
Scheduling Parallelizable Jobs Online to Minimize the
Maximum Flow Time

Kunal Agrawal Jing Li Kefu Lu Benjamin Moseley
Washington University in St. Louis.

{kunal, li.jing, kefulu, bmoseley}@wustl.edu

ABSTRACT
In this paper we study the problem of scheduling a set of dy-
namic multithreaded jobs with the objective of minimizing
the maximum latency experienced by any job. We assume
that jobs arrive online and the scheduler has no information
about the arrival rate, arrival time or work distribution of
the jobs. The scheduling goal is to minimize the maximum
amount of time between the arrival of a job and its com-
pletion — this goal is referred to in scheduling literature as
maximum flow time. While theoretical online scheduling of
parallel jobs has been studied extensively, most prior work
has focussed on a highly stylized model of parallel jobs called
the “speedup curves model.” We model parallel jobs as di-
rected acyclic graphs, which is a more realistic way to model
dynamic multithreaded jobs.

In this context, we prove that a simple First-In-First-
Out scheduler is (1 + ε)-speed O(1

ε
)-competitive for any

ε > 0. We then develop a more practical work-stealing
scheduler and show that it has a maximum flow time of
O(1

ε2
max{OPT, ln(n)}) for n jobs, with (1+ ε)-speed. This

result is essentially tight as we also provide a lower bound
of Ω(log(n)) for work stealing. In addition, for the case
where jobs have weights (typically representing priorities)
and the objective is minimizing the maximum weighted flow
time, we show a non-clairvoyant algorithm is (1 + ε)-speed
O(1

ε2
)-competitive for any ε > 0, which is essentially the

best positive result that can be shown in the online setting
for the weighted case due to strong lower bounds without
resource augmentation.

After establishing theoretical results, we perform an em-
pirical study of work-stealing. Our results indicate that, on
both real world and synthetic workloads, work-stealing per-
forms almost as well as an optimal scheduler.

1. INTRODUCTION
In today’s systems, response time, or latency, is often a

very important measure of performance. For interactive ser-
vices on clouds and servers, the platform scheduler is often

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA ’16, July 11-13, 2016, Pacific Grove, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935782

interested in minimizing the maximum latency experienced
by a job once it has been submitted to be processed. In
addition, these services often run on large parallel machines
with many processors and it is important to utilize these
parallel machines efficiently to process these requests. In
this paper, we consider the problem of minimizing the max-
imum latency or maximum flow time. Formally, given n
parallel jobs and a parallel machine with m processors, the
scheduling goal is to minimize the amount of time between
a job’s arrival and its completion, over all jobs. We consider
the online version of this problem, where jobs arrive dynam-
ically. The objective of maximum flow time is the natural
generalization of the makespan1 objective to the case where
jobs arrive over time. We also assume that the scheduler has
no knowledge of the job arrival times or work distribution.

This paper focuses on parallel programs expressed through
dynamic multithreading2 (see [9, Ch. 27]), which is com-
mon in many parallel languages and libraries, such as Cilk
dialects [14, 19], Intel TBB [25], Microsoft Parallel Pro-
gramming Library [7] and OpenMP [23]. In these paral-
lel languages, programmers express algorithmic parallelism,
through linguistic constructs such as “spawn” and “sync,”
“fork” and “join,” or parallel for loops. On the other hand,
programmers do not need to provide any mapping from sub-
computations to processors — it is the job of the scheduler
to execute the work of each job onto processors efficiently.

Scheduling a single dynamic multithreaded program has
been studied extensively in the parallel computing litera-
ture. Parallel runtime systems generally use work-stealing
as a scheduler since it is known to be an efficient scheduler
for such programs both theoretically and in practice [14, 5].
A single parallel program having W work — the running
time on 1 processor, and P critical-path length — the length
of the critical path (the longest path in the program), can
be executed in O(W/m+ P) (expected) time on m proces-
sors (or workers) using a work-stealing scheduler. This run-
ning time is asymptotically optimal and guarantees linear
speedup for programs with sufficient parallelism.

However, the problem of how to schedule these parallel
programs in multiprogrammed environments where a qual-
ity of service guarantee must be provided is not well studied.
There has been some prior work on how to allocate proces-
sors to programs in a fair and efficient manner [1] and some
further work on using it to provide mean completion time

1The makespan of a schedule is the time that last job com-
pletes and this objective is popular when all jobs arrive at
the same time.
2Dynamic multithreading is also called fork-join parallelism.

195

http://dx.doi.org/10.1145/2935764.2935782

guarantees [16] and average flow time guarantees [2], but
none of the work considers maximum flow time.

On the other hand, the multiprogrammed scheduling
problem is well-studied for the case where each job is se-
quential, i.e. can only use one processor at a time. In par-
ticular, it is known that the algorithm First-In-First-Out
(FIFO) is (3/2 − 1

m
)-competitive [3, 4]. A related problem

that has been considered for sequential jobs is when jobs
have weights where weight represents some sort of priority
of the job (not necessarily correlated with the job’s work).
In this case, the scheduler is interested in minimizing the
maximum weighted flow time. For this setting, it is known
that any algorithm is Ω(W .4)-competitive where W is the
ratio of the maximum weight to minimum weight. This is
true even when jobs are sequential and unit sized [8].

Due to this strong lower bound, previous work has con-
sidered a resource augmentation analysis [20] where the al-
gorithm is given extra speed over the adversary. An s-
speed c-competitive algorithm achieves a competitive ratio
of c when given processors s times the speed of the opti-
mal schedule. An ideal algorithm is (1 + ε)-speed O(f(ε))-
competitive for any ε > 0 where f(ε) is some function that
only depends on ε. That is, an algorithm which achieves con-
stant competitiveness with the minimum possible resource
augmentation. Such an algorithm is referred to as scalable.
Finding a scalable algorithm is the best positive result one
can hope for when strong lower bounds exists without re-
source augmentation. For jobs with weights, a scalable al-
gorithm is known when jobs are sequential [8].

In this paper, we present several theoretical results for
minimizing maximum flow time for dynamic multithreaded
jobs. These are the first known non-trivial results for max-
imum flow time in the DAG model. We refer the reader to
Section 8 for work in related parallel models. All of the algo-
rithms considered in this paper are non-clairvoyant, mean-
ing that they have no prior knowledge of the size or structure
of the jobs or when they arrive. In particular, our contribu-
tions are as follows:

1. We start with an idealized FIFO scheduler — at each
time step, FIFO looks at jobs in the order of arrival and
allocates each job as many processors it can use until it
runs out of jobs or processors. We prove that FIFO is
(1 + ε)-speed O(1

ε
)-competitive (Section 3).

2. We then generalize the result to work stealing (Section 4).
Work stealing is a practical and efficient scheduler that
is used in many parallel languages and libraries. In com-
parison, an implementation of the ideal FIFO scheduler
is likely to have high overhead since it is centralized and
potentially preempts jobs and re-allocates processors at
every time step. For work stealing, we prove that a ver-
sion of it, called admit-first, is scalable for “reasonable
jobs”. In particular, we show that admit-first with (1+ε)-
speed has maximum flow time O(1

ε2
max{OPT, ln(n)})

over n jobs for any fixed ε > 0 with high probability.
Note that if any job has span Ω(lg n) or work Ω(m lgn),
then OPT ≥ lnn and admit-first is scalable with (1 + ε)-
speed O(1

ε2
)-competitive with high probability.

3. We introduce a generalization of admit-first scheduler,
called steal-k-first. Our goal in this generalization is to
design a work-stealing scheduler that is closest to FIFO
since intuitively FIFO is the ‘right’ scheduling policy for
maximum flow time, but is inefficient in implementation.
Steal-k-first is parameterized by k. Intuitively as k be-

comes larger, this algorithm becomes closer to the FIFO
scheduler. Theoretically, this scheduler is (k + 1 + ε))-
speed O(1

ε2
max{OPT, ln(n)})-competitive for any ε > 0

and k ≥ 0. It reduces to admit-first when k = 0.

4. We also provide a lower bound showing that the compet-
itive ratio of work-stealing is Ω(lg n) — that is, if all jobs
are tiny with work o(lgn), then work stealing cannot be
scalable due to the randomization involved (Section 5).
This shows that our upper bound is close to being tight.

5. We implemented admit-first and steal-k-first in Thread
Building Block (TBB) and compare their performance
with a simulated optimal scheduler on realistic and syn-
thetic workloads. Evaluation results shows that a work
stealing scheduler (especially steal-k-first) have compa-
rable performance to the optimal scheduler (Section 6).

6. Finally, we consider the case where jobs have weights
and show a non-clairvoyant algorithm Biggest-Weight-
First (BWF) is (1 + ε)-speed O(1

ε2
)-competitive for any

ε > 0, which is the best positive result that can be shown
in the online setting for the weighted case (Section 7).

2. PRELIMINARIES
In the online scheduling problem of multiple jobs, n jobs

arrive over time and are scheduled on m identical processors.
Each job Ji has an arrival (release) time ri, which is the first
time an online scheduler is aware of the job. Each job could
have a weight wi — this weight is known to the scheduler
when the job arrives and may not be correlated to the work
of the job. For the unweighted setting, wi = 1 for all jobs.

When analyzing the performance of a scheduling algo-
rithm, we denote ci as the completion time of job Ji in the
algorithm’s schedule. We denote Fi = ci − ri as the flow
time of job Ji in the algorithm’s schedule. The goal of the
scheduler is to minimize maxi∈[n] wiFi.

A dynamic multithreaded job Ji can be represented as a
Directed-Acyclic-Graph (DAG) Gi. Each node (task) v
in Gi has an associated processing time pv and the node
must be processed sequentially on a processor for pv time
to be completed. A node in Gi cannot be executed until all
of its predecessors in Gi have been executed. We say that a
node is ready if all of its predecessors have been processed.
Multiple ready nodes for the same job can be scheduled si-
multaneously. A job is completed only once all of the nodes
in its DAG have been completely processed. Note that we do
not assume that the scheduler knows the DAG in advance;
in fact, the DAG unfolds dynamically as the job executes.

Symbol Definition
ci completion time of job Ji in schedule
ri arrival time of job Ji
Fi flowtime of job Ji
Pi the critical path length of Ji
m the number of processors
wi the weight of job Ji
OPT optimal schedule and also optimal objective

Table 1: Symbols and Definitions

Dynamic multithreaded jobs can be characterized by two
important parameters. The critical-path length Pi of job
Ji is defined to be the execution time of Ji if it were sched-
uled continuously on an infinite number of processors. Al-
ternatively, it is defined to be the length of the longest path

196

in Gi, where each node v in the longest path contributes pv
to the length of the path. Note that Pi is a lower bound on
the execution time of Ji for any scheduler. The Work Wi of
job Ji is the execution time on 1 processor; or alternatively,
the sum of the processing times of all the nodes in the DAG.
We summarize some of the notations in Table 1.

The following proposition is well-known and has been
shown in several works, for example [22]. The proposition
states that any time a scheduler is working on all the ready
nodes for some job Jj , then the scheduler must be decreasing
the remaining critical path of Jj .

Proposition 2.1. If during each time step during a time
interval [t′, t], a scheduler of speed s is always scheduling all
available nodes for a job Jj, then the scheduler reduces the
critical path length of Ji by s(t− t′).

Difficulties of Analyzing Algorithms in the DAG
Model. For scheduling sequential jobs, previous analyses
for maximum flow time follows by showing that the algo-
rithm A under consideration cannot fall behind for more
than mpmax where pmax is the maximum processing time of
a job. The is because either the algorithm A has less than
m jobs and so there can be at most mpmax total work for
unsatisfied jobs in its queue; or it has more than m jobs, but
then the algorithm A cannot fall behind much since it will
always be using all m processors.

Unfortunately, this argument is no longer straightforward
for DAGs. To see this, consider unweighted flow time and let
OPT denote the objective of the optimal solution. Note that
in the sequential setting, OPT ≥ pmax. In contrast, in the
DAG model, some jobs could have work Θ(mOPT). Now,
even if the algorithm A under consideration has fewer than
m unsatisfied jobs, it can have a total work of Θ(m2OPT)
in its queue — allowing it to fall very far behind OPT. Thus,
it is difficult to directly bound the amount of work an algo-
rithm falls behind the OPT just as a function of the num-
ber of jobs in the algorithm’s schedule. To prove that the
algorithm does not fall far behind the optimal solution, a
necessary condition for an algorithm to be competitive for
maximum flow time, we instead identify times where the
algorithm must not be too far behind the optimal solution
and then show that the algorithm must not fall behind much
further following those times.

On an additional note, most previous work on scheduling
parallel jobs is in the arbitrary speedup curves model (see
Section 8) for some details) and uses a potential function
argument (see [17] for a tutorial). Unfortunately, there are
currently no known potential function proofs for maximum
flow time unlike for other objectives.

3. UNWEIGHTED MAXIMUM FLOW
TIME USING FIFO

In this section our goal is to prove the following theo-
rem stating that the algorithm First-In-First-Out (FIFO) is
(1+ε)-speed O(1

ε
)-competitive for minimizing the maximum

unweighted flow time for any 0 < ε < 1.

Theorem 3.1. First-in-First-Out (FIFO) is (1+ ε) speed
O(1

ε
) competitive for minimizing the maximum unweighted

flow time for any ε > 0.

FIFO is defined as follows. At any time t, FIFO orders
the jobs in increasing order by their arrival time, breaking

ties arbitrarily. The algorithm then assigns all of the ready
nodes for the first job to unique processors, then recursively
does the same for the next job in the list. This continues
until all processors have been assigned some node or there
are no more ready nodes available. The algorithm may have
a choice on which ready nodes of a job to schedule if the job
has more ready nodes than the number of processors that
have not been assigned to a node when the job is considered.
In this case, we assume the scheduler chooses an arbitrary
set of ready nodes from the job.

The rest of this section is devoted to proving Theorem 3.1.
We assume for the remaining of this section that FIFO is
given (1 + ε)-speed for some constant 0 < ε < 1 and we
will show that FIFO is 3

ε
competitive. To show this, assume

for the sake of contradiction that FIFO is more than 3
ε
-

competitive and we consider the instance for which FIFO
does not achieve a competitive ratio of 3

ε
. Let Ji be the job

with the maximum flow Fi at this instance, so OPT < ε
3
Fi

by assumption. Since no jobs that arrive later than Ji has
any effect on how or when Ji is scheduled due to FIFO’s
scheduling policy, in our instance Ji is the last job to arrive.

We begin by showing that during the time interval job Ji
is alive in FIFO’s schedule, the processors must be busy for
most of the interval. We define one time step as the time
period for a s-speed processor to execute one unit of work.
In other words, in one time step m processors with speed
s can finish m work of jobs. Note that on processors with
different speeds, the length of a time step will be different.
Hence, the number of time steps on a s-speed processor in
T time is sT , while it is T on unit speed processor.

Lemma 3.2. During the interval [ri, ci] in FIFO’s sched-
ule, there can be no more than ε

3
Fi time steps where not all

m processors are busy working on jobs.

Proof. For the sake of contradiction, suppose there is
at least ε

3
Fi time steps during [ri, ci] where not all proces-

sors are busy. Consider FIFO’s scheduling policy. Anytime
during [ri, ci] where FIFO is not processing nodes on every
processor, FIFO must be scheduling all of the ready nodes
of Ji. Due to this, at these times FIFO is working on the
critical path length of Ji by Proposition 2.1. Let this path
length be Pi, then we have Pi ≥ ε

3
Fi.

Also note that OPT cannot finish a job in less time than
its critical-path length, this leads to OPT ≥ Pi ≥ ε

3
Fi, so

the competitive ratio is Fi
OPT
≤ 3

ε
, a contradiction.

The previous lemma shows that for most of the time steps
in [ri, ci] FIFO has m processors busy working. In the next
lemma, we show that the work done by FIFO during [ri, ci]
is concentrated on jobs which did not arrive before ri −
Fi. We define processor idling steps to be the aggregate
number of time steps per processor where the processor is
not working on any job. Hence, during one time step that
not all m processors are busy working, there can be at most
m processor idling steps in total.

Lemma 3.3. During [ri, ci], FIFO does more than m(1 +
ε
3
)Fi work on jobs which arrived after ri − Fi.

Proof. Since Ji is the job with the maximum flow time
Fi, all previous jobs must have had less flow time than
Fi. Therefore, all jobs which received any processing during
[ri, ci] must have arrived at earliest ri − Fi.

197

Now to complete the lemma we calculate the total work
done during [ri, ci]. From Lemma 3.2 the number of pro-
cessor idling steps is at most m ε

3
Fi during [ri, ci]. Since

the processors have speed 1 + ε, the total work that is done
during [ri, ci] is at least

m(1 + ε)Fi −m
ε

3
Fi > m(1 +

ε

3
)Fi

which completes the lemma.

Using the previous lemmas we can complete the proof.

Proof of Theorem 3.1 We consider the work of the opti-
mal schedule. OPT achieves a flow time of OPT < εFi

3
from

the assumption that FIFO does not achieve a competitive
ratio of 3

ε
.

Consider all the jobs which arrived during [ri − Fi, ri],
OPT must finish every such job before ri+

ε
3
Fi. During the

interval [ri − Fi, ri + ε
3
Fi] the optimal schedule can do at

most m(1 + ε
3
)Fi work with 1 speed.

However from Lemma 3.3 the jobs which arrive after ri−
Fi have more than m(1 + ε

3
)Fi work. Hence the optimal

schedule cannot possibly finish all jobs by time ri + ε
3
Fi, a

contradiction. 2

4. UNWEIGHTED MAXIMUM FLOW
TIME USING WORK STEALING

In this section, we consider a variation of work stealing,
called steal-k-first work stealing scheduler, the formal defi-
nition of which will be discussed later. Our goal is to show
the following theorem.

Theorem 4.1. The maximum unweighted flow time of
the steal-k-first work stealing scheduler with (k+1+(k+2)ε)
speed is O(1

ε2
max{OPT, lnn}) for any k ≥ 0 and any

0 < ε < 1
k+2

with high probability.

By scaling the constant ε using the constant k in Theorem
4.1, we can trivially get the Corollary below.

Corollary 4.2. The maximum unweighted flow time of
the steal-k-first work stealing scheduler with (k+1+ ε) speed
is O(1

ε2
max{OPT, lnn}) for any k ≥ 0 and any 0 < ε < 1

with high probability.

For a version of steal-k-first, namely admit-first, where
the constant k = 0, we have the following result.

Corollary 4.3. The maximum unweighted flow time of
the admit-first work stealing scheduler with (1 + ε) speed is
O(1

ε2
max{OPT, lnn}) for any 0 < ε < 1 with high proba-

bility. In particular, if OPT ≥ lnn, then the scheduler is
(1 + ε)-speed O(1

ε2
)-competitive with high probability.

Work Stealing for a Single Job. The work stealing
scheduler [5] is a distributed scheduler for scheduling a sin-
gle parallel program. It dispatches work dynamically, rather
than statically. Scheduling is done in a distributed man-
ner, which results in scalability and lower overhead. Specif-
ically, the runtime system creates a worker thread for every
available core. Each worker maintains a local double-ended
queue, called deque. When a worker generates new work
(enables a ready node from the job’s DAG), it pushes the
work onto the bottom of its deque. When a worker finishes

its current node, it pops a ready node from the bottom of
its deque. If the local deque is empty, the worker becomes a
thief and randomly picks a victim worker and tries to steal
work from the top of the victim’s deque. We assume that it
takes a unit time step to steal work between workers.

Note that most of the time, workers work off their own
queues and don’t need to communicate with each other.
Hence, this randomized work-stealing strategy is very effec-
tive in practice and the amount of scheduling and synchro-
nization overhead is small. Therefore, work stealing is the
default strategy used for executing parallel DAGs in many
parallel runtime systems such as Cilk Plus, TBB, X10, and
PPL [5, 19, 25, 28, 7].

Theoretically, however, because of this randomized and
distributed characteristic, work stealing is not a strictly
greedy strategy. However, work stealing provides strong
probabilistic guarantees of linear speedup for a single job.
Researchers have shown that work-stealing is provably effi-
cient with high-probability when scheduling a single job [5].

Work Stealing for Multiple Jobs. Though work steal-
ing scheduler is designed for scheduling a single job, we can
extend it to scheduling multiple jobs in a straightforward
way. In addition to the deque of each worker, a global FIFO
queue is dedicated for the arrival and admission of new jobs.
When a new job is released, it is inserted into the tail of the
global queue. A worker will admit a job by popping if from
the head of the global queue in a FIFO order.

Under different admission strategies, workers could choose
to steal work or admit a job in different manners. In this
paper, we consider a strategy, namely steal-k-first work
stealing , in which each worker always tries to randomly
steal first and only tries to admit a new job if there are k
consecutive unsuccessful steal attempts for some constant
k ≥ 0. Now we analyze the theoretical performance of steal-
k-first and we present its empirical performance in Section 6.

Intuitions for Proving Theorem 4.1. As discussed in
Section 2, to prove steal-k-first is competitive for maximum
flow time, we need to show that it does not fall far behind
the optimal schedule. We assume for the sake of contradic-
tion that it does at some time t. Then we go back in time
to a point t′ where the algorithm was not far behind the
optimal solution. This time is carefully defined by recur-
sively going back in time ensuring (1) that the algorithm is
always doing a significant amount of work during [t′, t] and
(2) that we can actually find t′ while ensuring (1) is true.
After finding such a time t′, we are able to show that while
the algorithm may fall far behind the optimal schedule dur-
ing [t′, t] due to not taking advantage of the parallelizability
of jobs, it eventually is able to do a large amount of work.
With faster speed, it catches up and this allows us to bound
its performance. Before formally proving the theorem, we
first show that steal-k-first does not idle much when there
are jobs to execute.

Idling Steps in Steal-k-First. We define processor
idling steps to be the aggregate number of time steps per
processor where the processor is not working on a job (and
is stealing instead). WLOG, we assume that each steal at-
tempt takes 1 time step. To bound the idling time in steal-
k-first’s schedule, we first state a theorem from [5], which
provides the bound on the time that a work stealing sched-
uler spends on stealing during the execution of a single job.

198

Lemma 4.4. During the time interval [ei, ci] where ei and
ci are the execution start time and completion time of a
job Ji respectively, the expected number of steal attempts is
bounded by 32mPi where Pi is the critical-path length and
m is the number of processors. Moreover, for any δ > 0, the
number of steal attempts is bounded by 64mPi + 16 ln(1/δ)
with probability at least 1− δ.

Although the Lemma above only applies to the case of a
single job, by extending it we can obtain a useful lemma for
the case with n jobs. In the following lemma, let ei denote
the time that job Ji is admitted from the global queue by a
processor. This is the first time the job is started.

Lemma 4.5. For a time interval that lies between the start
time ei and completion time ci of a job Ji, with probability at
least 1− 1

n
, the number of processor idling steps is bounded

by 64mPi + 32 ln(n) ≤ 64mOPT + 32 ln(n).

Proof. Consider Lemma 4.4 and choose δ = 1
n2 . The

probability of any job Ji exceeding the idling time bound
64mPi + 16 ln(n2) = 64mPi + 32 ln(n) during [ei, ci] is 1

n2 .
This idling time bound holds for any time interval that is
between [ei, ci]. Union bounding over all n jobs and sub-
tracting from 1 yields the probability in the lemma.

W will use the following lemma to later bound the idling
time due to steal attempts between the arrival time ri and
the start time ei of a job Ji.

Lemma 4.6. Under steal-k-first with a speed of s = k+1+
(k + 2)ε, the number of idling steps during a time interval
[t′, t] that is contained in [ri, ei], the time between when a
job arrives and is removed from the global queue, is at most
k
k+1

(k + 1 + (k + 2)ε)m(t− t′) + km.

Proof. Every time a processor has more than k steal
attempts, the processor will do one unit of work. Thus for
any time interval of length (t − t′) there can be at most a
s k
k+1

(t − t′) + k steal attempts per processor. The lemma
follows by aggregating over all processors.

Now we can bound the amount of work steal-k-first does.
We say that a job Ji spans a time interval [ta, ta−1], if its
release time ri ≤ ta and its completion time ci ≥ ta−1.

Lemma 4.7. If a job spans a time interval [ta, ta−1], then
steal-k-first work stealing with speed k + 1 + (k + 2)ε does

at least k+1+(k+2)ε
k+1

m(tb − ta)− (km+ 64mOPT + 32 ln(n))

work with probability at least 1− 1
n

.

Proof. By definition, [ta, ta−1] lies between [ri, ci]. From
Lemma 4.6, the number of idling steps during [ta, ei] is at
most k

k+1
(k + 1 + (k + 2)ε)m(ei − ta) + km ≤ k

k+1
(k + 1 +

(k + 2)ε)m(ta−1 − ta) + km. From Lemma 4.5, the number
of idling steps during [ei, tb] is at most 64mOPT + 32 ln(n)
with probability at least 1− 1

n
.

Thus, during [ta, ta−1] the amount that work steal-k-first
with speed k + 1 + (k + 2)ε does is at least

(k + 1 + (k + 2)ε)m(ta−1 − ta)− (64mOPT + 32 ln(n))

−
(

k

k + 1
(k + 1 + (k + 2)ε)m(ta−1 − ta) + km

)
=
k + 1 + (k + 2)ε

k + 1
m(tb − ta)− (km+ 64mOPT + 32 ln(n))

with probability at least 1− 1
n

.

Time Intervals in Steal-k-First. The main challenge in
analyzing steal-k-first is that it is difficult to show that the
remaining processing time of jobs in its queue is comparable
to that of OPT’s queue. Rather than directly bounding
the differences between the two queues as done in previous
section, we will construct a set of time intervals where steal-
k-first must be busy most of the time. Using the assumption
that steal-k-first has resource augmentation, we will draw a
contradiction by showing that steal-k-first has completed a
large amount of work which is even more than the total
amount of work available during a time interval.

From here on, our goal is to show that the steal-k-first with
(k + 1 + (k + 2)ε)-speed achieves a maximum flow time of
O(1

ε2
max{OPT, ln(n)}) with high probability. To simplify

the proof, we rewrite the objective to eliminate the max and
show instead that steal-k-first achieves a maximum flow of
65
ε2

(OPT + ln(n) + k), k ≥ 0 is a constant and 0 < ε < 1
k+2

.
Let Ji be the job in steal-k-first’s schedule with the max-

imum flow time Fi. Recall that ri and ci are the arrival and
completion time of Ji, respectively. To show contradiction,
we assume that Fi ≥ 65

ε2
(OPT + ln(n) + k).

We will recursively define a set of time intervals

T = {[t′, tβ], [tβ , tβ−1], [tβ−1, tβ−2] . . . [t1, t0], [t0, ri], [ri, ci]}

where t′ ≤ tβ ≤ tβ−1 ≤ . . . ≤ t1 ≤ t0 ≤ ri ≤ ci. To
illustrate the time intervals, Figure 1 shows an example ex-
ecution trace of steal-k-first.

Let t0 be the arrival time of the earliest arriving job among
the jobs that are not finished by steal-k-first right before
time ri. For instance, in Figure 1 there are two jobs (job J0
and job Jq) that are active right before ri. Among then, job
J0 has the earliest arrival time, so t0 is defined using it. If
there are no jobs right before ri, let t0 = ri. Now we define
further intervals recursively. Given the time ta−1, we want
to define ta. If ta−1 − ta ≤ εFi, then we are done defining
intervals; otherwise, we define ta as the arrival time of the
earliest arriving job among those that are not finished by
steal-k-first right before time ta−1. We say that a certain job
Ja defines an interval [ta, ta−1], if it is the earliest arriving
job unsatisfied by steal-k-first right before ta−1 and ta is its
arrival time.

Note that this process of defining intervals will always
terminate. The procedure terminates when ta−1− ta ≤ εFi,
which must happen if one goes back to the first time a job
arrives. We let β denote the maximum value that a takes
during this inductive definition. Hence, [tβ , tβ−1] is the ear-
liest time interval defined in this scheme. Moreover, the
arrival time t′ of the earliest arriving job among those that
are unfinished right before time tβ satisfies t′− tβ ≤ εFi. As
in Figure 1, interval [t′, tβ] is the first such interval that has
length less than εFi.

Work Done by Steal-k-First. We intend to show that
steal-k-first does a lot of work during the interval [tβ , ci]. In
fact, we will show that if the assumption of Fi ≥ 65

ε2
(OPT+

ln(n) + k) is true, then steal-k-first would have done more
work than the total work of all jobs that are active during
[tβ , ci], which is not possible and leads to a contradiction.

To do so, we partition [tβ , ci] into two sets of time inter-
vals, specifically S1 = {[ta, ta−1], ∀ 0 < a ≤ β} ∪ {[t0, ri]}
during [tβ , ri], and S2 = {[ri, ci]}. We first show that for
intervals in S1, steal-k-first does more work than OPT.

199

Ji

Job Jq active at riby WS

Ci - ri =	Fi

…
ri ei ci

Job	J0

t0 =	r0

ri – t0	> ε Fi

Job Ju released	in	[ri,	ci],	OPT	works	on	after	ci

Job	J1

t1 =	r1

t0 – t1> ε Fi

Job Jβ

tβ =	rβ

Job	Jβ	-1

tβ-1

tβ-1 – tβ> ε Fi

Job Jp releasedat t’,	OPT	finishedbefore tβ

tβ – t’ < ε Fi

t’

Figure 1: An example execution trace of work-stealing identifying jobs’ release and completion times.

Lemma 4.8. For any time interval [ta, ta−1] ∈ S1 during
[tβ , ri], with probability at least 1− 1

n
the work that steal-k-

first does is more than m(ta−1 − ta), which is as much as
OPT does.

Proof. By definition, there is a job Ja which defines this
time interval. Specifically, this job spans the time inter-
val. According to Lemma 4.7, we know that with probabil-
ity 1 − 1

n
the amount of work steal-k-first does is at least

k+1+(k+2)ε
k+1

m(ta−1 − ta)− (km+ 64mOPT + 32 ln(n)).

Recall that by assumption that Fi >
65
ε2

(OPT+ln(n)+k)
and by definition that (ta−1 − ta) > εFi, we have

(ta−1 − ta) > εFi >
65

ε
(OPT + ln(n) + k)

=
1

ε

1

m
(65km+ 65mOPT + 65m ln(n))

>
1

ε

1

m
(km+ 64mOPT + 32 ln(n))

Hence, (km+ 64mOPT + 32 ln(n)) < εm(ta−1 − ta)
Thus during any time interval [ta, ta−1] in S1, the work

done by steal-k-first (with speed k+ 1 + (k+ 2)ε) on jobs is
at least:

k + 1 + (k + 2)ε

k + 1
m(ta−1 − ta)− (km+ 64mOPT + 32 ln(n))

> m(ta−1 − ta) +
(k + 2)ε

k + 1
m(ta−1 − ta)− εm(ta−1 − ta)

= m(ta−1 − ta) +
ε

k + 1
m(ta−1 − ta)

Clearly OPT with only 1 speed can only do at most
m(ta−1 − ta) work during this time interval.

We now show that for S2, steal-k-first does a lot of work
too.

Lemma 4.9. During [ri, ci] ∈ S2, the amount of work that
steal-k-first does on jobs is more than mFi+ εmFi+mOPT
with probability 1− 1

n
.

Proof. Consider the work that steal-k-first does during
[ri, ci]. By definition this interval has a length of Fi and we
know that Ji spans this interval. Directly applying Lemma
4.7, we derive that with probability 1 − 1

n
the amount of

work done by steal-k-first during [ri, ci] is at least

k + 1 + (k + 2)ε

k + 1
mFi − (km+ 64mOPT + 32 ln(n))

=mFi + εmFi +
ε

k + 1
mFi − (km+ 64mOPT + 32 ln(n))

By definition, 0 < ε < 1
k+2

, so 1
k+1

1
ε
> 1. Also recall that

by assumption that Fi >
65
ε2

(OPT + ln(n) + k), we have

ε

k + 1
mFi >

m

k + 1

65

ε
(OPT + ln(n) + k)

>65m(OPT + ln(n) + k)

>(km+ 64mOPT + 32 ln(n)) +mOPT

Hence, ε
k+1

mFi − (km+ 64mOPT + 32 ln(n)) > mOPT.
Therefore, the amount of work done by steal-k-first during
[ri, ci] is more than mFi + εmFi +mOPT with probability
1− 1

n
.

We need one more critical argument to complete the anal-
ysis. The reason we defined these time intervals inductively
is to identify the jobs that are active under steal-k-first dur-
ing [tβ , ci]. The total volume of these jobs is bounded by
the work that OPT can finish. However, just showing that
steal-k-first does more work than OPT during [tβ , ci] will
not suffice, as OPT could have done part of this work ei-
ther before tβ or after ci. As shown in Figure 1, the two
jobs (job Jp and job Ju) in dotted shade are executed by
steal-k-first during [tβ , ci], while OPT finished job Jp before
tβ and started working on job Ju after ci. The next lemma
bounds the maximum amount of work that are available for
steal-k-first to work on during [tβ , ci].

Lemma 4.10. For jobs that are active under steal-k-first
during [tβ , ci], their total amount of work is at most m(ri −
tβ) +m(εFi + OPT + Fi).

Proof. By definition, [tβ , ci] consists of time intervals of
S1 during [tβ , ri] and time interval of S2 = {[ri, ci]}. Also
recall that the length of interval [ri, ci] is Fi. Hence, the
total length of [tβ , ci] is (ri − tβ) + Fi.

Moreover, by definition of tβ , the earliest arriving job that
is unsatisfied by steal-k-first just before time tβ must have
arrived no earlier than time tβ − εFi. Thus, the jobs that
are active under steal-k-first during [tβ , ci] all arrived during
[tβ − εFi, ci].

Further, all these jobs have an optimal maximum flow
time no more than OPT under the optimal scheduler.
Therefore, OPT must be able to complete all of them by
time ci +OPT. Knowing that OPT can only work on these
jobs during [tβ − εFi, ci + OPT], the total amount of work
of those jobs can have volume at most m(ri− tβ) +m(εFi +
OPT + Fi).

Finally, we are ready to complete the proof.

Proof of Theorem 4.1 To prove the theorem, we consider
the jobs that are active under steal-k-first during [tβ , ci]. By
Lemma 4.10, we know that the total amount of work of these
jobs, denoted as X, is bounded: X ≤ m(ri − tβ) +m(εFi +
OPT+Fi). Note that these jobs are the only ones available
for steal-k-first to work on during [tβ , ci]. Therefore, during

200

[tβ , ci] steal-k-first cannot do more than X work even with
speedup.

On the other hand, consider the minimum amount of work
that steal-k-first must have done during [tβ , ci], denoted as
Y , assuming that Fi >

65
ε2

(OPT+ln(n)+k) is true. We will
see that Y > X, which leads to a contradiction.

From Lemma 4.8, we know that during [tβ , ri] the amount
of work steal-k-first does is more than

m

 ∑
0<a≤β

(ta−1 − ta) + (ri − t0)

 = m(ri − tβ)

From Lemma 4.9, we know that during [ri, ci], steal-k-
first does more than mFi + εmFi +mOPT work. Thus, for
interval [tβ , ci], we get Y > m(ri−tβ)+mFi+εmFi+mOPT.

Now we compare X and Y :

Y −X >m(ri − tβ) +mFi + εmFi +mOPT

−m(ri − tβ)−m(εFi + OPT + Fi) > 0

Hence, Y > X. In other words, if the assumption of Fi is
true, during [ri, ci] steal-k-first must have done more work
than the total available work, which gives a contradiction.

Thus, we obtain the theorem. 2

Discussion about Steal-k-First. Note that for steal-k-
first work stealing with k = 0, instead of steal first, this
scheduler will in fact admit all jobs from the global queue
first. We denote this special case as admit-first . From
Theorem 4.1, we know that the theoretical performance of
steal-k-first is better with smaller constant k. Hence, admit-
first has the best theoretical performance and is O(1

ε2
)-

competitive with high probability with 1 + ε speed, as it
guarantees that a job’s execution is not delayed by unneces-
sary random stealing.

However, as shown in Section 6 steal-k-first for a rela-
tively large k performs better than admit-first empirically.
Intuitively, if there is any job available for stealing, then in
expectation m consecutive random steal attempts would be
able to find the stealable work. Thus, for k ≥ m, steal-k-first
better approximates FIFO, which we know works well.

In contrast, in admit-first jobs could run sequentially when
there are more than m unfinished jobs. During these times,
jobs at the end of the global queue take long time to be ad-
mitted and they further take longer time to finish sequential
execution in the worst case. Hence, this could increase the
maximum flow time of the system.

Moreover, steal-k-first requires a speed of more than (k+
1) theoretically to be competitive, mainly due to the worst
case scenario where each job has a unit time of work but
takes k stealing steps to admit. However, in practice, jobs
have much larger work and the constant k steal attempts for
admitting a job is negligible in practice.

5. WORK STEALING LOWER BOUND
In this section we give a lower bound for the work stealing

algorithm. We show that in the online setting, the scheduler
when given any constant speed is Ω(log n) competitive. This
shows that our upper bound analysis of the algorithm is
effectively tight.

Lemma 5.1. Work stealing is Ω(logn)-competitive for
maximum flow time in the online setting when given any
constant resource augmentation.

Proof. Let n be an input parameter and let the number
of machines be m = log n. Let s be a constant specifying the
resource augmentation given to work stealing. The schedule
consists of n jobs, which are identical. A job consists of one
task which is the predecessor of m/10 independent tasks.
Note that the total work of the job is m/10 + 1 and can be
competed by a 1 speed scheduler scheduler in 2 time steps.
A single job is released at multiples of 2m starting at time
0. Note that even if a job is executed sequentially, it will
complete in only m/10 + 1 time steps. Thus, these jobs do
not have overlapping times where multiple jobs are alive in
any non-idling schedule.

Now fix any job and consider the probability that the job
executes completely sequentially by a work stealing sched-
uler. This occurs if every steal attempt fails to find the pro-
cessor holding the tasks for the job. In a single time step, the
probability that m−1 processors do not successfully steal is
(1− 1

m−1
)m−1 ≥ 1

2e
for sufficiently large m. The probability

that all processors fail to steal for m/10 time steps is greater

than (1
2e

)m/10.
Now consider the expected number of jobs which execute

sequentially by work stealing. There are n = 2m jobs re-
leased. The expected number of jobs to execute sequentially
is 2m(1

2e
)m/10 ≥ 1. Thus, the expected maximum flow time

of work stealing with s speed is m/10+1
s

= logn
s

. Know-
ing that the optimal solution has maximum flow time 2 and
s = O(1), the lemma follows.

6. EXPERIMENTAL RESULTS FOR UN-
WEIGHTED MAXIMUM FLOW TIME

In this section we present the experimental results us-
ing realistic and synthetic workloads to compare the perfor-
mance of OPT and two work stealing strategies: (1) Admit-
first where workers preferentially admit jobs from the global
queue and only steal if the queue is empty, and (2) Steal-
k-first where workers preferentially steal and only admit a
new job if k steal attempts fail (we use k = 16). Our ex-
periments indicate that steal-k-first performs better and is
almost comparable to an optimal scheduler.

Setup: We conduct experiments on a server with dual
eight-core Intel Xeon 2.4Ghz processors with 64GB main
memory. The server runs Linux version 3.13.0, with proces-
sor throttling, sleeping, and hyper-threading disabled. The
work-stealing algorithms are implemented in Intel Thread
Building Block (TBB) [25] version 4.3, a well-engineered
popular work-stealing runtime library. We extended TBB
to schedule multiple jobs arriving online by adding a global
FIFO queue for admitting jobs and we implement both
admit-first and steal-k-first.

Since we do not know the optimal scheduler, we must ap-
proximate it using a simulated scheduler by reducing a par-
allel scheduling problem to a sequential scheduling problem
on a single processor. In particular, for this lower bound, we
assume that there is no preemption overhead and that each
job can get linear speedup (fully parallelizable). Therefore,
we can execute each job one at a time assuming it is a se-
quential job with execution time equal to its W/m where W
is its total work. We then run all jobs using FIFO which is
optimal in this setting. When jobs are fully parallelizable,
this reduces the problem to the case where there is only one
machine. In this setting, it is well known that FIFO is opti-

201

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

800 1000 1200

M
ax

 fl
ow

 ti
m

e
(s

ec
)

QPS

Bing workload

OPT
steal-k-first
admit-first

(a) Bing workload

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

800 900 1000

M
ax

 fl
ow

 ti
m

e
(s

ec
)

QPS

Finance workload
OPT
steal-k-first
admit-first

(b) Finance workload

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

800 1000 1200

M
ax

 fl
ow

 ti
m

e
(s

ec
)

QPS

Log-normal workload
OPT
steal-k-first
admit-first

(c) Log-normal workload

Figure 2: Experimental results comparing the maximum flow time running on three work distributions with
three different load settings and scheduled using simulated OPT, steal-k-first, and admit-first (from left to
right). Note that the scale of the y-axis for the figures differ. From all different settings, OPT has the smallest
max flow time, while admit-first has the largest max flow time.

0	

0.2	

0.4	

0.6	

5	
 55	
 105	
 155	
 205	

Pr
ob

ab
ili
ty
	

Request	
 Total	
 Work	
 (ms)	

Bing	
 Search	
 Server	

Request	
 Work	
 DistribuEon	

(a) Bing search

0	

0.1	

0.2	

0.3	

0.4	

0.5	

4	
 12	
 20	
 28	
 36	
 44	
 52	

Pr
ob

ab
ili
ty
	

Request	
 Total	
 Work	
 (ms)	

Finance	
 Server	

Request	
 Work	

DistribuEon	

(b) Finance server

Figure 3: Work distribution of two workload:
Bing web search [21] and an option pricing finance
server [26].

mal for maximum flow time [8]. Thus, this scheduler has the
performance for maximum flow time that is at least as good
as any feasible scheduler, including the optimal schedule.

Workloads: We evaluate different strategies on work dis-
tributions from two real-world applications shown in Figure
3 and additional synthetic workloads with log-normal dis-
tribution. Henceforth we shall refer to workload generated
from the three distributions as the Bing workload, the fi-
nance workload and the log-normal workload, respectively.
For each distribution, we select a set of queries-per-second,
QPS, to generate workloads with low (∼ 50%), medium
(∼ 60%), and high (∼ 70%) machine utilization respectively,
and the inter-arrival time between jobs is generated by a
Poisson process with a mean equal to 1/QPS. Each job
contains CPU-intensive computation and is parallelized us-
ing parallel for loops. 100, 000 jobs are used to obtain a
single point in the experiments.

Figure 2 shows the experimental results comparing sim-
ulated OPT, steal-k-first and admit-first under three dif-
ferent work distributions and three different load settings
(i.e., query-per-second). The experiments indicate that,
even though our results on OPT are lower bounds on max-
imum flow time, steal-k-first performs comparably to OPT
— matching our intuition that it is a closer approximation
for maximum flow time, as discussed at the end of Section 4.

Recall that steal-k-first has worse theoretical performance
than admit-first. However, in practice, admit-first generally

performs worse in terms of maximum flow time and the per-
formance difference increases as load increases (for instance,
for Bing and log-normal workloads with high utilization, ad-
mit first has twice the maximum flow). This matches our
intuition — at higher loads, admit-first executes jobs more
or less sequentially, while steal-first provides parallelism to
already admitted jobs before admitting new jobs. There-
fore steal-first is closer to FIFO in that it tries to execute
jobs that arrived earlier with more parallelism. Therefore,
in practice, steal-first is likely to be a good implementation
for schedulers that want to minimize maximum flow time
without incurring the large overheads of FIFO.

7. MAXIMUM WEIGHTED FLOW TIME
In this section our goal is to prove that the algorithm

Biggest-Weight-First (BWF) is a scalable algorithm for min-
imizing the maximum weighted flow time.

Theorem 7.1. Biggest-Weight-First (BWF) is (1 + ε)
speed O(1

ε2
) competitive for minimizing the maximum

weighted flow for any ε > 0.

BWF is defined as follows, which is similar to FIFO except
that priority is given to the jobs with the biggest weight. At
any time t, BWF orders the jobs in decreasing order by their
weight, breaking ties arbitrarily. The algorithm then assigns
all of the ready nodes for the first job to some processor,
then recursively does the same for the next job in the list.
This continues until all processors have been assigned some
node or there are no more ready nodes available. Like FIFO,
BWF may have a choice on which ready nodes of a job to
schedule if the job has more ready nodes than the number
of processors which have not been assigned to a node when
the job is considered. In this case, we assume the scheduler
chooses an arbitrary set of ready nodes.

The reminder of this section is devoted to proving Theo-
rem 7.1. For the rest of this section, we assume that BWF is
given (1+3ε)-speed for some constant 0 < ε < 1

3
and we will

show that BWF is 3
ε2

competitive. Fix any sequence of jobs
and let OPT denote the optimal schedule on this instance
as well as the optimal maximum weighted flow time. Let F ∗a
be the flow time of a job Ja in OPT.

Let Ji be the job in BWF’s schedule with the maximum
weighted flow time wiFi. For the sake of contradiction, we

202

assume that wiFi >
3
ε2
OPT. Since OPT = wiF

∗
i , Fi >

3
ε2
F ∗i , where F ∗i is the flow time of Ji in OPT. By comparing

the weight wi of job Ji, any jobs with weight at least wi are
referred as heavy jobs, and any jobs with less weight than
wi are referred as light jobs.

Time Intervals in BWF. Similar to the time intervals
specified in Section 4, we will inductively define a set of
time intervals

T = {[t′, tβ], [tβ , tβ−1], [tβ−1, tβ−2] . . . [t1, t0], [t0, ri], [ri, ci]}

where t′ ≤ tβ ≤ tβ−1 ≤ . . . ≤ t1 ≤ t0 ≤ ri ≤ ci.
Recall that ri and ci are the arrival and completion time

of Ji, respectively. Consider the heavy jobs that BWF is
scheduling right before ri. Let t0 be the arrival time of the
earliest arriving one of those jobs. If there are no heavy jobs
right before ri, let t0 = ri. Now we define further intervals
recursively. Given the times ta−1, we want to define ta. If
ta−1 − ta ≤ εFi, then we are done defining time intervals;
otherwise, we define ta to be the arrival time of the earliest
arriving heavy job Ja that are unsatisfied under BWF right
before time ta−1. Again if there are no heavy jobs unsatis-
fied by BWF just before time ta−1 then let ta = ta−1. We
let β denote the maximum value that a takes during this
inductive definition. Hence, [tβ , tβ−1] is the earliest time
interval defined in this scheme.

Note that this process of defining intervals is almost the
same as in Section 4. The only difference is that the job Ja,
which defines the interval [ta, ta−1], is the earliest unfinished
heavy job under BWF. We only consider heavy jobs, because
under BWF only heavy jobs can preempt job Ji and other
heavy jobs and any light jobs can only execute when all
the available nodes of all the active heavy jobs are already
executing by some processors. Thus, when analyzing the
flow time of Ji and other heavy jobs, we can ignore the
remaining light jobs, since light jobs cannot in interfere the
execution of heavy ones. Hence, the processor idling steps
in the remaining of this section is refering to the time steps
where a processor is not working on nodes corresponding to
heavy jobs.

We begin the proof by showing that during all time in-
tervals between [tβ , ri], BWF is using most time steps to
process nodes for heavy jobs.

Lemma 7.2. During any interval [ta, ta−1] where a ≤ k,
the number of processor idling steps (where a processor is
not working on nodes corresponding to heavy jobs) is at most

m ε2

3
Fi.

Proof. For the sake of contradiction, assume that this is
not true. Then consider the job that defines [ta, ta−1] and
let this job be Ja. By definition this heavy job arrived at
ta and is still being processed at time ta−1. From BWF’s
scheduling policy, every time step during [ta, ta−1], where
some processors find no nodes from heavy jobs to work on,
all ready nodes of Ja are being scheduled. Hence the pro-
cessors are decreasing the remaining critical path of Ja at
these times by Proposition 2.1. Since the job is not finished
until at ta−1, this job must have a critical-path length Pa

longer than Pa > ta−1− ta > ε2

3
Fi. Also since Ja is a heavy

job and wa ≥ wi and by assumption wiFi >
3
ε2
OPT, its

weighted flow time is at least

wa(ta−1 − ta) > wa
ε2

3
Fi ≥ wi

ε2

3
Fi >

ε2

3

3

ε2
OPT ≥ OPT

However, OPT cannot complete a job faster than its
critical-path length, so F ∗a ≥ Pa. Further, Ja’s weighted
flow time under OPTis at most the maximum weighted flow
time OPT. We have

OPT ≥ waF ∗a ≥ waPa > wa(ta−1 − ta) > OPT

This gives a contradiction.

Using the previous lemma, we bound the aggregate
amount of work done by BWF on heavy jobs during [tβ , ri].

Lemma 7.3. During [tβ , ri], the amount of work that
BWF does on heavy jobs is more than m(1 + 2ε)(ri − tβ).

Proof. From Lemma 7.2, we know that there are only

m ε2

3
Fi processor idling steps where a processor is not work-

ing on nodes corresponding to heavy jobs during any time
interval [ta, ta−1]. In addition, we know ta−1 − ta > εFi,
since a ≤ β. Hence, the work done by BWF (with 1 + 3ε
speed) on heavy jobs during [ta, ta−1] is at least:

m(1 + 3ε)(ta−1 − ta)−mε2

3
Fi

>m(1 + 3ε)(ta−1 − ta)−mε

3
(ta−1 − ta)

>m(1 + 2ε)(ta−1 − ta)

Summing over all the intervals yields the lemma.

Similarly, we can bound the amount of work done by BWF
on heavy jobs during [ri, ci].

Lemma 7.4. During [ri, ci], the amount of work that
BWF does on heavy jobs is more than m(1 + 2ε)Fi.

Proof. By assumption, F ∗ < ε2

3
Fi. Since OPT cannot

finish a job in less time than its critical-path length, job Ji
has Pi ≤ F ∗i < ε2

3
Fi. From Proposition 2.1, we can derive

that the number of processor idling steps where a processor
is not working on heavy jobs is at most mPi. Hence, the
amount of work done by BWF during [ri, ci] is at least m(1+

3ε)Fi −mPi > m(1 + 3ε)Fi −m ε2

3
Fi > m(1 + 2ε)Fi , since

ε < 1
3
.

Now we bounds the maximum amount of work that are
available for BWF to work on during [tβ , ci].

Lemma 7.5. For jobs that are active under BWF during
[tβ , ci], their total amount of work is at most m(ri − tβ) +

m(1 + ε+ ε2

3
)Fi.

Proof. By definition, the total length of [tβ , ci] is (ri −
tβ) + Fi. Moreover, by definition of tβ , the earliest arriving
heavy job that is unsatisfied BWF just before time tβ must
have arrived no earlier than time tβ − εFi. Thus, the heavy
jobs that are active under BWF during [tβ , ci] all arrived
during [tβ − εFi, ci].

Furthermore, all these heavy jobs have an optimal maxi-
mum weighted flow time no more than OPT under the opti-
mal scheduler, i.e., OPT ≥ F ∗awa. By definition of a heavy
job wa ≥ wi and by assumption wiFi >

3
ε2
OPT, we have

waFi ≥ wiFi > 3
ε2
OPT > 3

ε2
F ∗awa. Thus, the flow time F ∗a

of these heavy jobs under the optimal schedule is F ∗a <
ε2

3
Fi.

Therefore, OPT must be able to complete all of them by

time ci + ε2

3
Fi. Knowing that OPT can only work on these

203

jobs during [tβ − εFi, ci + ε2

3
Fi], the total amount of work

of those jobs can have volume at most m(ri − tβ + Fi) +

m(εFi + ε2

3
Fi) = m(ri − tβ) +m(1 + ε+ ε2

3
)Fi.

Finally, we are ready to complete the proof.

Proof of Theorem 7.1 To prove the theorem, we consider
the heavy jobs that are active under BWF during [tβ , ci]. By
Lemma 7.5, we know that the total amount of work of these
jobs, denoted as X, is bounded: X ≤ m(ri − tβ) + m(1 +

ε + ε2

3
)Fi. Note that these jobs are the only ones available

for BWF to work on, so during [tβ , ci] BWF cannot do more
than X work even with speedup.

On the other hand, consider the minimum amount of work
that BWF must have done during [tβ , ci], denoted as Y ,
assuming that wiFi >

3
ε2
OPT is true. We will see that

Y > X, which leads to a contradiction.
From Lemma 7.3, we know that during [tβ , ri] the amount

of work BWF does is more than m(1 + 2ε)(ri − tβ) From
Lemma 7.4, we know that during [ri, ci], BWF does more
than m(1 + 2ε)Fi work. Thus, for interval [tβ , ci], we get
Y > m(ri − tβ) +m(1 + 2ε)Fi.

Now we compare X and Y and note that ε < 1
3
:

Y −X >m(ri − tβ) +m(1 + 2ε)Fi

−m(ri − tβ)−m(1 + ε+
ε2

3
)Fi > 0

Hence, if the assumption of wiFi is true, then during
[ri, ci] BWF must have done more work than the total avail-
able work, which gives a contradiction. By scaling ε, we
obtain the theorem. 2

Remarks. The result of weighted flow time can be applied
to maximum stretch. In the sequential setting, weighted
flow time captures maximum stretch by setting the weight
to be the inverse of the processing time. In other words, the
flow of a job is scaled by the inverse of its processing time in
the stretch objective for sequential jobs. However, stretch
is not well-defined for DAG jobs. In particular, should the
flow time be scaled by the inverse of the total work or the
critical path length? Although there are two natural inter-
pretations of the stretch in the DAG setting, both of them
can be still captured by weighted flow time. Since BWF
is (1 + ε)-speed O(1

ε2
)-competitive for maximum weighted

flow time and there are strong lower bounds without speed
augmentation, so this result can be viewed as essentially the
best positive theoretical result for maximum stretch.

8. RELATED WORK
In scheduling theory, two dominant models have emerged

for modeling the parallelizability of jobs. One model is the
Directed-Acyclic-Graph (DAG) model, which was consid-
ered in this paper. This model is a good model for represent-
ing parallel programs written using programming languages
and libraries designed for this purpose, and, due to this the
model is well connected to practice [5, 14, 13, 12, 6].

The other model considered is known as the arbitrary
speed-up curves setting when online and sometimes referred
to as the malleable task setting when offline. In the arbitrary
speed-up curves setting, each job Jj consists of µj phases
and the ith phase is associated with a tuple (pi,j ,Γi,j(m

′)).
The value of pi,j is the work of the ith phase for job j and
Γi,j(m

′) is a speed-up function that specifies the rate pi,j

is processed at when job Jj is given m′ processors when in
the ith phase. The phases of the job must be processed se-
quentially and Γi,j specifies the parallelizability of Ji during
phase i. It is generally assumed that Γi,j is a non-decreasing
sublinear function.

Both models have been widely considered both online and
offline. However, it is important to note that the models are
fundamentally different and there does not appear to be a
straightforward way of translating results from one model
to the other. In particular, in the DAG setting, the realized
parallelizability of a job, at any point in time, depends on the
nodes of the job that are free to execute. That is, the nodes
whose predecessors have been previously processed. The
realized parallelizability, or number of ready nodes, depends
not only on how much work on the job has been complete
in the past, but also which nodes were processed. Due to
this, one cannot map an arbitrary DAG to a set of speed-
up curves since the parallelizability of a job in the speed-up
curves model only depends on the amount of work previously
processed. Alternatively, in the speed-up curves model, it
could be the case that a job has a speed up function of
Γ(m′) =

√
m′. In this case, a job is processed at a rate of√

m′ when given m′ processors for any 1 ≤ m′ ≤ m. In
the DAG setting, one cannot simulate this speed-up curves
since the parallelizability of a job is essentially linear up to
the number of nodes ready to be scheduled.

The results mentioned in Section 1 on minimizing the
maximum (weighted) flow time were all for the case where
jobs are sequential. When jobs are parallelizable, few on-
line algorithmic techniques are known to have strong perfor-
mance guarantees for maximum flow time, unlike for other
objectives such as average flow time [11]. The only positive
result on maximum flow time is for the arbitrary speed-up
curves setting, where a (1 + ε)-speed O(logn)-competitive
algorithm for unweighted flow time was shown [24]. This re-
sult is complemented by a lower bound showing that no algo-
rithm can be s-speed o(logn)-competitive for any constant
resource augmentation s > 0. The lower bound is somewhat
surprising because average flow time, typically thought of
as a harder objective than maximum flow time, admits an
O(1)-competitive algorithm with constant resource augmen-
tation [11]. Thus, this result on maximum flow time seems to
close the problem and rules out hope for a O(1)-competitive
algorithm even with resource augmentation. Our result,
which provides O(1)-competitive algorithm with 1 + ε speed
augmentation is the first to cleanly separate the DAG model
from the arbitrary speed-up curves model for any objective.

Work on the speed-up curves setting has also considered
other objectives. A (1+ε) speed O(1

ε
)-competitive algorithm

for any ε > 0 is known for average flow time [11]. Without re-
source augmentation, an O(logP)-competitive algorithm is
known assuming polynomial speed-up functions under some
assumptions of the jobs parallelizability [18]. For the `k-
norms of flow time, a (1 + ε) speed O(k

ε2k+1) for any ε > 0
is known [10, 15]. Notice that maximum flow time is cap-
tured by the `k-norms for sufficiently large k, but here the
competitive ratio grows with k. For maximum flow time a
(1+ε)-speed O(logn)-competitive is known with a matching
lower bound on any algorithm given O(1) speed augmenta-
tion [24].

For the DAG scheduling setting, little is known online.
Recently some works have considered algorithms in the real
time scheduling setting [27, 22].

204

9. CONCLUSION
The DAG model has been influential in design of theoret-

ically good and practically efficient schedulers for executing
single parallel program. In this paper, we give the first re-
sults in this model for maximum flow time, an important
scheduling metric, for multiprogrammed environment where
jobs arrive online. This work opens up many interesting
further questions. For instance, is resource augmentation
absolutely necessary for DAG jobs? Also, are there online
algorithms with strong performance guarantees for other ob-
jectives such as the `k-norms of flow time? Our results also
show that the online scheduling of parallel programs in the
DAG model differs from the arbitrary speed-up curves set-
ting. It would be of interest to further explore connections
and differences between these two models.

Acknowledgment
This research was supported in part by a Google Re-
search Award, a Yahoo Research Award, NSF awards CCF-
1337218, CCF-1218017, and CCF-1150036.

10. REFERENCES
[1] Kunal Agrawal, Charles E Leiserson, Yuxiong He, and

Wen Jing Hsu. Adaptive work-stealing with
parallelism feedback. ACM Trans. Computer Syst.,
26(3):7, 2008.

[2] Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin
Moseley. Scheduling parallel DAG jobs online to
minimize average flow time. In SODA ’16, pages
176–189, 2016.

[3] Christoph Ambühl and Monaldo Mastrolilli. On-line
scheduling to minimize max flow time: an optimal
preemptive algorithm. Oper. Res. Lett., 33(6):597–602,
2005.

[4] Michael A. Bender, Soumen Chakrabarti, and
S. Muthukrishnan. Flow and stretch metrics for
scheduling continuous job streams. In SODA ’98,
pages 270–279, 1998.

[5] Robert D. Blumofe and Charles E. Leiserson.
Scheduling multithreaded computations by work
stealing. JACM, 46(5):720–748, 1999.

[6] F. Warren Burton and M. Ronan Sleep. Executing
functional programs on a virtual tree of processors. In
FPCA, pages 187–194. ACM, 1981.

[7] Colin Campbell and Ade Miller. A Parallel
Programming with Microsoft Visual C++: Design
Patterns for Decomposition and Coordination on
Multicore Architectures. Microsoft Press, 2011.

[8] Chandra Chekuri, Sungjin Im, and Benjamin Moseley.
Online scheduling to minimize maximum response
time and maximum delay factor. Theory of
Computing, 8(1):165–195, 2012.

[9] Thomas H Cormen, Charles E Leiserson, and
Ronald L Rivest. Introduction to algorithms. MIT
press, 2009.

[10] Jeff Edmonds, Sungjin Im, and Benjamin Moseley.
Online scalable scheduling for the `k-norms of flow
time without conservation of work. In SODA ’11,
pages 109–119, 2011.

[11] Jeff Edmonds and Kirk Pruhs. Scalably scheduling
processes with arbitrary speedup curves. ACM Trans.
Algo., 8(3):28, 2012.

[12] Rainer Feldmann, Peter Mysliwietz, and Burkhard
Monien. Studying overheads in massively parallel
min/max-tree evaluation. In SPAA ’94, pages 94–103,
1994.

[13] Vincent W. Freeh, David K. Lowenthal, and
Gregory R. Andrews. Distributed Filaments: Efficient
fine-grain parallelism on a cluster of workstations. In
OSDI ’94, pages 201–213. USENIX, 1994.

[14] Matteo Frigo, Charles E. Leiserson, and Keith H.
Randall. The implementation of the Cilk-5
multithreaded language. In PLDI, pages 212–223,
1998.

[15] Anupam Gupta, Sungjin Im, Ravishankar
Krishnaswamy, Benjamin Moseley, and Kirk Pruhs.
Scheduling jobs with varying parallelizability to
reduce variance. In SPAA ’10, pages 11–20, 2010.

[16] Yuxiong He, Wen-Jing Hsu, and Charles E Leiserson.
Provably efficient online nonclairvoyant adaptive
scheduling. IEEE Trans. Parallel Distrib. Syst.,
19(9):1263–1279, 2008.

[17] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A
tutorial on amortized local competitiveness in online
scheduling. SIGACT News, 42(2):83–97, 2011.

[18] Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Eric
Torng. Competitively scheduling tasks with
intermediate parallelizability. In SPAA ’14, pages
22–29, 2014.

[19] Intel. Intel CilkPlus, Sep 2013.
https://www.cilkplus.org/.

[20] Bala Kalyanasundaram and Kirk Pruhs. Speed is as
powerful as clairvoyance. J. ACM, 47(4):617–643,
2000.

[21] Saehoon Kim, Yuxiong He, Seung-won Hwang, Sameh
Elnikety, and Seungjin Choi.
Delayed-dynamic-selective (DDS) prediction for
reducing extreme tail latency in web search. In WSDM
’15, pages 7–16, 2015.

[22] Jing Li, Jian-Jia Chen, Kunal Agrawal, Chenyang Lu,
Christopher D. Gill, and Abusayeed Saifullah.
Analysis of federated and global scheduling for parallel
real-time tasks. In ECRTS ’14, pages 85–96, 2014.

[23] OpenMP. OpenMP Application Program Interface
v4.0, July 2013. http://http://www.openmp.org/
mp-documents/OpenMP4.0.0.pdf.

[24] Kirk Pruhs, Julien Robert, and Nicolas Schabanel.
Minimizing maximum flowtime of jobs with arbitrary
parallelizability. In WAOA ’10, pages 237–248, 2010.

[25] James Reinders. Intel threading building blocks:
outfitting C++ for multi-core processor parallelism.
O’Reilly Media, 2010.

[26] Shaolei Ren, Yuxiong He, Sameh Elnikety, and
Kathryn S McKinley. Exploiting processor
heterogeneity in interactive services. In ICAC ’13,
pages 45–58, 2013.

[27] Abusayeed Saifullah, David Ferry, Jing Li, Kunal
Agrawal, Chenyang Lu, and Christopher D. Gill.
Parallel real-time scheduling of dags. IEEE Trans.
Parallel Distrib. Syst., 25(12):3242–3252, 2014.

[28] Olivier Tardieu, Haichuan Wang, and Haibo Lin. A
work-stealing scheduler for x10’s task parallelism with
suspension. In PPoPP ’12, 2012.

205

https://www.cilkplus.org/
http://http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

	Introduction
	Preliminaries
	Unweighted Maximum Flow Time using FIFO
	Unweighted Maximum Flow Time using Work Stealing
	Work Stealing Lower Bound
	Experimental Results for Unweighted Maximum Flow Time
	Maximum Weighted Flow Time
	Related Work
	Conclusion
	References

