines in our algorithm’s schedule. Note that such a fast
machine in the LP only has 1

α of the speed. The rest of this
section will be devoted to proving the following main lemma.

Lemma IV.4. If
∑

m�∈Mf
αs� ≤ 1

cf

∑
m�∈(Mm∪Mf)

αs� and
our algorithm fails in scheduling the task set, then the LP is
infeasible.

Let τ be the set of all tasks. Partition τ such that τ =
Sf ∪ Ss where a task τi is in Ss if for that task less than ff
fraction of the task is processed by the fast machines LP. In
other words,

∑
m�∈Mf

ui,� < ffwi.

Lemma IV.5.
∑

τi∈Ss
wi > fw

∑
τi∈T wi

Proof: To simplify notation define W (S) =
∑

τi∈S wi

for any set S of tasks. We can rewrite the lemma as W (Ss) >
fwW (T). Then, for the sake of contradiction, suppose that
W (Ss) ≤ fwW (T). By definition of Ss we know that Sf =
T \ Ss and so W (Sf) > W (T) −W (Ss) = (1 − fw)W (T).

Therefore
∑n

i=1

∑
m�∈Mf

ui,� is at least:

ffW (Sf) > ff (1− fw)W (T)

>
ff (1− fw)

2

m∑
�=k+1

αs� (Corollary IV .3)

≥ cfff (1− fw)

2

∑
m�∈Mf

αs� (Lemma IV .1)

≥ αcfff (1− fw)

2

∑
m�∈Mf

s�

Note that
αcfff (1−fw)

2 > 1 which violates a constraint in the
LP, a contradiction to there being a feasible solution to the LP.

Consider any task τi ∈ Ss. Let fi,m =
∑

m�∈Mm
ui,� be

the fraction of the task which is processed on machines in
Mm. Recall that the medium machines have speed at most αsf
while the slow machines have speed at most αss. Our goal is
to bound the amount τi is processed on the slow machines in
the LP. First we derive an inequality based on the LP.

Lemma IV.6. For any task τi where i 	= n we have
(1−fi,m−ff)

ss
wi +

fi,m
sf

wi ≤ 1.

Proof: From the LP conditions it is true that ∀i ∈
{1, 2, . . . , n} : ∑m

�=1
ui,�

s�
≤ 1. We rearrange the LP condition

to produce:

m∑
�=1

ui,�

s�
≤ 1

∑
m�∈Ms

ui,�

s�
+

∑
m�∈Mm

ui,�

s�
+

∑
m�∈Ms

ui,�

s�
≤ 1

1

ss

∑
m�∈Ms

ui,� +
1

sf

∑
m�∈Mm

ui,� ≤ 1

By definition,
∑

m�∈Ms
ui,� ≥ (1−fi,m−ff)wi and wifi,m =∑

m�∈Mm
ui,�. Substitution of these terms for the summations

we obtain the lemma.

Now we can bound fi,m.

Lemma IV.7. For any task τi where i 	= n we have fi,m ≥
1+αff−α

α(1
cs
−1)

.

Proof: Recall that αss = wi and αsf = wics. From
substitution into Lemma IV.6 we obtain:

α(1− fi,m − ff) +
αfi,m
cs

≤ 1

α− αfi,m − αff + α
fi,m
cs

≤ 1

αfi,m(
1

cs
− 1) ≤ 1 + αff − α

fi,m ≥ 1 + αff − α

α(1
cs
− 1)

[Since cs > 1]

Proof of Lemma IV.4 (main) We have that
∑

τi∈T wi >
1
2

∑m
�=k+1 s� ≥ 1

2

∑
m�∈Mm

s� (Corollary IV.3). Now consider

1017

all the tasks in Ss. By Lemma IV.5 their total utilization is
at least fw

∑
i∈T wi, hence

∑
τi∈Ss

wi > fw
2

∑
m�∈Mm

s�.
We have defined that the LP does at least a fi,m fraction
of each of these tasks on the medium machines. Therefore,
using Lemma IV.7 we bound the amount of work the LP
must do on the medium machines by fi,m(

∑
τi∈Ss

wi) >
fi,mfw

2

∑
m�∈Mm

αs� >
∑

m�∈Mm
s� which is a contradiction.

�

Thus, Lemmas IV.2 and IV.5 prove Theorem I.3.

V. RATE-MONOTONIC ON RELATED MACHINES

In this section we analyze the algorithm when A is set to be
RMS. This means our algorithm uses RMS on each machine
to decide if a task set is schedulable or not. According to
the algorithm, the tasks are sorted in order of non-increasing
utilization, the machines are sorted in order of increasing speed
and tasks are assigned to the first machine which passes the
feasibility test. The performance of our algorithm is given by
Theorem I.4, which is the main theorem for RMS. This section
is devoted to proving the main theorem, along the way we will
also prove Theorem I.2.

For the sake of contradiction we assume the main theorem
is false. This means that for some task set τ , our algorithm
declares failure on the heterogeneous platform, despite there
existing a solution for either partitioned scheduler or the LP.

When our algorithm declares failure for a given task set
τ , then there must have been a particular task τn caused the
failure. All tasks with index greater than τn do not affect
the schedulability of τn and therefore we remove them from
consideration.

Similar to the proof on EDF, we introduce four constants,
cs, cf , df , ff whose values will be given at a later point.
We group the machines into the slow, medium and fast
groups. Let machines {m1, . . . ,mk} be the slow machines
with speed less than ss where αss = wn. Further, the fast
machines {mj , . . . ,mm} are the one with speed at least sf ,
with αsf = wncs. The medium machines are the machines
{mk+1, . . . ,mj−1} which have speeds between that of the
slow and fast groups.

We again divide our analysis into two cases depending on
the aggregate speed of the fast machines.

A. Fast Machines

In this section, we will show that the task set can-
not be feasible for any algorithm if

∑
m�∈Mf

αs� >
1
cf

∑
m�∈(Mm∪Mf)

αs�. This is when the aggregate speed of

the fast machines is large. The value of the constants used in
this section will be established as cs = 2.00 and cf = 13.25.
This will be formally stated in the following lemma.

Lemma V.1. If
∑

m�∈Mf
αs� > α

cf

∑
m�∈(Mm∪Mf)

s� and
our algorithm declares failure then there is no feasible solution
to the LP when α ≥ 3.34.

We will prove this lemma by contradiction, that is, suppose
there still is a feasible solution to the LP given the condition
in the lemma. For contradiction our algorithm still failed. We

will prove some facts about the load on the fast and medium
machines.

Lemma V.2. If our algorithm declares failure, then for any
fast machine ml with assigned task set Sl, the total utilization
of the tasks is at least

∑
τi∈Sl

wi > (ln(2)− 1
cs
)αsf .

Proof: Consider a machine, ml which is fast. Because the
algorithm failed, we know that task τn cannot be assigned to
a machine ml. Let Sl be the set of tasks already assigned on
ml. Now, using the rate-monotonic bound we have

wn +
∑
τi∈Sl

wi > (nj + 1)(2
1

nj+1 − 1)αsf ≥ ln(2)αsf

For ease of notation consider k = ln(2)− 1
cs

. For contradiction,
let us assume that the fast machines are utilized less than kαsf .
Consider the total utilization of tasks on machine ml if τn were
to be added.

wn +
∑

τiinSl

wi < wn + kαsf =
1

cs
sf + (ln(2)− 1

cs
)αsf

= ln(2)αsf

This is a contradiction with the result given by the rate-
monotonic bound.

Lemma V.3. If our algorithm declares failure, then all
machines with at least αss-speed are loaded to at least
(
√
2− 1)αss

Proof: Since our algorithm declared failure, therefore it
could not fit task τn on any of machines with speed at least
αss. Consider any machine m with speed s for which the
algorithm could not assign to and assume for contradiction
that the total utilization on the machine is less than (

√
2−1)s.

Recall that we know s ≥ αss, therefore, wn < s. Hence,
for our algorithm to have declared failure, there must have
been at least one task already assigned to m as otherwise τn
can be assigned to m. Suppose that there are k ≥ 1 tasks
already assigned to m, now we consider assigning task τn to
m. Note that the total load on the machine is currently less
than (

√
2− 1)s.

Since there are k tasks already on the machine with a total
utilization of less than (

√
2−1)s, there is at least one task has

utility of no more than
(
√
2−1)s
k . We know that τn’s utilization

is bounded by this task due to the algorithm’s ordering. Now,
according to II.3, RMS on a single machine should not fail

unless the total utilization is at least (k+1)(2
1

k+1 − 1), recall
that there are k + 1 tasks on the machine if τn were to be
assigned to it. Therefore, we compare the total utilization on
m after assigning task τn to m to this quantity.

(
√
2− 1)s+

(
√
2− 1)s

k
=

k + 1

k
(
√
2− 1)

≤ (k + 1)(2
1

k+1 − 1)

Which is true for all k ≥ 1. Therefore, it is possible for
the algorithm to assign the task to machine m, and this is
a contradiction to our algorithm declaring failure.

Before moving on to prove the main lemma of this section,
we first show Theorem I.2. We know our algorithm cannot

1018

schedule any of the tasks on a machine m� where � ≤ k
because the utilization would be greater than αs�. In this
case, a partitioned adversary cannot as well. Thus, by setting
α = 1√

2−1
≈ 2.41, the previous corollary implies that a

partitioned advisory also cannot schedule the tasks and we
get Theorem I.2. Note that we will choose a larger α when
considering a non-partitioned adversary.

Now we combine the bound on the two groups in order to
prove the main lemma of this subsection.

Proof of Lemma V.1 We will arrive at a contradiction by
proving that the tasks which are assigned before task τn will
necessary cause there to be no solution to the LP. We set
α ≥ 3.33 and we use the analysis of the previous two sets
of machines to bound the utilization requirements of the tasks.
Recall by assumption that the fast machines have more than a
fraction 1

cf
of the total speed of the medium and the fast sets

together. Also note that the speed of the machines in the LP
are an 1

α factor slower than the algorithm.

n−1∑
i=1

wi >

j∑
�=k+1

(
√
2− 1)αs� +

m∑
�=j

(ln(2)− 1

cs
)αs�

> (
√
2− 1)

m∑
�=k+1

αs� +
1

cf
(ln(2)− 1

cs
)

m∑
�=k+1

αs�

n−1∑
i=1

wi >

(√
2− 1 +

1

cf
(ln(2)− 1

cs
)

) m∑
�=k+1

αs�

We then invoke Lemma II.1 on the left side of the equation
for any feasible solution to the LP u.

n−1∑
i=1

α

α− 1

m∑
�=k+1

ui,� > α

(√
2− 1 +

1

cf
(ln(2)− 1

cs
)

) m∑
�=k+1

s�

1

α− 1

n−1∑
i=1

m∑
�=k+1

ui,� >

(√
2− 1 +

1

cf
(ln(2)− 1

cs
)

) m∑
�=k+1

s�

n−1∑
i=1

m∑
�=k+1

ui,� >

(α− 1)

(√
2− 1 +

1

cf
(ln(2)− 1

cs
)

) m∑
�=k+1

s�

From the choice of constants we obtain that (α −
1)

(√
2− 1 + 1

cf
(ln(2)− 1

cs
)
)
≈ 1.004 > 1 which implies:

n−1∑
i=1

m∑
�=k+1

ui,� >
m∑

�=k+1

s�

This requires that for some machine,
∑n−1

i=1 ui,� > s′�. Rewrit-

ing this contradicts one of the LP conditions:
∑n−1

i=1
ui,�

s′�
> 1.

This directly means that no scheduling algorithm can feasibly
schedule the set of tasks. �

B. Slow Machines

In this section, we will show that the task set can-
not be feasible for any algorithm if

∑
m�∈Mf

αs� ≤
1
cf

∑
m�∈(Mm∪Mf)

αs�. This is effectively the case where the

aggregate speed of the fast machines is small compared to the
total speed of all machines. In this section two more constants
are used, fw and ff . We will later establish that fw = 0.72
and ff = 0.1956. Importantly we have 0 ≤ fw ≤ 1 and
0 ≤ ff ≤ 1. Recall we have defined the notion of fast
machines in our algorithm’s schedule. Note that such a fast
machine in the LP only has 1

α of the speed. The rest of this
section will be devoted to proving the following main lemma.

Lemma V.4. If
∑

m�∈Mf
αs� ≤ 1

cf

∑
m�∈(Mm∪Mf)

αs� and
our algorithm fails in scheduling the task set, then the LP is
infeasible.

We will now argue about the solution of the LP. Let τ be
the set of all tasks. Partition τ such that τ = Sf ∪ Ss where
a task τi is in Ss if for that task less than ff fraction of the
task is processed by the fast machines LP. In other words,∑

m�∈Mf
ui,� < ffwi.

Lemma V.5.
∑

τi∈Ss
wi > fw

∑
τi∈T wi

Proof: To simplify notation define W (S) =
∑

τi∈S wi

for any set S of tasks. We can rewrite the lemma as W (Ss) >
fwW (T). Then, for the sake of contradiction, suppose that
W (Ss) ≤ fwW (T). By definition of Ss we know that Sf =
T \ Ss and so W (Sf) > W (T) −W (Ss) = (1 − fw)W (T).
Therefore

∑n
i=1

∑
m�∈Mf

ui,� is at least:

ffW (Sf) > ff (1− fw)W (T)

> (
√
2− 1)ff (1− fw)

m∑
�=k+1

αs� (Lemma V .3)

≥ (
√
2− 1)cfff (1− fw)

∑
m�∈Mf

αs�

≥ (
√
2− 1)αcfff (1− fw)

∑
m�∈Mf

s�

Note that (
√
2−1)αcfff (1−fw) � 1.003 > 1 which violates

a constraint in the LP, a contradiction to there being a feasible
solution to the LP.

NOTE: Below is an argument only on the LP, so it is the
same in both RMS and EDF.

Now we argue about the maximum amount of processing
a slow machine can do in the LP. Consider any task τi ∈ Ss.
Let fi,m =

∑
m�∈Mm

ui,� be the fraction of the task which
is processed on machines in Mm. Recall that the medium
machines have speed at most αsf while the slow machines
have speed at most αss. Our goal is to bound the amount task
τi is processed on the slow machines in the LP. First we derive
an inequality based on the LP.

Lemma V.6. For any task τi where i 	= n we have
(1−fi,m−ff)

ss
wi +

fi,m
sf

wi ≤ 1.

Proof: From the LP conditions it is true that ∀i ∈
{1, 2, . . . , n} : ∑m

�=1
ui,�

s�
≤ 1. We rearrange the LP condition

1019

to produce:

m∑
�=1

ui,�

s�
≤ 1

∑
m�∈Ms

ui,�

s�
+

∑
m�∈Mm

ui,�

s�
+

∑
m�∈Ms

ui,�

s�
≤ 1

1

ss

∑
m�∈Ms

ui,� +
1

sf

∑
m�∈Mm

ui,� ≤ 1

By definition,
∑

m�∈Ms
ui,� ≥ (1−fi,m−ff)wi and wifi,m =∑

m�∈Mm
ui,�. Substitution of these terms for the summations

we obtain the lemma.

Now we can bound fi,m.

Lemma V.7. For any task τi where i 	= n we have fi,m ≥
1+αff−α

α(1
cs
−1)

.

Proof: Recall that αss = wi and αsf = wics. From
substitution into Lemma V.6 we obtain:

α(1− fi,m − ff) +
αfi,m
cs

≤ 1

α− αfi,m − αff + α
fi,m
cs

≤ 1

αfi,m(
1

cs
− 1) ≤ 1 + αff − α

fi,m ≥ 1 + αff − α

α(1
cs
− 1)

[Since cs > 1]

Proof of Lemma V.4 (main) We have that
∑

τi∈T wi > (
√
2−

1)
∑m

�=k+1 s� ≥ (
√
2− 1)

∑
m�∈Mm

s�. Now consider all the
tasks in Ss. By Lemma V.5 their total utilization is at least
fw

∑
i∈T wi, hence

∑
τi∈Ss

wi > (
√
2 − 1)fw

∑
m�∈Mm

s�.
We have defined that the LP does at least a fi,m fraction
of each of these tasks on the medium machines. Therefore,
using Lemma V.7 we bound the amount of work the LP
must do on the medium machines by fi,m(

∑
τi∈Ss

wi) >

(
√
2 − 1)fi,mfw

∑
m�∈Mm

αs� >
∑

m�∈Mm
s� which is a

contradiction. �

Thus, Lemmas V.1 and V.4 prove Theorem I.4.

REFERENCES

[1] S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for
weighted flow-time explained by dual fitting. In SODA, pages 1228–
1241, 2012.

[2] Björn Andersson and Eduardo Tovar. Competitive analysis of parti-
tioned scheduling on uniform multiprocessors. In 21th International
Parallel and Distributed Processing Symposium (IPDPS 2007), Pro-
ceedings, 26-30 March 2007, Long Beach, California, USA, pages 1–8,
2007.

[3] Björn Andersson and Eduardo Tovar. Competitive analysis of static-
priority partitioned scheduling on uniform multiprocessors. In 13th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA 2007), 21-24 August 2007, Daegu,
Korea, pages 111–119, 2007.

[4] Sanjoy K. Baruah and Nathan Fisher. The partitioned multiprocessor
scheduling of deadline-constrained sporadic task systems. IEEE Trans.
Computers, 55(7):918–923, 2006.

[5] Sanjoy K. Baruah and Nathan Fisher. The partitioned dynamic-priority
scheduling of sporadic task systems. Real-Time Systems, 36(3):199–
226, 2007.

[6] Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A
competitive algorithm for minimizing weighted flow time on unrelated
machines with speed augmentation. In Symposium on Theory of
Computing, pages 679–684, 2009.

[7] Jian-Jia Chen and Samarjit Chakraborty. Resource augmentation bounds
for approximate demand bound functions. In Proceedings of the 32nd
IEEE Real-Time Systems Symposium, RTSS 2011, Vienna, Austria,
November 29 - December 2, 2011, pages 272–281, 2011.

[8] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM Comput. Surv., 43(4):35, 2011.

[9] Naveen Garg and Amit Kumar. Minimizing average flow-time : Upper
and lower bounds. In FOCS, pages 603–613, 2007.

[10] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy, Benjamin
Moseley, and Kirk Pruhs. Scheduling heterogeneous processors isn’t
as easy as you think. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 1242–1253, 2012.

[11] Dorit S. Hochbaum and David B. Shmoys. A polynomial approxi-
mation scheme for scheduling on uniform processors: Using the dual
approximation approach. SIAM J. Comput., 17(3):539–551, 1988.

[12] Sungjin Im and Benjamin Moseley. An online scalable algorithm for
minimizing �k-norms of weighted flow time on unrelated machines. In
ACM-SIAM Symposium on Discrete Algorithms, 2011.

[13] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, and K.I. Farkas.
Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance. In Computer Architecture, 2004. Proceedings.
31st Annual International Symposium on, pages 64 – 75, june 2004.

[14] Rakesh Kumar, Dean M. Tullsen, and Norman P. Jouppi. Core
architecture optimization for heterogeneous chip multiprocessors. In
PACT ’06: Proceedings of the 15th international conference on Parallel
architectures and compilation techniques, pages 23–32, New York, NY,
USA, 2006. ACM.

[15] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. J. ACM, 20(1):46–61,
1973.

[16] R. Merritt. CPU designers debate multi-core future. EE Times, Feb.
2010.

[17] Tomer Y. Morad, Uri C. Weiser, Avinoam Kolodny, Mateo Valero,
and Eduard Ayguade. Performance, power efficiency and scalability of
asymmetric cluster chip multiprocessors. IEEE Comput. Archit. Lett.,
5:4–, January 2006.

1020

