
How to Manage High-Bandwidth Memory Automatically
Rathish Das

Stony Brook University

radas@cs.stonybrook.edu

Kunal Agrawal

Washington University in St. Louis

kunal@wustl.edu

Michael A. Bender

Stony Brook University

bender@cs.stonybrook.edu

Jonathan Berry

Sandia National Laboratories

jberry@sandia.gov

Benjamin Moseley

Carnegie Mellon University

moseleyb@andrew.cmu.edu

Cynthia A. Phillips

Sandia National Laboratories

caphill@sandia.gov

ABSTRACT
This paper develops an algorithmic foundation for automated man-

agement of the multilevel-memory systems common to new super-

computers. In particular, the High-Bandwidth Memory (HBM) of

these systems has a similar latency to that of DRAM and a smaller

capacity, but it has much larger bandwidth. Systems equipped with

HBM do not fit in classic memory-hierarchy models due to HBM’s

atypical characteristics.

Unlike caches, which are generally managed automatically by

the hardware, programmers of some current HBM-equipped super-

computers can choose to explicitly manage HBM themselves. This

process is problem specific and resource intensive. Vendors offer

this option because there is no consensus on how to automatically

manage HBM to guarantee good performance, or whether this is

even possible.

In this paper, we give theoretical support for automatic HBM

management by developing simple algorithms that can automat-

ically control HBM and deliver good performance on multicore

systems. HBM management is starkly different from traditional

caching both in terms of optimization objectives and algorithm

development. Since DRAM and HBM have similar latencies, mini-

mizing HBMmisses (provably) turns out not to be the right memory-

management objective. Instead, we directly focus on minimizing

makespan. In addition, while cache-management algorithms must

focus on what pages to keep in cache; HBM management requires

answering two questions: (1) which pages to keep in HBM and (2)

how to use the limited bandwidth from HBM to DRAM. It turns out

that the natural approach of using LRU for the first question and

FCFS (First-Come-First-Serve) for the second question is provably

bad. Instead, we provide a priority based approach that is simple, ef-

ficiently implementable and 𝑂 (1)-competitive for makespan when

all multicore threads are independent.

CCS CONCEPTS
• Theory of computation → Scheduling algorithms; Pack-
ing and covering problems; Online algorithms; Caching and

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of the United States

government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only.

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6935-0/20/07. . . $15.00

https://doi.org/10.1145/3350755.3400233

paging algorithms; Parallel algorithms; Shared memory al-
gorithms; • Computer systems organization → Parallel ar-
chitectures; Multicore architectures.

KEYWORDS
Paging, High-bandwidth memory, Scheduling, Multicore paging,

Online algorithms, Approximation algorithms.

ACM Reference Format:
Rathish Das, Kunal Agrawal, Michael A. Bender, Jonathan Berry, Benjamin

Moseley, and Cynthia A. Phillips. 2020. How to Manage High-Bandwidth

Memory Automatically. In Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA ’20), July 15–17, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3350755.3400233

1 INTRODUCTION
Enabled by the recent innovations in 3D die-stacking technology,

vendors have begun implementing a new approach for improving

memory performance by increasing the bandwidth between on-

chip cache and off-package DRAM [34, 39]. The approach is to bond

memory directly to the processor package where there can be more

parallel connections between the memory and caches, enabling a

higher bandwidth than can be achieved using older technologies.

Throughout the rest of this paper, we refer to the on-package 3D

memory technologies as high-bandwidth memory or HBM .
1

The HBM cannot replace DRAM (“main memory”) since it is

generally about 5 times smaller than DRAM due to constraints

such as heat dissipation, as well as economic factors. For example,

current HBM sizes range from 16 gigabytes per compute node (the

Department of Energy’s “Trinity” [26]) to 96 gigabytes per compute

node (the Department of Energy’s “Summit” [47]), several times

smaller than the per-node sizes of DRAM on those systems (96 GB

and 512 GB, respectively). HBM therefore augments the existing

memory hierarchy by providing memory that can be accessed with

up to 5x higher bandwidth than DDR4, today’s DRAM technology,

when feeding a CPU [1], and up to 20x higher bandwidth when

feeding a GPU [47], but with latency similar to DDR4.

As the number of cores on a chip has grown in the past two

decades, the relative memory capacity, defined as memory capacity

divided by available gigaflops, has decreased by more than 10x [35].

Thus, processors are becoming more starved for data. HBM, with

its improved ability to feed processors, provides an opportunity to

overcome this bottleneck, if application software can use it.

1
Hardware vendors use various brand names such as High-Bandwidth Memory (HBM),

Hybrid Memory Cube (HMC), and MCDRAM for this technology.

https://doi.org/10.1145/3350755.3400233
https://doi.org/10.1145/3350755.3400233
https://doi.org/10.1145/3350755.3400233

HBM has a critical limitation besides its constrained size: since it

uses the same technology as DRAM, it offers little or no advantage in

latency. Therefore, the HBM is not designed to accelerate memory-

latency-bound applications, only memory-bandwidth-bound ones.
2

How HBM is managed. Intel’s Knights Landing processors [46]
on Trinity can boot into multiple modes. In “cache mode,” the HBM

is system-controlled and is integrated into the memory hierarchy

as the “last level of cache.” In “flat mode,” the programmer con-

trols HBM by explicitly copying data in and out of HBM, trying to

squeeze as much performance from the system as possible. Hybrid

mode splits the HBM into one “flat” piece and one “cache” piece.

This proliferation of HBM modes exists because there is no

consensus on how to automatically manage HBM efficiently, or

whether this is even possible.

On the other hand, on most systems, on-chip cache is automati-

cally managed by the hardware and works well enough that applica-

tion programmers can treat the cache hierarchy a a black box. They

can also assume sufficient support from libraries of cache-aware

and cache-oblivious algorithms. Ideally, we would like a system

controlled HBM to also work well-enough to free the programmer

from the need to manage it.

However, managing the HBM is not identical to managing caches

and introduces complications that do not exist in more traditional

memory hierarchies. In particular, cores compete not only for HBM

capacity, but also for the more limited channel capacity between

HBM and DRAM. HBM does not fit into a standard memory hier-

archy model [12, 30], because in traditional hierarchies, both the

latency and bandwidth improve as the levels get smaller. This is

not true of HBM.

The question looms: Are there provably good algorithms for

automatically controlling HBM?

1.1 Results
Multicore HBM model. We propose a multicore model for HBM

that captures the high bandwidth from the cores to HBM and the

much lower bandwidth to DRAM. There are 𝑝 parallel channels

connecting 𝑝 cores to the HBM but only a single channel connect-

ing HBM to DRAM; see Figure 1. This configuration captures the

high (on-package) bandwidth between the 𝑝 cores and HBM and

the much lower (off-package) bandwidth between HBM and DRAM.

Data is transferred in blocks — there are up to 𝑝 parallel block

transfers from the HBM to the cores, but only one block transfer

at a time between DRAM and HBM. The roughly comparable la-

tencies are captured by setting all block-transfer costs (times) to 1.

See Section 8 for a more nuanced discussion of this.

HBMmanagement.We focus on instances where the multicore’s

threads access disjoint sets of blocks. This emphasizes the cores’

competition for HBM and the limited bandwidth between HBM

and DRAM.

What should the performance objective be? The high-level objec-

tive is to improve the performance by finishing all threads as quickly

as possible — in other words, we want to minimize the makespan.

2
HBM does not increase off-package DRAM bandwidth. It does not accelerate a scan of

a large chunk of data in DRAM that does not fit into the HBM, because the operation is

limited by the DRAM bandwidth. Therefore, HBM improves some memory-bandwidth-

bound computations but does not automatically improve all.

In sequential caching, we generally use minimizing cache misses as

a performance objective since it is a good proxy for makespan. We

might be tempted to use HBM misses as the performance objective

here. Surprisingly, it turns out that minimizing HBM misses cor-

relates poorly with makespan for HBM for two reasons (formally

proved in Section 7). First, unlike caches, HBM has the same access

latency as DRAM. Second, multiple processors are accessing the

HBM and potentially contending for the channel between HBM and

DRAM and the amount of contention can have an impact on the

makespan, not just the sheer number of HBMmisses. Therefore, we

focus directly on minimizing makespan. We establish the following:

• Minimizing page faults does not correlate well withminimizing
makespan. An algorithm that optimizes the total number

of HBM misses may have bad makespan (the time the last

thread completes)— up to a Θ(𝑝)-factor worse than optimal.

This is not true for the standard cache-replacement problem

where the total number of cache misses is the surrogate

objective for makespan [19, 28, 44].

• Minimizing makespan is strongly NP-hard.
• Sharing the HBM-to-DRAM channel fairly does not work. We

consider how to design block-replacement policies for the

HBM coupled with the First-Come-First-Serve (FCFS) algo-

rithm for determining the order of accesses from HBM to

DRAM. We show that even though LRU is a very good block-

replacement policy, if we use FCFS in the HBM-to-DRAM

channel, LRU performs poorly. In particular, with any con-

stant amount of resource augmentation the makespan of

using FCFS with LRU is Ω(𝑝) away from the optimal policy

in the worst case. This negative result establishes that more

sophisticated management of the channel between HBM and

DRAM is central to the designing a good algorithm for the

problem. The seemingly fair FCFS policy is bad.

Our main positive results are simple online and offline algo-

rithms for automatically managing HBM. What is interesting about

HBM management is how starkly it differs from traditional caching

policies, which are well understood in a serial setting but are chal-

lenging in multicore settings [31, 38].

• Priority-based mechanism for managing the HBM-to-DRAM
channel.We give a priority-based policy for managing the

channel between HBM and DRAM. We impose a pecking

order on the cores, so that a high-priority core never has a

request to DRAM blocked by a request from a lower-priority

core. Our algorithms for HBM management are built around

this priority-based mechanism.

• 𝑂 (1)-competitive algorithm for HBM management. As a first
step towards our online algorithm, we give an offline approxi-

mation algorithm for the makespan objective. We build upon

the offline algorithm to obtain a simple online algorithm

(with a more complicated analysis) that is 𝑂 (1)-competitive,

even without resource augmentation. The online algorithm

is non-intuitive —it often preferentially allocates theHBM-to-

DRAM channel to a single core while depriving other cores

— but guarantees nearly optimal makespan. (The algorithm

can treat cores fairly over time by periodically changing the

pecking order among the cores.)

1.2 Related Work
HBM-tuning and cache mode. Intel’s Knights Landing (KNL)

processor [34] features an implementation of HBM. Several recent

papers have documented runtime improvements of 3-4x using this

HBM in “cache mode” compared to using DRAM alone, when prob-

lem instances fit entirely in the HBM. For example, Li et al. studied

eight kernels from scientific computing [36] on KNL and found 3-4x

speedups on some instances of sparse matrix-vector multiplication,

Cholesky decomposition, and dense matrix-matrix multiplication.

They observed more modest 1-2x speedups for sparse matrix trans-

pose and sparse triangular solve. Byun, et al. corroborate the KNL

speedup for dense matrix-matrix multiplication [21]. Slota and Ra-

jamanickam [45] observed 2-5x speedups in graph algorithms on

instances far larger than HBM. Butcher et al. [20] also studied prob-

lems that are too large to fit into HBM. They optimized sorting on

KNL and concluded that GNU parallel sort run in cache mode is not

nearly as fast as a custom sorting algorithm (based upon concurrent

calls to GNU serial sort), also run in cache mode [20].

This result is in keeping with the predictions made by Bender

et al. [11, 13, 14]. Before KNL existed, they gave HBM-optimized

sorting algorithms and obtained simulation results that predicted

good speedups for these algorithms. However, this does not settle

the question of automatic management of HBM. KNL’s arbitration

of HBM misses is handled by the DRAM controller. Although the

actual protocol is proprietary, it is likely a solution based on [41].

Such arbitration is commonly called “first-ready first-come-first-

served (FR-FCFS).” As the name implies, this is a variant of FCFS.

We show in Section 5 that FCFS is not a good arbitration policy for

HBM misses, and we conjecture that a future cache mode informed

by this paper may perform significantly better.

Multi-thread/multi-core paging. There exists a rich literature

on multi-threaded and multi-core paging models. Feuerstein and

Strejilevich de Loma [27] consider a paging model where there

are multiple threads but only a single core. They optimize the

number of cachemisses. Loma [25] and Seiden [42] give randomized

algorithms for the same setting.

Hassidim [31] considers a paging model where there are multiple

threads and multiple cores. He minimizes the makespan. López-

Ortiz and Salinger [38] consider a similar model but minimize cache

misses. They give lower bounds and an offline algorithm with a run-

time exponential in the size of cache. Katti and Ramachandran [33]

give a competitive algorithm for multi-core paging assuming that

the interleaving of the request sequences of the cores are fixed.

These classic paging results differ from our HBM model because

in these prior results access times of near and far levels are dif-

ferent but there are still 𝑝 channels between the cores and shared

cache and between cache and DRAM. Therefore, these prior parallel

caching results do not carry over to our setting, and vice versa.

When multiple threads access the same shared cache, the frac-

tion of cache dedicated to any given thread can vary [5, 9, 10, 17].

Peserico [40] and Bender et al. [16, 17] formulated models for page

replacement in a fluctuating cache, with the latter model serving as

an algorithmic foundation for cache-adaptive analysis [16, 17, 37].

There are several analysis frameworks based upon assuming an

underlying optimal paging algorithm. These include the seminal

ideal cache-model of Frigo et al. [29, 30] and Prokop [30], which

was based on Sleator and Tarjan’s [44]’s classic paging results;

cache-adaptive analysis [16, 17, 37]; and parallel caching models

based on work stealing [23]. We can view this paper as proposing

an alternative setting for HBM, where the programmer can assume

optimal paging for HBM, and then let the system make all decisions.

Finally, we note that there are many sequential and parallel

models of the memory hierarchy [2–4, 6, 7, 15, 18, 22, 24, 32]. These

include models where there are private caches associated with each

core [8]. In contrast, our HBM model explicitly does not need to

consider a private cache. Whatever happens in the private caches

of each individual core is independent of the optimization problem

in this paper. As mentioned in [12], the performance characteristics

of HBM set it apart from most other memory-hierarchy models, so

that in some ways, HBM and DRAM are like siblings on the same

level of the hierarchy, and in other ways they are stacked. This helps

explain why the present optimization problem is so surprisingly

different from prior work, and also why prior work provides little

insight into how to deal with HBM.

2 HBMMODEL
Our model of HBM comprises a multi-core machine with 𝑝 parallel

channels connecting 𝑝 cores to the HBM. The HBM has size𝑀 , and

the DRAM (main memory) has no space limitation.

Figure 1: The HBM model with 𝒑 cores and two levels of
memory.

The increased bandwidth of HBM comes from multiple channels

between it and the cores. There is only one channel between HBM

and DRAM. Data is transferred along any of these channels in

blocks of size 𝐵; see Figure 1. HBM can hold 𝑘 = 𝑀/𝐵 blocks. There

can be up to 𝑝 parallel block transfers from the HBM to the cores,

but only one block at a time is transferred between DRAM and

HBM. The roughly comparable access costs are captured by setting

all block-transfer cost to 1. That is, it takes one time step to transfer

a block from HBM to a core or from DRAM to HBM.

Unlike the Ideal Cache model [29, 30], our HBM model has two

resources to manage: the HBM itself and the far channel between
HBM and DRAM. The HBM is managed by a block-replacement

policy, and the DRAM channel is managed by a far-channel arbi-
tration policy. For example, we might consider LRU block replace-

ment and FCFS far-channel arbitration.

Parallel program execution in HBMmodel. Each core runs its

own stream of instructions, which for the purposes of themodel, is a

sequence of block requests. Thus, we denote 𝑅𝑖 = 𝑟 𝑖
0
, 𝑟 𝑖
1
, 𝑟 𝑖
2
, . . . as the

sequence of the blocks requested by core 𝑝𝑖 on its dedicated channel

to the HBM. We omit the core number when it is understood. We

analyze the disjoint case in which the cores access disjoint sets

of blocks, that is, for 𝑖 ≠ 𝑗 and ∀𝑞, 𝑠 𝑟 𝑖𝑞 ≠ 𝑟
𝑗
𝑠 , as in prior work on

parallel caching [31, 38]. This case emphasizes the computational

issues that arise when the 𝑝 programs compete for their own share

of the HBM. Furthermore, the most common case when executing

multithreaded programs is that the threads are disjoint or nearly

disjoint [12, 20].

We say that a request 𝑟 𝑖
𝑗
is served at time step 𝒕 , if the previous

request to be served was 𝑟 𝑖
𝑗−1 and the requested block 𝑟 𝑖

𝑗
is trans-

ferred to core 𝑝𝑖 at time step 𝑡 . Request 𝑟 𝑖
𝑗
is served as follows. If 𝑟 𝑖

𝑗

is in HBM, then core 𝑝𝑖 receives that block exactly one tick after

the request. Otherwise, the block must be retrieved from DRAM

via the far channel which takes at least one additional tick and may

take many more depending on the request streams of other cores

and the far-channel arbitration policy. Note that HBM hits have

nonzero cost in our HBM model (since HBM latency is no better

then DRAM latency) and are thus infinitely more expensive than

the zero-cost cache hits of traditional caching models.

Objective: minimizing makespan. Given an HBM of size𝑀 and

𝑝 disjoint request sequences of 𝑝 cores, the objective is to find a

contention-resolution policy for the HBM-DRAM channel and a

block-replacement policy for the HBM so that the makespan is

minimized.

3 TECHNICAL OVERVIEW
In the rest of the paper, we propose methods to automatically man-

age HBM and we analyze them with our new HBM model. Our

contributions, per section, are as follows:

• In this section, we explain how to navigate the algorithmic is-

sues that distinguish HBM management from traditional cache

management and we informally justify the makespan metric for

HBM. We add a formal justification in Section 7.

• We give online algorithms for managing HBM asymptotically

optimally with respect to the makespan objective (Section 4).

• We analyze the natural strategies for managing the two resources

of the HBMmodel (variants of which are canonical results of com-

puter architecture cited more than 1000 times [41]) and prove that

they are not asymptotically good at managing HBM (Section 5).

• We prove the strong NP-hardness of the makespan minimization

problem for HBM (Section 6)

Metrics for HBM management. HBM management must com-

prise policies for (1) dividing HBM’s storage capacity among cores

or DRAM regions, (2) evicting blocks from HBM, and (3) deciding

which DRAM block requests to satisfy first, which we call “far-

channel arbitration.” In this paper, we do not constrain (1). However,

we note that KNL’s cache mode employs direct-mapped caching

(each block in DRAM has a fixed and unique destination in HBM),

constraining both (1) and (2). Crucially, we will show that effective

far-channel arbitration is the key to reducing the running time of a

program in the HBM model.

We know that in single-core and multi-core paging models, min-

imizing the number of cache misses leads to a good approximation

of the running time of a program [19, 28, 44]. The interesting differ-

ence in our HBMmodel is that the number of HBMmisses no longer

gives a good approximation to the running time. In particular, in

Section 7, we show that there exist request sequences from 𝑝 cores

such that any policy that minimizes the number of HBM misses

has a running time that is a factor of Θ(𝑝) larger than the optimal

running time. Moreover, unlike in traditional caching, resource

augmentation in the form of larger HBM sizes is not necessary.

Hence, we turn directly to the makespan metric. We show that

the problem of minimizing the makespan in HBMmodel is strongly

NP-hard. The limited bandwidth between HBM and DRAM plays a

pivotal role in the hardness proof.

So how should we deal with contending requests for the HBM-

DRAM channel?

Natural far-channel arbitration policies do not work in the
HBM model. One intuitive (but doomed) far-channel arbitration

policy is to queue DRAM requests in First-Come-First-Serve (FCFS)

order. Fairness would seem to dictate some sort of FCFS queue,

and a canonical variant of this from [41] has been influential with

vendors of DRAM controllers. However, we prove that FCFS is

not a good far-channel arbitration policy for HBM. Even if we

have a good eviction policy, such as LRU, a far-channel arbitration

policy of FCFS queueing is provably non-optimal. In particular we

show that even with 𝑑 memory augmentation and 𝑠 far-channel

bandwidth augmentation, there exist 𝑝 request sequences in which

the makespan of FCFS with LRU is a Θ(𝑝

𝑑𝑠
)-factor away from that

of the optimal policy.

A better strategy is to assign priorities to the cores. That is, there

is a pecking order among the cores so that a high-priority core

always beats a lower-priority core when one of its requests needs

access to the HBM-DRAM channel. In Section 4 we analyze an

online HBM-management strategy where the eviction policy is

LRU but the far-channel arbitration policy is based on the pecking

order. We prove that this simple scheme, which we call priority,

is constant competitive with the optimal policy for minimizing

makespan (without needing resource augmentation of either the

HBM size or the far-channel bandwidth).

The theoretical wedge that this paper drives between FCFS and

priority-based HBM-DRAM channel arbitration is an important

contribution of this paper. Given that it is natural to have FCFS

buffers queue up requests for the HBM-DRAM channel (and that

FCFS variants are widely implemented in today’s hardware), we

believe that this negative queuing result could be quite useful to

hardware designers. A priority-based scheme is straightforward to

implement in real hardware and leads to provably good algorithms

for HBM management under our assumption of disjoint reference

streams. Furthermore, we note that priority-based schemes are

not inherently unfair. Our analysis still works if we change the

priorities periodically over time.

Analysis of online competitive algorithm for the makespan.
While the priority-based mechanism seems algorithmically sim-

ple, its analysis is more complicated. Thus, we explain the online

analysis through an intermediary, an offline algorithm with a more

complicated mechanism but a somewhat simpler analysis. We show

that this algorithm, which we call 𝑘-packing, is an 𝑂 (1) approxi-
mation algorithm to makespan.

The offline algorithm 𝑘-packing divides the execution into

phases of Θ(𝑘) steps, where 𝑘 is the size of the HBM. In each phase,

each core makes an all-or-nothing decision about whether to ex-

ecute its thread: either the thread makes Θ(𝑘) progress or it does
not run. If a thread runs, it grabs all of the resources from HBM

that it needs by allocating space in the HBM and a channel band-

width equal to the number of blocks that it accesses in that phase.

Thus, in a phase, some threads make essentially full progress and

others make none. 𝑘-packing performs a maximal packing of the

threads into the phase. 𝑘-packing is a “very” offline policy because

it requires Θ(𝑘) look-ahead for each core, and 𝑘 is very large.

The online algorithm priority does not have any lookahead,

in contrast to 𝑘-packing. Hence, some cores may progress Θ(𝑘)
steps in a Θ(𝑘)-length phase, while others do not. If a core does

not progress a full Θ(𝑘) steps, we say that it wastes HBM capacity

and bandwidth. We prove that the priority scheme guarantees at

most a constant factor of these resources are wasted. This delivers

the same performance guarantees as 𝑘-packing.

4 𝑂 (1)-COMPETITIVE ONLINE ALGORITHM
FOR HBM BLOCK MANAGEMENT

In this section we present an 𝑂 (1)-competitive online algorithm

for the makespan-minimization problem. We first give an offline

𝑂 (1)-approximation algorithm. Then we show how to transform

the offline strategy into an online strategy while retaining constant

competitiveness.

One of the exciting aspects of our makespan-minimization prob-

lem is that proving constant competitiveness does not require re-

source augmentation. This result stands in stark contrast to most

online caching problems, where resource augmentation is necessary

to achieve good competitive ratios. Nonetheless, the optimization

problem is delicate. In Section 5 we show that some seemingly

natural HBM caching policies achieve a competitive ratio as large

as Θ(𝑝).
In the rest of this section we prove the following theorem:

Theorem 1. There exists an 𝑂 (1)-competitive online algorithm
for the makespan-minimization problem (without resource augmen-
tation).

4.1 Constant-approximation offline algorithm
This section gives an offline 𝑂 (1)-approximation algorithm for the

makespan-minimization problem, which we call the 𝑘-packing

algorithm. We show the following:

Lemma 1. There exists an offline constant-approximation algorithm
for the makespan-minimization problem (without resource augmen-
tation).

Wedivide the request sequence𝑅𝑖 = 𝑟1, 𝑟2, 𝑟3, . . . for each thread 𝑖

into chunks, where each chunk 𝐶𝑖 𝑗 (except possibly the last) con-

tains exactly 𝑘/4 requests3. Specifically,

𝑅𝑖 =

𝐶𝑖1︷ ︸︸ ︷
𝑟1, 𝑟2, · · · , 𝑟𝑘/4,

𝐶𝑖2︷ ︸︸ ︷
𝑟
1+𝑘/4, 𝑟2+𝑘/4, · · · , 𝑟2𝑘/4 · · ·

Executing a chunk𝐶𝑖 𝑗 means servicing each request in𝐶𝑖 𝑗 . A chunk

𝐶𝑖 𝑗 is ready to run as soon as 𝐶𝑖, 𝑗−1 is executed. We associate a

request with the block of memory needed to service the request.

Algorithm 𝑘-packing. The 𝑘-packing algorithm proceeds in

phases. In each Phase 𝜙 , 𝑘-packing executes at most one chunk

from each thread. No chunks are partially executed. Let C be a set

of chunks. Define the working set of C, denoted B(C), to be the
set of blocks requested in set C. It is the union of the set of blocks

over all the chunks in C.
In Phase 𝜙 , 𝑘-packing executes a set C𝜙 of ready-to-run chunks

such that

(1) |B(C𝜙) | ≤ 𝑘 ,

(2) Each thread executes either zero or one chunk in Phase 𝜙 ,

and

(3) C𝜙 is maximal. That is, no additional chunk can be added

while satisfying Constraints 1 and 2.

Although chunks can be chosen greedily within a phase, 𝑘-packing

itself is not greedy. That is, it may be possible for a thread to make

forward progress in a phase without hindering any other thread—

but 𝑘-packing does not execute any thread unless it can complete

an entire chunk for that thread in the phase.

Because a phase 𝜙 is defined by the chunks C𝜙 that it runs, we

will overload notation, letting B(𝜙) denote the set of blocks served
in Phase 𝜙 . For generic input I, let 𝑘-packing(I) denote running
𝑘-packing on instance I.

Definition 1. Each Phase 𝜙 in 𝑘-packing(I) has one of the follow-
ing types.

Contested: 3𝑘/4 ≤ |B(𝜙) | ≤ 𝑘

Uncontested: |B(𝜙) | < 3𝑘/4.

Lemma 2. If |B(𝜙) | < 3𝑘/4, then all unfinished threads execute a
chunk in Phase 𝜙 .

Proof. We prove this by contradiction. Let 𝜙 be a phase such

that |B(𝜙) | < 3𝑘/4. Assume that there is an unfinished thread 𝑝𝑖
that does not execute a chunk in 𝜙 . However, a chunk of 𝑝𝑖 has at

most 𝑘/4 blocks. So we can add the ready-to-run chunk of 𝑝𝑖 to

Phase 𝜙 without violating Constraints 1 or 2 for phases. Therefore

phase 𝜙 is not maximal, a violation of the third constraint. □

Lemma 3. Suppose that 𝑘-packing(I) has 𝑋1 contested phases and
𝑋2 uncontested phases. Then the makespan of 𝑘-packing(I) is at
most 5𝑘

4
𝑋1 + 𝑘𝑋2.

Proof. In every contested phase, at most𝑘 blocks are transferred

fromDRAM toHBM, requiring atmost𝑘 time steps. Once the blocks

are in HBM, they are served to the cores in at most 𝑘/4 time steps.

So a contested phase finishes in 5𝑘/4 time units. Similarly, in every

uncontested phase, at most 3𝑘/4 blocks are fetched from DRAM to

3
Our proofs assume that 𝑘 is a multiple of 4, fairly common for memory size, but we

can adjust the proofs for general 𝑘 .

HBM using at most 3𝑘/4 time steps. Once all the blocks are in the

HBM, they are served to the cores in at most 𝑘/4 more time steps.

So a uncontested phase finishes in 𝑘 time units. □

For a set of phases Φ for an algorithm 𝐴 we define 𝜂𝐴 (Φ) ≡∑
𝜙 ∈Φ |B(𝜙) |. When the set of distinct blocks in any phase fits in

HBM (i.e. total at most 𝑘), 𝜂𝐴 (Φ) gives an upper bound on the total

time to bring blocks in from DRAM over all phases in Φ. This is the
cost of running the algorithm normally, but artificially emptying

HBM at phase boundaries. The system may need to bring in a block

once for each phase it participates in. It can be served to its core

from HBM multiple times within a single phase. For any instance

𝑘-packing(I), let Φ1 be the set of contested phases.

Observation 1. Suppose 𝑘-packing(I) has 𝑋1 contested phases.
Then 𝜂 𝑘-packing (Φ1) ≥ (3𝑘/4)𝑋1.

Analysis of opt. Let opt denote the optimal algorithm for the

makespan-minimization problem. As with 𝑘-packing, we divide

the execution opt(I) on instance I into phases. Each phase has

a fixed length of exactly 𝑘/4 time steps (except possibly the last

phase). Thus, Phase 1 contains the requests serviced in the first 𝑘/4
time steps, Phase 2 contains the requests serviced in the next 𝑘/4
time steps, and so on.

Observation 2. Suppose opt(I) runs in 𝑌 phases. Then its
makespan is at most (𝑘/4)𝑌 and at least (𝑘/4) (𝑌 − 1) + 1.

We now compare the number of phases in opt(I) versus 𝑘-
packing(I).

Lemma 4. Suppose 𝑘-packing(I) has 𝑋2 uncontested phases and
opt(I) has 𝑌 phases. Then 𝑌 ≥ 𝑋2.

Proof. From Lemma 2, in a uncontested phase, all the unfinished

threads execute a chunk, which contains 𝑘/4 block requests. Let

𝑝𝑖 be a thread that executes during the last uncontested phase.

This implies that in all 𝑋2 phases, 𝑝𝑖 executes a chunk. As opt

can execute at most 𝑘/4 requests of 𝑝𝑖 in each phase (length of

each phase in opt is 𝑘/4), opt needs at least 𝑋2 phases to serve

thread 𝑝𝑖 . □

Let Φ𝑂𝑃𝑇 be the set of phases for the optimal algorithm for

some instance I. opt has only one kind of phase. Since the algo-

rithm is clear from context, use the shorthand 𝜂 (Φ𝑂𝑃𝑇) instead of

𝜂𝑂𝑃𝑇 (Φ𝑂𝑃𝑇).

Lemma 5. 𝜂 𝑘-packing (Φ1) ≤ 2𝜂 (Φ𝑂𝑃𝑇).

Proof. Consider an arbitrary phase 𝜙 of opt. Let 𝐵 be a block

that is requested by thread 𝑝 at least once during phase 𝜙 . Let

the first and last requests of block 𝐵 in phase 𝜙 be the 𝑓 th and

𝑗th reference to 𝐵 respectively in thread 𝑝’s request sequence. All

𝑗 − 𝑓 + 1 references to Block 𝐵 in phase 𝜙 together contribute

exactly 1 to 𝜂 (Φ𝑂𝑃𝑇). Let 𝑟 ′𝑓 and 𝑟 ′
𝑗
be the references in thread 𝑝’s

request stream corresponding to the 𝑓 th and 𝑗 th reference to block

𝐵 respectively. Because each phase of opt has 𝑘/4 time steps, there

are at most 𝑘/4 requests between 𝑟 ′
𝑓
and 𝑟 ′

𝑗
in thread 𝑝 . Let 𝜙 𝑓 be

the phase in 𝑘-packing that contains reference 𝑟 ′
𝑓
and let 𝜙𝑔 be the

next phase of 𝑘-packing that contains a reference to Block 𝐵. Both

phase 𝜙 𝑓 and phase 𝜙𝑔 execute 𝑘/4 requests for thread 𝑝 (unless

phase 𝜙𝑔 is the last phase for thread 𝑝 .). Thus reference 𝑟 ′
𝑗
, is either

in phase 𝜙 𝑓 or phase 𝜙𝑔 . Thus all references to block 𝐵 in phase 𝜙

of opt are in at most two phases (of any type) in 𝑘-packing. They

contribute at most 2 to 𝜂 𝑘-packing (Φ1). Summing over all phases in

Φ𝑂𝑃𝑇 proves the lemma. □

Lemma 6. Suppose that opt has 𝑌 phases. Then 𝜂 (Φ𝑂𝑃𝑇) ≤
(5𝑘/4)𝑌 .

Proof. Because a Phase 𝜙 of opt has length 𝑘/4 (except a trun-
cated last phase), at most 𝑘/4 blocks can be transferred from DRAM

to HBM. In addition, there are at most 𝑘 distinct blocks already

present in HBM at the start of Phase 𝜙 . These can be accessed in

parallel by the threads. Thus, altogether, in the phase, at most 5𝑘/4
distinct blocks can be accessed. Summing over all 𝑌 phases proves

the lemma. □

Lemma 7. Suppose that 𝑘-packing has 𝑋1 contested phases and
opt has 𝑌 phases. Then 𝑋1 ≤ (10/3)𝑌 .

Proof. From Lemma 5, we know 𝜂 𝑘-packing (Φ1) ≤ 2𝜂 (Φ𝑂𝑃𝑇).
From Observation 1, (3𝑘/4)𝑋1 ≤ 𝜂 𝑘-packing (Φ1) and from Lemma 6,

𝜂 (Φ𝑂𝑃𝑇) ≤ (5𝑘/4)𝑌 . Combining these, we get 𝑋1 ≤ (10/3)𝑌 . □

Proof of Lemma 1: Suppose that 𝑘-packing has 𝑋1 contested and

𝑋2 uncontested phases. Let 𝑇 (A) denote the makespan of an algo-

rithm A. Then from Lemma 3,

𝑇 (𝑘-packing) ≤ 5𝑘

4

𝑋1 + 𝑘𝑋2 .

Suppose opt has 𝑌 phases. Then from Lemma 7, 𝑋1 ≤ (10/3)𝑌
and from Lemma 4, 𝑋2 ≤ 𝑌 . Combining these, we get the following.

𝑇 (𝑘-packing) ≤ 5𝑘

4

10

3

𝑌 + 𝑘𝑌 .

However, from Observation 2, 𝑇 (opt) ≥ (𝑘/4) (𝑌 − 1). Thus,

𝑇 (𝑘-packing) ≤ 5𝑘

4

10

3

(𝑌 − 1) + 50𝑘

12

+ 4

𝑘

4

(𝑋2 − 1) + 𝑘

≤ 50

3

𝑇 (opt) + 4𝑇 (opt) + 62𝑘

12

.

Hence, the lemma follows as 𝑇 (𝑘-packing) = 𝑂 (𝑇 (opt)).
□

4.2 Online algorithm
In this section we introduce an online algorithm priority,

which automatically guarantees that its execution on an instance

I, priority(I), has some of the structural properties that 𝑘-

packing(I) does. Unlike 𝑘-packing, priority does not need to

know the HBM size 𝑘 or any future requests from the request

sequences.

Specifically, the 𝑘-packing algorithm guarantees that in a phase

(1) there are Θ(𝑘) steps, (2) either the working set size is Θ(𝑘) or
every unfinished thread makes Θ(𝑘) progress, (3) any thread that

makes progress (without finishing) completes Θ(𝑘) requests.
What makes the HBM model algorithmically interesting is the

bandwidth bottleneck between HBM and DRAM. Given this bot-

tleneck, the algorithmic concern/challenge is how to break ties

when multiple block requests compete for the limited bandwidth.

In the offline setting, we managed the tie-breaking issue by using

size-Θ(𝑘) chunks, but priority does not know 𝑘 .

FCFS (First-Come-First-Serve) is a naturally fair policy for man-

aging DRAM accesses. As we show in the next section, FCFS works

poorly, at least when paired with an LRU page-replacement policy

—see Section 5.

A better idea, at least when using LRU page replacement, is

to assign priorities to threads, so that a high priority thread can

never be blocked by a low-priority thread. This leads to constant

competitiveness. Specifically, we prioritize block requests based on

which thread made the request, with the highest-priority thread

granted access to the DRAM. The specific priority order does not

matter. With this far-channel arbitration policy, priority naturally

does what we explicitly designed 𝑘-packing to do. Moreover, unlike

most caching problems, resource augmentation is not necessary

for constant competitiveness.

Let 𝑅𝑖 = 𝑟 𝑖
1
, 𝑟 𝑖
2
, 𝑟 𝑖
3
, . . . be thread 𝑝𝑖 ’s request sequence. Suppose

that at time step 𝑡 of some algorithm execution, thread 𝑝𝑖 has

served all requests through 𝑟 𝑖
𝑗−1. Let 𝑢𝑖 (𝑡) = 𝑟 𝑖

𝑗
denote thread 𝑝𝑖 ’s

first unserviced request at time 𝑡 . We partition the threads into two

sets, 𝑃 (𝑡) and 𝑃 (𝑡) as follows. If 𝑟 𝑖
𝑗
is in the HBM at the start of time

step 𝑡 , then 𝑝𝑖 ∈ 𝑃 (𝑡), and otherwise 𝑝𝑖 ∈ 𝑃 (𝑡). At time 0, the HBM

is empty, and hence for all 𝑖 , 𝑝𝑖 ∈ 𝑃 (0).
Algorithm priority. We assign a fixed priority for each thread.

Without loss of generality, say that thread 𝑝𝑖 has priority 𝑖 , where

priority 1 is the highest.

In each time step 𝑡 and for each thread 𝑝𝑖 :

(1) If 𝑝𝑖 ∈ 𝑃 (𝑡), then block 𝑢𝑖 (𝑡) is transferred to 𝑝𝑖 ’s core.

(2) Otherwise, 𝑝𝑖 ∈ 𝑃 (𝑡).
(a) If 𝑝𝑖 is the highest priority thread among the threads in

𝑃 (𝑡), then 𝑢𝑖 (𝑡) is transferred from DRAM to HBM. If the

HBM is full, then the least-recently-used block among all

the cores (breaking ties arbitrarily) in HBM is replaced.

(b) Otherwise, 𝑝𝑖 stalls (i.e., waits, since only one block can

be fetched from DRAM to HBM in each step).

It takes one time step to transfer a block from HBM to a core

or from DRAM to HBM. Thus, if 𝑝𝑖 ∈ 𝑃 (𝑡) (conditional in Step 1

holds), then after Step 1 in priority, 𝑢𝑖 (𝑡 + 1) = 𝑟 𝑖
𝑗+1. Otherwise,

after priority executes Step 2, 𝑢𝑖 (𝑡 + 1) = 𝑟 𝑖
𝑗
.

Analysis of priority. For the analysis (only), we divide prior-

ity’s execution on instance I, denoted priority(I), into phases
of length 𝑘 . Phase 𝜙 (for 𝜙 ≥ 1) begins at the start of time step

(𝜙 − 1)𝑘 + 1 and finishes at the end of step 𝜙𝑘 . We say thread 𝑝𝑖
is productive in Phase 𝝓 if and only if 𝑝𝑖 serves at least 𝑘/4 re-
quests in Phase 𝜙 or finishes the thread’s execution. Otherwise, 𝑝𝑖
is unproductive in Phase 𝝓.

Definition 2. Let B(𝜙) denote the set of distinct blocks that
priority(I) serves in Phase 𝜙 . There are two types of phases:

Contested: 𝑘/2 ≤ |B(𝜙) | ≤ 𝑘 or
Uncontested: |B(𝜙) | < 𝑘/2.

The following lemma shows uncontested phases are productive.

Lemma 8. For any uncontested phase in priority(I), all unfinished
threads serve at least 𝑘/4 requests.

Proof. Since there are fewer than 𝑘/2 distinct blocks accessed
in Phase 𝜙 , then there are at most 𝑘/2 steps when any block is

brought in from DRAM. Thus, since a phase has 𝑘 time steps, there

are at least 𝑘/2 steps when no thread needs a block that is not in

HBM. During each of these steps, any active thread serves a page

request from its sequence or finishes. □

The next two lemmas show that for every Phase 𝜙 , priority(I)
satisfies the following two conditions:

• Each phase in priority(I) has at least one productive

thread.

• In every contested phase, the productive threads alone serve

at least 𝑘/2 distinct blocks.

Lemma 9. Every phase of priority(I) has at least one productive
thread.

Proof. Let thread 𝑝𝑖 have the highest priority among the threads

that run in Phase 𝜙 . If 𝑝𝑖 finishes its execution in Phase 𝜙 , then by

definition, it is a productive thread. Otherwise, in each time step, a

block of 𝑝𝑖 is transferred from DRAM to HBM or from HBM to 𝑝𝑖 ’s

core. Being the highest priority thread, 𝑝𝑖 never stalls. Since the

phase has length 𝑘 , thread 𝑝𝑖 services at least 𝑘/2 block requests or

finishes, making it a productive thread. □

Lemma 10. For every contested phase 𝜙 , the productive threads
access 𝑔(𝜙) distinct blocks, where |B(𝜙) | ≥ 𝑔(𝜙) ≥ 𝑘/2.

Proof. For ease of presentation, rename the threads that have

not completed executing, so that 𝑝1 is the highest priority thread,

𝑝2 is the next highest priority thread, and so on.

We say that a thread 𝑝𝑖 is active in step 𝒕 if it is not stalled during
the step. Thus, a block for 𝑝𝑖 is transferred either from DRAM to

HBM or from HBM to 𝑝𝑖 ’s core. Say that thread 𝑝𝑖 accesses ℎ𝑖
distinct blocks in Phase 𝜙 .

Thread 𝑝1 is never stalled. Thus, it is active for 𝑘 steps unless it

finishes executing before the phase ends.

Thread 𝑝2 can be stalled for at mostℎ1 time steps. This is because

𝑝1 grabs the DRAM-to-HBM channel at most ℎ1 times during the

phase. (Thread 𝑝1 might grab the channel fewer than ℎ1 times, since

the requested blocks might already be in HBM from a previous

phase.) Thus, 𝑝2 is active for at least 𝑘 − ℎ1 steps unless it finishes

executing before the phase ends.

Similarly, 𝑝3 can be stalled for at most ℎ1 +ℎ2 time steps. This is

because 𝑝3 is only stalled when either 𝑝1 or 𝑝2 grabs the DRAM-

to-HBM channel. In general, 𝑝𝑖 can be stalled for at most

∑𝑖−1
𝑗=1 ℎ 𝑗

steps, and thus is active for 𝑘 − ∑𝑖−1
𝑗=1 ℎ 𝑗 steps unless it finishes

before the phase ends.

Let ℓ be the lowest priority thread in Phase𝜙 such that

∑ℓ
𝑗=1 ℎ 𝑗 ≥

𝑘/2.
We show that for all 𝑖 = 1 . . . ℓ , thread 𝑝𝑖 is productive. For 𝑖 =

1 . . . ℓ , thread 𝑝𝑖 is active for at least 𝑘 −
∑ℓ−1

𝑗=1 ℎ 𝑗 ≥ 𝑘/2 steps unless
it finishes earlier. If a thread finishes earlier, then by definition, it

is productive. Otherwise, if a thread is active for 𝑘/2 steps, then it

must serve at least 𝑘/4 block requests in its sequence, since it takes

two steps to bring a block from DRAM to a thread’s core. Hence,

all ℓ threads are productive threads.

Thus, together all the productive threads access

∑ℓ
𝑗=1 ℎ 𝑗 ≥ 𝑘/2

distinct blocks, establishing the lemma. □

For a phase 𝜙 , let B∗ (𝜙) denote the set of distinct blocks re-

quested by all the productive threads in phase 𝜙 . Let Φ1 denote

the set of contested phases. Similar to our previous notation, let

𝜂∗
priority

(Φ1) ≡
∑
𝜙 ∈Φ1

|B∗ (𝜙) |.

Corollary 1. Let priority have 𝑍1 contested phases. Then
𝜂∗
priority

(Φ1) ≥ (𝑘/2)𝑍1.

Analysis of opt. We divide opt’s execution on instance I into

phases. Each phase has a fixed length of exactly 𝑘/4 time steps

(except possibly the last phase).

We now compare the number of phases in opt versus priority.

Our proof of the following lemma is similar to that of Lemma 5.

However, since priority can not pack and execute chunks the way

the offline algorithm 𝑘-packing does in a phase, we base the proof

on the productive threads in a fixed-length phase. Later we show

that considering only productive threads is enough to establish the

constant-competitiveness of priority.

Lemma 11. 𝜂∗
priority

(Φ1) ≤ 2𝜂 (Φ𝑂𝑃𝑇).

Proof. Consider an arbitrary phase 𝜙 of opt. Let 𝐵 be a block

that is requested by thread 𝑝 at least once during phase 𝜙 . Let

the first and last requests of block 𝐵 in phase 𝜙 be the 𝑓 th and

𝑗th reference to 𝐵 respectively in thread 𝑝’s request sequence. All

𝑗 − 𝑓 + 1 references to Block 𝐵 in phase 𝜙 together contribute

exactly 1 to 𝜂 (Φ𝑂𝑃𝑇). Let 𝑟 ′𝑓 and 𝑟 ′
𝑗
be the references in thread

𝑝’s request stream corresponding to the 𝑓 th and 𝑗th reference to

block 𝐵 respectively. Because each phase of opt has 𝑘/4 time steps,

there are at most 𝑘/4 requests between 𝑟 ′
𝑓
and 𝑟 ′

𝑗
in thread 𝑝 . Let

𝜙 𝑓 be the phase in priority that serves reference 𝑟 ′
𝑓
. Let 𝜙∗

𝑓
be

phase 𝜙 𝑓 if thread 𝑝 is productive in 𝜙 𝑓 . Otherwise, let 𝜙
∗
𝑓
be the

first phase after 𝜙 𝑓 in priority where thread 𝑝 is productive and

it serves a reference to block 𝐵 in [𝑟 ′
𝑓
, . . . , 𝑟 ′

𝑗
]. Let 𝜙𝑔 be the next

phase of priority after phase 𝜙∗
𝑓
that serves a reference to block 𝐵

where thread 𝑝 is productive. Both phase 𝜙∗
𝑓
and phase 𝜙𝑔 execute

𝑘/4 requests for thread 𝑝 (unless phase 𝜙𝑔 is the last phase for

thread 𝑝 .). Thus all the 𝑓 th through 𝑗th request to block 𝐵 are

served by priority in phase 𝜙∗
𝑓
or in phase 𝜙𝑔 , or in phases where

thread 𝑝 is not productive. Only phases 𝜙∗
𝑓
and 𝜙𝑔 might contribute

counts to 𝜂∗
priority

(Φ1), and together they contribute at most 2

to 𝜂∗
priority

(Φ1). Summing over all phases in Φ𝑂𝑃𝑇 proves the

lemma. □

Lemma 12. Suppose priority has 𝑍1 contested phases and opt has
𝑌 phases. Then 𝑍1 ≤ 5𝑌 .

Proof. From Lemma 11, 𝜂∗
priority

(Φ1) ≤ 2𝜂 (Φ𝑂𝑃𝑇). Also,
from Corollary 1, 𝜂∗

priority
(Φ1) ≥ (𝑘/2)𝑍1 and from Lemma 6,

𝜂 (Φ𝑂𝑃𝑇) ≤ (5𝑘/4)𝑌 . Combining these, we get 𝑍1 ≤ 5𝑌 . □

Lemma 13. Suppose priority has 𝑍2 uncontested phases and opt
has 𝑌 phases. Then 𝑍2 ≤ 𝑌 .

Proof. The proof is essentially the same as that for Lemma 4.

□

Proof of Theorem 1: Suppose that priority has 𝑍1 contested and

𝑍2 uncontested phases. Then priority’s makespan 𝑇 (priority)
satisfies the following:

𝑇 (priority) ≤ 𝑘 (𝑍1 + 𝑍2).
Suppose opt has 𝑌 phases. Using the results from Lemma 12 and

Lemma 13, we get the following:

𝑇 (priority) ≤ 6𝑘𝑌 .

However, from Observation 2,𝑇 (opt) ≥ (𝑘/4) (𝑌 −1). The theorem
follows, since

𝑇 (priority) ≤ 24𝑇 (opt) + 6𝑘 = 𝑂 (𝑇 (opt)).
□

Why do we use LRU for block replacement? Many arguments

in proofs above assume that all references to a blockwithin the same

phase cost at most one access to DRAM. This assumes that once a

block is brought in during a phase, it will stay in HBM for the rest

of the phase. Thus future accesses to that block in the same phase

are HBM hits. LRU is one way to ensure that new blocks coming in

do not knock out very-recently-fetched blocks. Our phases have at

most 𝑘 distinct blocks. Thus the blocks brought in during the phase

can all fit into HBM without evicting each other when using LRU.

5 FCFS WITH LRU IS NOT A GOOD POLICY IN
THE HBMMODEL

In this section we consider a very natural contention-resolution

policy FCFS for the DRAM-HBM channel with a widely used nat-

ural block replacement policy LRU. We show that the contention-

resolution policy FCFS with the block replacement policy LRU (let

us call it FCFS+LRU) works very poorly in the HBM model. We

prove the following theorem.

Theorem 2. There exists request sequences such that even with 𝑑
memory augmentation and 𝑠 bandwidth augmentation, the makespan
of FCFS+LRU is Θ(𝑝

𝑑𝑠
)-factor away from that of the optimal policy.

We give FCFS+LRU 𝑑-memory augmentation, that is, FCFS+LRU

has an HBM of size 𝑘 , whereas OPT has an HBM of size 𝑘/𝑑 . We

assume that 𝑑 divides 𝑘 . Given the memory augmentation 𝑑 , we set

𝑘 = 2𝑝𝑑 where 𝑝 is the number of cores. We could have chosen any

larger value of 𝑘 . Larger values of 𝑘 capture reasonable HBM sizes

and we would obtain the same lower bound. The request sequences

would need to be updated accordingly.

Proof.

𝑅𝑖 =
(ℓ+𝑖︷ ︸︸ ︷
𝑥𝑖
1
, 𝑥𝑖

1
, . . . , 𝑥𝑖

1
, . . . ,

ℓ+𝑖︷ ︸︸ ︷
𝑥𝑖𝑝−1, 𝑥

𝑖
𝑝−1, . . . , 𝑥

𝑖
𝑝−1︸ ︷︷ ︸

2𝑑−1 light phases

,

ℓ+𝑖︷ ︸︸ ︷
𝑥𝑖
1
, 𝑥𝑖

2
, . . . , 𝑥𝑖

𝑘/𝑝+1, 𝑥
𝑖
1
, 𝑥𝑖

2
, . . . , 𝑥𝑖

𝑘/𝑝+1, . . .︸ ︷︷ ︸
1 heavy phase

)𝜆
.

The request sequence of core 𝑝𝑖 is divided into phases of length

ℓ + 𝑖 . There are two types of phases: light phases and heavy phases.

In a light phase a single block is requested for ℓ + 𝑖 times. In a heavy

phase 𝑘/𝑝 + 1 blocks are requested in round-robin fashion until

length ℓ and then the last requested block is repeated for 𝑖 times.

The additive term 𝑖 in the length of a phase ensures synchronization

among the cores in the execution of FCFS+LRU. If all 𝑝 cores start

executing their corresponding light phases at the same time, then

Figure 2: The execution of FCFS+LRU. Boxes with grey color represent light phases and boxes with black color represents
heavy phases.

Figure 3: The execution of OPT. The sequences are shifted to align such that at most one set of cores run their heavy phases
simultaneously.

all finish at the same time. Similarly, if all 𝑝 threads start executing

their corresponding heavy phases, then all finish at the same time.

There are 2𝑑 − 1 light phases followed by a heavy phase. Together

these 2𝑑 phases are called a superphase. Request sequence 𝑅𝑖 is the

concatenation of such a super phase for 𝜆 times.

We divide the cores into 2𝑑 sets each containing
𝑝

2𝑑
cores. We

assume that 2𝑑 divides 𝑝 . Let P1 = {𝑝 𝑗 |1 ≤ 𝑗 ≤ 𝑝

2𝑑
} denote the

first set of
𝑝

2𝑑
cores, and P𝑖 = {𝑃 𝑗 |𝑖 𝑝

2𝑑
≤ 𝑗 ≤ (𝑖 + 1) 𝑝

2𝑑
} denote the

𝑖-th set of
𝑝

2𝑑
cores.

OPT has enough space in its HBM to hold a block of a light phase

from each core in (2𝑑 − 1) sets and 𝑘/𝑝 + 1 blocks of a heavy phase

from each core in one set. Recall that each set has 𝑝/2𝑑 cores.(
𝑘

𝑝
+ 1

)
𝑝

2𝑑
+ (2𝑑 − 1) 𝑝

2𝑑
=

𝑘

2𝑑
+ 𝑝.

= 𝑘/𝑑 putting 𝑘 = 2𝑝𝑑.

The execution of FCFS+LRU. As FCFS+LRU cannot see the fu-

ture, it starts executing all the cores simultaneously. All 𝑝 cores

start and finish their corresponding light phases at the same time.

Similarly, all the 𝑝 cores start and finish their corresponding heavy

phases at the same time. See Figure 2. As the total number of blocks

of 𝑝 heavy phases is larger than than size of HBM, every request in

the heavy phase incurs an HBM miss. Hence, all the heavy phases

run serially, thus taking at least 𝑝ℓ time steps. As there are 𝜆 su-

perphases and each superphase has one heavy phase, FCFS+LRU

takes at least 𝑇 (FCFS+LRU) = 𝑝ℓ𝜆 time steps to execute the whole

program.

The execution of OPT. The optimal policy OPT aligns the request

sequences such that no two cores run their heavy phases simul-

taneously. OPT does so by shifting the starting time of cores. It

starts executing cores in set P2 when cores in set P1 start their

2-nd phase. Similarly, OPT starts executing cores in set P3 when

cores in set P2 start their 2-nd phase. Note that cores in set P1 start

their 3-rd phase at the same time. In general, cores in set P𝑖+1 start
when cores in set P𝑖 start their 2-nd phase for 1 ≤ 𝑖 ≤ 2𝑑 − 1. After

this initial alignment, only 𝑝/2𝑑 cores from one set run their heavy

phase and all other cores run their corresponding light phases. As

the HBM of OPT has enough space to hold all the blocks of a heavy

phases from 𝑝/2𝑑 cores each and a light phase from each of the

rest of the cores, all the cores can progress simultaneously in every

phase. See Figure 3.

OPT runs heavy phases from at most one set of 𝑝/2𝑑 cores and

rest of the cores runs light phases. Together, 𝑘/𝑑 blocks are fetched

in 𝑘/𝑑 time steps and once all the blocks are in HBM, all 𝑝 cores can

run their phases in parallel, taking 𝑙 + 𝑝 time at most. Hence, OPT

finishes a phase in (𝑘/𝑑+ℓ+𝑝) = ℓ+3𝑝 time steps as 𝑘 = 2𝑝𝑑 . Recall

that a superphase has 2𝑑 phases and there are 𝜆 such superphases in

each request sequence. As OPT shifts the starting time of the request

sequences, OPT effectively runs 𝜆 + 1 superphases. OPT finishes a

superphase in (ℓ + 3𝑝)2𝑑 time steps. Choosing an appropriate value

of ℓ with respect to 𝑝 , we get (ℓ + 3𝑝)2𝑑 ≤ 3ℓ𝑑 . The whole program

finishes in 𝑇 (OPT) = 3ℓ𝑑 (𝜆 + 1) ≤ 4ℓ𝑑𝜆 time steps.

Competitive ratio of FCFS+LRU. Applying the makespan of

FCFS+LRU and OPT, we get the following competitive ratio of

FCFS+LRU.

𝑇 (FCFS+LRU)
𝑇 (OPT) ≥ 𝑝ℓ𝜆

4ℓ𝑑𝜆
=

𝑝

4𝑑

If FCFS+LRU gets 𝑠 bandwidth augmentation, then its running time

is reduced by at most a factor of 𝑠 as between HBM and DRAM 𝑠

blocks can be transferred in one time step. Hence, the competitive

ratio of FCFS+LRU becomes Θ
(𝑝
𝑠𝑑

)
and the theorem is proved.

□

6 NP-HARDNESS OF THE
MAKESPAN-MINIMIZATION PROBLEM

In this section we show that the offline makespan-minimization

problem is strongly NP-hard. Our proof is based on a polynomial-

time reduction from the strongly NP-hard problem 3-partition.

3-partition. Given a set 𝐴 = {𝑎1, 𝑎2, · · · , 𝑎3𝑛} of 3𝑛 integers such

that

∑
3𝑛
𝑖=1 𝑎𝑖 = 𝑛𝐵 and 𝐵/4 < 𝑎𝑖 < 𝐵/2 for each 1 ≤ 𝑖 ≤ 3𝑛, can

𝐼 = {1, 2, · · · , 3𝑛} be partitioned into disjoint sets 𝐼1, 𝐼2, · · · , 𝐼𝑛 , such
that

∑
𝑖∈𝐼 𝑗 𝑎𝑖 = 𝐵 for each 1 ≤ 𝑗 ≤ 𝑛?

Reduction. Given an instance of the 3-partition problem with

3𝑛 integers {𝑎1, 𝑎2, · · · , 𝑎3𝑛} and target sum 𝐵 for each subset,

we create an instance of the makespan-minimization problem

as follows. For each integer 𝑎𝑖 , we create a request sequence

𝑅𝑖 =

(
𝑟 𝑖
1
, 𝑟 𝑖
2
, . . . , 𝑟 𝑖𝑎𝑖

) ⌊4𝐵/𝑎𝑖 ⌋
, that is 𝑅𝑖 is formed by repeating(

𝑟 𝑖
1
, 𝑟 𝑖
2
, . . . , 𝑟 𝑖𝑎𝑖

)
for ⌊4𝐵/𝑎𝑖 ⌋ times. Recall that 𝑟 𝑖

𝑗
denotes the 𝑗-th

request in core 𝑝𝑖 ’s request sequence. Therefore, all the 3𝑛 request

sequences together have 𝑛𝐵 distinct blocks. We also create two

auxiliary request sequences 𝑇1 and 𝑇2 as follows.

Sequence 𝑇1 has length (3𝑛𝐵 + 𝑛 + 1) where the first 3𝑛𝐵 + 𝑛

requests are all distinct, but then the last request is a repeat of the

penultimate request.

𝑇1 = 𝑏1, 𝑏2, 𝑏3, . . . , 𝑏3𝑛𝐵+𝑛−1, 𝑏3𝑛𝐵+𝑛, 𝑏3𝑛𝐵+𝑛 .

Sequence 𝑇2 is a concatenation of 𝑛 rounds. Each round consists

of two consecutive phases. In the first phase of a round,𝑇2 requests

the same block for (2𝐵 + 1) times. In second phase, it requests 2𝐵

distinct blocks. Thus, each round is of length (4𝐵 + 1) and requests

(2𝐵 + 1) distinct blocks. Let 𝑥𝑖 = (2𝐵 + 1)𝑖 where 0 ≤ 𝑖 < 𝑛. Then,

𝑇2 =

2𝐵+1︷ ︸︸ ︷
𝑑1, 𝑑1, . . . , 𝑑1,

2𝐵︷ ︸︸ ︷
𝑑2, 𝑑3, . . . 𝑑2𝐵+1︸ ︷︷ ︸

Round 1

, . . . ,

2𝐵+1︷ ︸︸ ︷
𝑑𝑥𝑖+1, 𝑑𝑥𝑖+1, . . . , 𝑑𝑥𝑖+1,

2𝐵︷ ︸︸ ︷
𝑑𝑥𝑖+2, 𝑑𝑥𝑖+3, . . . , 𝑑𝑥𝑖+2𝐵+1︸ ︷︷ ︸

Round 𝑖

, . . .

There are (3𝑛 + 2) cores and the HBM size is (𝐵 + 2). Sequence
𝑇1 and 𝑇2 have (3𝑛𝐵 + 𝑛) and (2𝑛𝐵 + 𝑛) distinct block requests

respectively. Sequence 𝑅1, 𝑅2, . . . , 𝑅3𝑛 together have 𝑛𝐵 distinct

block requests. The total number of distinct blocks is (6𝑛𝐵 + 2𝑛).

Theorem 3. An instance of 3-partition has a solution if and only
if the derived makespan-minimization problem has a makespan of
(6𝑛𝐵 + 2𝑛 + 1).

Before proving Theorem 3, we first show some properties of any

schedule of the derived makespan-minimization problem instance

that has a makespan of 6𝑛𝐵 + 2𝑛 + 1.

Lemma 14. Suppose that there is a scheduleS with makespan 6𝑛𝐵+
2𝑛 + 1. Then S fetches a block from DRAM to HBM in every time step
except the last one.

Proof. There are a total of (6𝑛𝐵 + 2𝑛) distinct blocks. Hence,
there must be at least (6𝑛𝐵 + 2𝑛) HBM misses by any cache-

replacement policy. If the target makespan is (6𝑛𝐵 + 2𝑛 + 1), the
channel between the HBM and DRAM must always be busy except

for the last time step (used for transferring the last block from HBM

to a core). □

Observation 3. Suppose that there is a schedule S of the derived
makespan-minimization problem instance with makespan (6𝑛𝐵 +
2𝑛 + 1). Then S cannot evict a block from HBM unless the block is
not requested in the future.

Lemma 15. The schedules of the auxiliary cores 𝑇1 and 𝑇2 are fixed
in every solution of the derived makespan-minimization problem
instance that has a makespan of (6𝑛𝐵 + 2𝑛 + 1).

Proof. The target makespan is (6𝑛𝐵 + 2𝑛 + 1) and the last time

step is used to serve a block from HBM. Hence, the first (6𝑛𝐵 + 2𝑛)
time steps can be used to fetch blocks from DRAM to HBM. Since

𝑇1 requests (3𝑛𝐵 + 𝑛) distinct blocks, at every alternative time slot,

𝑇1 must use the HBM-DRAM channel. In particular, 𝑇1 must fetch

a block in the first time step. Otherwise, it can not finish within

the target makespan while fetching (3𝑛𝐵 + 𝑛) distinct blocks and
serving the last distinct block twice. Hence, the schedule of 𝑇1 is

fixed: it fetches every odd timestep.

Similarly, the schedule of𝑇2 is fixed. In the first time step, thread

𝑇1 brings in a block from DRAM. We show that in each of the

remaining (6𝑛𝐵 + 2𝑛) time steps, thread 𝑇2 either brings in a block

from DRAM or serves a block from HBM to its core. Recall that 𝑇2
has 𝑛 rounds. The first phase of each round takes (2𝐵 + 2) steps
because in the first step it brings a block from DRAM and serves

the same block for (2𝐵 + 1) steps. In the second phase, 𝑇2 fetches

2𝐵 distinct blocks in every alternating step of 4𝐵 time steps. Hence,

each round takes 6𝐵 + 2 steps. All 𝑛 rounds are finished in 6𝑛𝐵 + 2𝑛

steps. Since 𝑇2 starts executing at the second time step, it finishes

execution in time 6𝑛𝐵 + 2𝑛 + 1 (Figure 4). □

Let S be a schedule that has makespan (6𝑛𝐵 + 2𝑛 + 1). The
schedule of 𝑇1 and 𝑇2 are fixed. Except for the first time step, core

𝑇2 is either fetching a block from DRAM or serving a block from

HBM to the core. We say that when 𝑇2 finishes round 𝑖 , schedule

S finishes round 𝑖 . When 𝑇2 finishes the first phase of round 𝑖 ,

schedule S finishes the first phase of round 𝑖 and similarly for

phase 2 of round 𝑖 .

Observation 4. The auxiliary cores 𝑇1 and 𝑇2 always occupy one
block each in HBM.

Observation 5. LetS be a schedule that hasmakespan (6𝑛𝐵+2𝑛+1).
Then the first phase of each round of S has 𝐵 time steps when the
DRAM-HBM channel is used by neither 𝑇1 nor 𝑇2.

Lemma 16. Let S be a schedule that has makespan (6𝑛𝐵 + 2𝑛 + 1).
Then no core besides 𝑇1 and 𝑇2 runs in two rounds of S.

Proof. We prove this by contradiction. Let core 𝑝 run in rounds

𝑖 and 𝑗 . Core 𝑝 can fetch blocks only during the first phase of round

𝑖 . Since it continues to round 𝑗 , it could not fetch all its blocks in the

first phase. Otherwise, it could have finished its round-robin phase

in the second phase of round 𝑖 . That means some of the blocks that

are fetched in round 𝑖 , will be used in round 𝑗 in the round-robin

Figure 4: Each box represents a time step. Boxes with labels 𝑻1 and 𝑻2 denote that cores 𝑻1 and 𝑻2 fetch a block from DRAM
respectively. A box without any label denotes that one of the 3𝒏 cores fetches a block from DRAM. The first phase has 𝑩 boxes
without labels. Each box in the second phase is labelled by either 𝑻1 or 𝑻2.

phase. From Observation 3, we know that once a block is fetched,

it can not be kicked out unless it is not requested later. This implies

that some blocks in HBM must be held for core 𝑝 in round 𝑗 .

There are 𝐵 free time slots in round 𝑗 and the HBM has 𝐵 blocks

left for cores other than𝑇1 and𝑇2. If some block is already occupied

by some core at round 𝑗 , then at least one time slot cannot bring in a

block during the first phase of round 𝑗 . This contradicts Lemma 14.

□

Lemma 17. Let S be a schedule that has makespan (6𝑛𝐵 + 2𝑛 + 1).
Then exactly three cores besides 𝑇1 and 𝑇2 can run in a round of S.

Proof. No core besides 𝑇1 and 𝑇2 runs in two rounds. The core

associated with integer 𝑎𝑖 accesses 𝑎𝑖 distinct blocks, so during the

round where that core runs, it must read in 𝑎𝑖 blocks during the 𝐵

time slots when neither thread 𝑇1 nor thread 𝑇2 are accessing the

DRAM. Since 𝐵/4 < 𝑎𝑖 < 𝐵/2 for all 𝑎𝑖 , at most three cores can

share a round. Since there are 3𝑛 cores associated with integers

𝑎𝑖 and only 𝑛 blocks, then at least three blocks must run in any

round. □

Proof of Theorem 3. Suppose that there is a solution to the 3-

partition instance. The solution is a partition of 3𝑛 integers into 𝑛

disjoint sets such that the sum of the integers in each set is 𝐵. We

create a schedule of the derived makespan-minimization problem

instance using the solution of the 3-partition instance. We schedule

𝑇1 and 𝑇2 as shown in Figure 4. There are 𝑛 rounds in the schedule.

The first phase in each round has 𝐵 time-steps when neither𝑇1 nor

𝑇2 use the HBM-DRAM channel. If the first set in the solution of

3-partition has integers 𝑎𝑖 , 𝑎 𝑗 and 𝑎𝑘 , we schedule core 𝑝𝑖 , 𝑝 𝑗 and

𝑝𝑘 in the first round. Recall that 𝑝𝑖 has 𝑎𝑖 distinct blocks. These

three cores fetch a total of 𝐵 blocks in the first phase of the first

round and they execute the remaining round-robin accesses to

these blocks by the end of the second phase of the round. The

second phase has length 4𝐵 and the length of the request sequence

of each core representing 𝑎𝑖 is at most 4𝐵. Hence, 𝑝𝑖 , 𝑝 𝑗 and 𝑝𝑘
finish their execution in the second phase. Similarly, for each set in

the 3-partition solution, we schedule the cores accordingly. As the

𝑛 rounds finish in time 6𝑛𝐵 + 2𝑛 + 1, we have the target makespan.

Now suppose that there is a makespan of (6𝑛𝐵 + 2𝑛 + 1). Then
from lemma 17, exactly three cores can run in a round. This gives

a mapping from 3𝑛 cores to 𝑛 rounds. As three cores are running

in a round and total free slots (also total number of distinct blocks

in these three cores) are 𝐵, this gives a 3-partition solution. Hence,

minimize-makespan is strongly NP-hard. □

7 PERFORMANCE METRIC IN HBMMODEL
In this section we show that minimizing a traditional scheduling

performance metric like makespan is better for the HBM model

than minimizing the number of HBM misses. In particular we show

there exist request sequences where any policy that minimizes the

number of HBM misses can have arbitrarily bad running time. We

prove the following theorem.

Theorem 4. There exist 𝑝 request sequences such that any pol-
icy that minimizes the number of HBM misses when serving the se-
quences has a makespan that is a Θ(𝑝) factor larger than the optimal
makespan.

Proof. There are 𝑝 cores and the HBM has size 𝑘 . The request

sequence 𝑅𝑖 for core 𝑝𝑖 has length 𝑛 + 2𝑘 and uses 𝑘 distinct blocks.

The first 𝑛 requests are 𝑛𝑝/𝑘 round-robin repetitions of 𝑘/𝑝 blocks.

Then there are two round-robin repetitions of all 𝑘 blocks. We call

the last two length-𝑘 subsequences large passes.

𝑅𝑖 =

𝑛︷ ︸︸ ︷
𝑥𝑖
1
, 𝑥𝑖

2
, . . . 𝑥𝑖

𝑘/𝑝︸ ︷︷ ︸
𝑘/𝑝

, . . . 𝑥𝑖
1
, 𝑥𝑖

2
, . . . 𝑥𝑖

𝑘/𝑝︸ ︷︷ ︸
𝑘/𝑝

,

2𝑘︷ ︸︸ ︷
𝑥𝑖
1
, 𝑥𝑖

2
, . . . 𝑥𝑖

𝑘︸ ︷︷ ︸
𝑘

, 𝑥𝑖
1
, 𝑥𝑖

2
, . . . 𝑥𝑖

𝑘︸ ︷︷ ︸
𝑘

.

Because each core requests exactly 𝑘 blocks in total, which ex-

actly fills the size-k HBM, the fewest possible HBM misses is 𝑘𝑝 .

This is achievable, for example, by running the request sequence for

each core serially. Thus any policy that minimizes the HBM misses

cannot evict a block once it is fetched from DRAM to HBM until

its last reference is executed. Otherwise, there are at least 𝑘𝑝 + 1

HBM misses, which is not optimal.

The makespan of a single thread (i.e. when 𝑝 = 1) is 𝑛 + 3𝑘 .

Serving the first 𝑘/𝑝 requests requires two time steps per element:

one to bring the block in from DRAM and another to serve it from

HBM to the core. The next 𝑛 requests are HBM hits, so require one

step each. These are the last 𝑛 −𝑘/𝑝 requests in the first part of the

sequence and the first 𝑘/𝑝 requests in the first large pass. Serving

the remaining 𝑘 − 𝑘/𝑝 blocks in the first large pass requires two

ticks each, and the final large pass requires 𝑘 time steps. In all that

is 2𝑘/𝑝 + 𝑛 + 2(𝑘 − 𝑘/𝑝) + 𝑘 = 𝑛 + 3𝑘 .

The last time each block is accessed by its core is during the last

large pass. For a minimum-miss execution, if the threads execute in

order, cores 𝑝𝑖 and 𝑝𝑖+1 can overlap for at most 𝑘 time steps. Core

𝑝𝑖+1 can bring in its first block when 𝑥𝑖
1
is accessed for the last time

at the start of the last large pass for 𝑅𝑖 . In general the execution of

𝑅𝑖 can overlap at most 𝑘 with both 𝑅𝑖−1 and 𝑅𝑖+1. So each sequence

overlaps for 2𝑘 timeslots, except the first and last, which overlap

for only 𝑘 time slots. LetMinimumMisses represent any policy that
minimizes the number of HBM misses. Then we have.

𝑇 (MinimizeMisses) ≥ 𝑝 (𝑛 + 𝑘) + 2𝑘.

There is a feasible policy that runs faster for sufficiently large 𝑛.

It brings the first 𝑘/𝑝 blocks for each thread into the HBM. Because

threads can interleave, this requires time at most 𝑘 . Then it can

execute all 𝑝 threads in parallel for their first 𝑛 block requests with

no HBMmisses. The last two rounds for each core are almost serial-

ized. Each core requires 2𝑘 time to bring in its 𝑘 blocks, interleaved

with reading the blocks the first time. There is one more time step

to reread the first block before the next core can start bringing in

its blocks. Thus each core controls the DRAM channel for 2𝑘 + 1

time steps, and there are 𝑘 steps at the end for the last sequence to

finish. This is a loose analysis, since threads can start executing the

first round robins as soon as their blocks are in and the first core

can start bringing in the rest of its first large pass as other threads

are finishing their first round robins. Still we have an upper bound

on the time to execute this strategy:

𝑇 (OPT) ≤ 2𝑘 + 𝑛 + 𝑝 (2𝑘 + 1) .
Setting 𝑛 = 𝑝 (2𝑘 + 1) suffices to show

𝑇 (MinimizeMisses) ≥ 𝑝

2

𝑇 (OPT) .

Hence, the makespan of MinimizeMisses is a Θ(𝑝)-factor larger
than the optimal makespan.

□

Acknowledgments
This research was supported in part by the Laboratory Directed

Research and Development program at Sandia National Laborato-

ries, a multi-mission laboratory managed and operated by National

Technology and Engineering Solutions of Sandia, LLC., a wholly

owned subsidiary of Honeywell International, Inc., for the U.S. De-

partment of Energy’s National Nuclear Security Administration

under contract DE-NA0003525.

This research was also supported by NSF grants CCF-1725543,

CSR-1763680, CCF-1716252, CCF-1617618, CNS-1938709, CCF-

1439084, CCF-1733873, CCF-1527692,CCF-1824303, CCF-1845146,

and CMMI-1938909, as well as by a Google Research Award, an

Infor Research Award, and a Carnegie Bosch Junior Faculty Chair.

We thank Si Hammond and Gwen Voskuilen from Sandia Na-

tional Laboratories for sharing their computer architecture exper-

tise.

8 DISCUSSION/FUTUREWORK
In this paper, we present the first theoretical discussion of automatic

algorithms to manage high-bandwidth memory by (1) presenting a

simple theoretical model for such memories; (2) arguing that the

obvious cost metric of minimizing HBM misses is misleading; (3)

showing that the far-channel arbitration policy is the key piece

of using HBM efficiently and that the obvious FCFS policy does

not work; and (4) designing simple but counterintuitive constant-

competitive algorithms for HBM management.

Our model of HBM necessarily makes some simplifying assump-

tions — in particular, we assume that the HBM channel ratio — the

ratio of the number of near channels to the number of far channels

— is 𝑝 , the number of cores. This gives a clean first model for an-

alyzing the effect of uneven bandwidth. The actual HBM channel

ratio, on today’s architectures [26, 46, 47], is smaller (e.g. roughly

5 in the Intel Knights Landing). We argue that our model is still

asymptotically realistic since the true cache hierarchy bundled with

HBM increases the effective channel ratio. In real computations

such as the sorting algorithms of [20], the ratio of the number of

accesses to bundled HBM (true cache plus HBM), is indeed roughly

𝑝 times the number of DRAM accesses. Furthermore, HBM channel

ratio is likely to increase in the near future [43].

There are a number of relevant theoretical and practical ques-

tions we leave for future work. For instance, we would like to

understand the practical impact of this work. Motivated by the

discussion of the work by Butcher et al. [20] in Section 1.2, suppose

that an HBM manufacturer like Intel had known about prioritized

far-channel arbitration when they were creating the relevant sys-

tem software. Might a differently-designed cache mode have given

(for example) GNU::parallel a speedup of 1.5X over what it gets

now? From the algorithm design perspective, we can ask the fol-

lowing questions: (1) Is there a solution to the makespan problem

when the request sequences are not disjoint. (2) Relatedly, we cur-

rently consider the 𝑝 cores to be running their own independent

sequential jobs; what if the cores were running one (or more) par-

allel job(s)? (3) What kind of far-channel arbitration policy works

with other block replacement policies, for instance, direct-mapped

cache? (4) What if we made our model more general where the

far channel bandwidth was asymptotically larger than 1, but still

asymptotically smaller than 𝑝?

REFERENCES
[1] High-performance on-package memory, January 2015. http://www.micron.com/

products/hybrid-memory-cube/high-performance-on-package-memory.

[2] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir. A model for hierarchical

memory. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, pages 305–314, May 1987.

[3] A. Aggarwal, A. Chandra, and M. Snir. Communication complexity of PRAMs.

Theoretical Computer Science, pages 3–28, March 1990.

[4] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, Sept. 1988.

[5] K. Agrawal, M. Bender, R. Das, W. Kuszmaul, E. Peserico, and M. Scquizzato.

Brief announcement: Green paging and parallel paging. In Proc. 32st ACM on
Symposium on Parallelism in Algorithms and Architectures, 2020.

[6] M. Andrews, M. A. Bender, and L. Zhang. New algorithms for the disk scheduling

problem. In Proc. 37th Annual Symposium on Foundations of Computer Science
(FOCS), pages 580–589, 1996.

[7] M. Andrews, M. A. Bender, and L. Zhang. New algorithms for the disk scheduling

problem. Algorithmica, 32(2):277–301, February 2002.

[8] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava. Fundamental parallel

algorithms for private-cache chip multiprocessors. In Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
197–206, 2008.

[9] R. Barve and J. S. Vitter. External memory algorithms with dynamically changing

memory allocations. Technical report, Duke University, 1998.

[10] M. Bender, R. Chowdhury, R. Das, R. Johnson, W. Kuszmaul, A. Lincoln, Q. Liu,

J. Lynch, and H. Xu. Closing the gap between cache-oblivious and cache-adaptive

analysis. In Proc. 32st ACM on Symposium on Parallelism in Algorithms and
Architectures, 2020.

[11] M. A. Bender, J. Berry, S. D. Hammond, K. S. Hemmert, S. McCauley, B. Moore,

B. Moseley, C. A. Phillips, D. Resnick, and A. Rodrigues. Two-level main mem-

ory co-design: Multi-threaded algorithmic primitives, analysis, and simulation.

In Proc. 29th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Hyderabad, INDIA, May 2015.

[12] M. A. Bender, J. W. Berry, S. D. Hammond, K. S. Hemmert, S. McCauley, B. Moore,

B. Moseley, C. A. Phillips, D. Resnick, and A. Rodrigues. Two-level main mem-

ory co-design: Multi-threaded algorithmic primitives, analysis, and simulation.

Journal of Parallel and Distributed Computing, 102:213–228, 2017.
[13] M. A. Bender, J. W. Berry, S. D. Hammond, K. S. Hemmert, S. McCauley, B. Moore,

B. Moseley, C. A. Phillips, D. S. Resnick, and A. Rodrigues. Two-level main mem-

ory co-design: Multi-threaded algorithmic primitives, analysis, and simulation.

Journal of Parallel and Distributed Computing, 102:213–228, 2017.
[14] M. A. Bender, J. W. Berry, S. D. Hammond, B. Moore, B. Moseley, and C. A.

Phillips. k-means clustering on two-level memory systems. In B. Jacob, editor,

Proc. 2015 International Symposium on Memory Systems, (MEMSYS), pages 197–
205, Washington DC, USA, October 2015.

[15] M. A. Bender, A. Conway, M. Farach-Colton, W. Jannen, Y. Jiao, R. Johnson,

E. Knorr, S. McAllister, N. Mukherjee, P. Pandey, D. E. Porter, J. Yuan, and Y. Zhan.

Small refinements to the dam can have big consequences for data-structure design.

In Proc. 31st ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 265–274, Phoenix, AZ, June 2019.

[16] M. A. Bender, E. D. Demaine, R. Ebrahimi, J. T. Fineman, R. Johnson, A. Lincoln,

J. Lynch, and S. McCauley. Cache-adaptive analysis. In Proc. 28th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 135–144, July 2016.

[17] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh, R. Johnson, and

S. McCauley. Cache-adaptive algorithms. In Proc. 25th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 958–971, Portland, OR, USA, January 2014.

[18] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran, S. Chen, and

M. Kozuch. Provably good multicore cache performance for divide-and-conquer

algorithms. In Proceedings of the nineteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 501–510. Society for Industrial and Applied Mathematics,

2008.

[19] A. Borodin, P. Raghavan, S. Irani, and B. Schieber. Competitive paging with

locality of reference. In Proceedings of the twenty-third annual ACM symposium
on Theory of computing, pages 249–259. Citeseer, 1991.

[20] N. Butcher, S. L. Olivier, J. Berry, S. D. Hammond, and P. M. Kogge. Optimizing

for knl usage modes when data doesn’t fit in mcdram. In Proceedings of the 47th
International Conference on Parallel Processing, page 37. ACM, 2018.

[21] C. Byun, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally, M. Houle,

M. Hubbell, M. Jones, A. Klein, et al. Benchmarking data analysis and ma-

chine learning applications on the intel knl many-core processor. arXiv preprint
arXiv:1707.03515, 2017.

[22] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. E. Blelloch,

B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, et al. Scheduling threads for

constructive cache sharing on cmps. In Proceedings of the nineteenth annual ACM
symposium on Parallel algorithms and architectures, pages 105–115. ACM, 2007.

[23] R. Cole and V. Ramachandran. Bounding cache miss costs of multithreaded com-

putations under general schedulers. In Proceedings of the 29th ACM Symposium

on Parallelism in Algorithms and Architectures, pages 351–362, 2017.
[24] R. Das, S.-Y. Tsai, S. Duppala, J. Lynch, E. M. Arkin, R. Chowdhury, J. S. Mitchell,

and S. Skiena. Data races and the discrete resource-time tradeoff problem with

resource reuse over paths. In The 31st ACM on Symposium on Parallelism in
Algorithms and Architectures, pages 359–368, 2019.

[25] A. S. de Loma. New results on fair multi-threaded paging. Electronic Journal of
SADIO, 1(1):21–36, 1998.

[26] D. W. Doerfler. Trinity: Next-generation supercomputer for the asc program.

Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United

States), 2014.

[27] E. Feuerstein and A. S. de Loma. On-line multi-threaded paging. Algorithmica,
32(1):36–60, 2002.

[28] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young.

Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.
[29] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

algorithms. In Proc. 40th Annual ACM Symposium on Foundations of Computer
Science (FOCS), pages 285–297, 1999.

[30] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

algorithms. ACM Transactions on Algorithms, 8(1):4, Jan. 2012.
[31] A. Hassidim. Cache replacement policies for multicore processors. In A. C. Yao,

editor, Proc. Innovations in Computer Science (ICS), pages 501–509, 2010.
[32] M. M. Javanmard, P. Ganapathi, R. Das, Z. Ahmad, S. Tschudi, and R. Chowdhury.

Toward efficient architecture-independent algorithms for dynamic programs. In

International Conference on High Performance Computing, pages 143–164. Springer,
2019.

[33] A. K. Katti and V. Ramachandran. Competitive cache replacement strategies

for shared cache environments. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, pages 215–226. IEEE, 2012.

[34] http://www.hpcwire.com/2014/06/24/micron-intel-reveal-memory-slice-

knights-landing/.

[35] P. Kogge and J. Shalf. Exascale computing trends: Adjusting to the" new nor-

mal"’for computer architecture. Computing in Science & Engineering, 15(6):16–26,
2013.

[36] A. Li, W. Liu, M. R. Kristensen, B. Vinter, H. Wang, K. Hou, A. Marquez, and S. L.

Song. Exploring and analyzing the real impact of modern on-package memory

on hpc scientific kernels. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, page 26, 2017.

[37] A. Lincoln, Q. C. Liu, J. Lynch, and H. Xu. Cache-adaptive exploration: Exper-

imental results and scan-hiding for adaptivity. In Proc. 30th on Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 213–222, 2018.

[38] A. López-Ortiz and A. Salinger. Paging for multi-core shared caches. In Pro-
ceedings of the 3rd Innovations in Theoretical Computer Science Conference, pages
113–127. ACM, 2012.

[39] http://nnsa.energy.gov/mediaroom/pressreleases/trinity.

[40] E. Peserico. Paging with dynamic memory capacity. CoRR, abs/1304.6007, 2013.
[41] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory access

scheduling. In ACM SIGARCH Computer Architecture News, volume 28, pages

128–138. ACM, 2000.

[42] S. S. Seiden. Randomized online multi-threaded paging. Nordic Journal of
Computing, 6(2):148–161, 1999.

[43] Semiconductor Engineering. What’s next for high bandwidth memory? https:

//semiengineering.com/whats-next-for-high-bandwidth-memory/, December

2019.

[44] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging

rules. Commun. ACM, 28(2):202–208, Feb. 1985.

[45] G. M. Slota and S. Rajamanickam. Experimental design of work chunking for

graph algorithms on high bandwidth memory architectures. In 2018 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pages 875–884.
IEEE, 2018.

[46] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hutsell,

R. Agarwal, and Y.-C. Liu. Knights landing: Second-generation intel xeon phi

product. Ieee micro, 36(2):34–46, 2016.
[47] J. Wells, B. Bland, J. Nichols, J. Hack, F. Foertter, G. Hagen, T. Maier, M. Ashfaq,

B. Messer, and S. Parete-Koon. Announcing supercomputer summit. Technical

report, ORNL (Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United

States)), 2016.

http://www.micron.com/products/hybrid-memory-cube/high-performance-on-package-memory
http://www.micron.com/products/hybrid-memory-cube/high-performance-on-package-memory
http://www.hpcwire.com/2014/06/24/micron-intel-reveal-memory-slice-knights-landing/
http://www.hpcwire.com/2014/06/24/micron-intel-reveal-memory-slice-knights-landing/
http://nnsa.energy.gov/mediaroom/pressreleases/trinity
https://semiengineering.com/whats-next-for-high-bandwidth-memory/
https://semiengineering.com/whats-next-for-high-bandwidth-memory/

	Abstract
	1 Introduction
	1.1 Results
	1.2 Related Work

	2 HBM Model
	3 Technical Overview
	4 O(1)-Competitive Online Algorithm for HBM Block Management
	4.1 Constant-approximation offline algorithm
	4.2 Online algorithm

	5 FCFS with LRU is not a Good Policy in the HBM Model
	6 NP-hardness of the Makespan-minimization Problem
	7 Performance Metric in HBM Model
	8 Discussion/Future Work
	References

