
Theory Comput Syst
DOI 10.1007/s00224-016-9722-0

Scheduling Parallel Jobs Online with Convex
and Concave Parallelizability

Roozbeh Ebrahimi1 ·Samuel McCauley2 ·
Benjamin Moseley3

© Springer Science+Business Media New York 2016

Abstract Online scheduling of parallelizable jobs has received a significant amount
of attention recently. Scalable algorithms are known—that is, algorithms that are (1+
ε)-speed O(1)-competitive for any fixed ε > 0. Previous research has focused on the
case where each job’s parallelizability can be expressed as a concave speedup curve.
However, there are cases where a job’s speedup curve can be convex. Considering
convex speedup curves has received attention in the offline setting, but, to date, there
are no positive results in the online model. In this work, we consider scheduling jobs
with convex or concave speedup curves for the first time in the online setting. We
give a new algorithm that is (1+ ε)-speed O(1)-competitive. There are strong lower
bounds on the competitive ratio if the algorithm is not given resource augmentation
over the adversary, and thus this is essentially the best positive result one can show
for this setting.

This research was supported in part by NSF grants CNS 1408695, CCF 1439084, IIS 1247726, IIS
1251137, and CCF 1217708. Samuel McCauley was also supported in part by Sandia National
Laboratories.

� Samuel McCauley
smccauley@cs.stonybrook.edu

Roozbeh Ebrahimi
rebrahimi@google.com

Benjamin Moseley
bmoseley@wustl.edu

1 Google Inc., 1600 Ampitheatre Parkway, Mountain View, CA 94043, USA

2 Stony Brook University, Stony Brook, NY 11794, USA

3 Washington University in St. Louis, St. Louis, MO 63130, USA

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00224-016-9722-0-x&domain=pdf
http://orcid.org/0000-0001-8196-9662
mailto:smccauley@cs.stonybrook.edu
mailto:rebrahimi@google.com
mailto:bmoseley@wustl.edu

Theory Comput Syst

Keywords Online scheduling · Convex and concave parallelizability · Competitive
analysis

1 Introduction

Scheduling jobs online arises in numerous applications and, for this reason, there has
been extensive research on the topic. See [14, 20] for an overview of recent work. In
general, there are n jobs that arrive over time. Each job Ji has a processing time pi

and a release date ri . Each job Ji can only be processed after its release date and is
completed once it receives pi units of processing. In the online setting, the scheduler
is only aware of the job after it is released.

In this study, the objective is to minimize average (total) flow time, the most popu-
lar and well-studied objective in the online setting. If a scheduler A completes job Ji

at time CA
i the flow time for job Ji is FA

i = CA
i − ri . This is the amount of time the

job waits to be satisfied. A scheduler A that minimizes average flow time optimizes∑
i FA

i /n, which is the average waiting time of jobs.
In the most basic setting, the jobs are to be scheduled on a single machine. In

this case, it is well-known that the simple algorithm Shortest-Remaining-Processing-
Time (SRPT) is optimal. Recently, there have been many results focusing on
optimizing average flow time in a variety of multiple machine models; for example,
see [5, 6, 11, 13]. Much of this work has focused on the case where jobs are to be
scheduled on at most one machine at any point in time. However, a significant amount
of attention has also been paid to scheduling jobs that are parallelizable across m

identical processors.
One of the most popular models is the arbitrary speedup curves model [7], where

each job Ji has a speedup function Γ (x) : m → R
+. Here Γi(x) is the rate at which

job Ji is processed when given x processing units.
It is assumed in previous work on online scheduling that the speedup Γi is a non-

decreasing concave function. It is interesting to note that this model captures the
classic identical machine scheduling setting where a job can only be processed by at
most one machine any point in time. To see this, let Γi(x) = x for x ∈ [0, 1] and 1
for x > 1 for all jobs Ji .

Since no algorithm can beO(1)-competitive for the arbitrary speedup curve model
[17], previous work has focused on the resource augmentation model [16], where
a job is given faster processors than the adversary. An algorithm is said to be s-
speed c-competitive if the algorithm is given processors of speed s, the adversary has
processors of speed 1 and the competitive ratio is c. In the speedup curve setting, this
can be interpreted as Γi(x) being increased by a factor s for the algorithm. An ideal
algorithm is one that is (1+ε)-speed O(1)-competitive for every fixed ε > 0. That is,
the algorithm has a constant competitive ratio while using an arbitrarily small amount
of extra resources over the adversary. Such an algorithm is called scalable. Note that
the constant competitive ratio generally grows with ε: less speed augmentation leads
to a larger competitive ratio.

It was first shown that the algorithm Round Robin, or processor sharing, is (2+ε)-
speed O(1)-competitive for any fixed ε > 0 [7]. This was the best positive result for

Theory Comput Syst

roughly a decade, until a breakthrough result of Edmonds and Pruhs [9] showed an
algorithm, called LAPS, is scalable. This algorithm has been extremely influential
since its introduction, being shown to be the best possible algorithm in numerous
scheduling environments [1, 8, 12].

Recently, there has also been work on determining the best competitive ratio that
can be achieved if the algorithm is not given resource augmentation [15]. In this
model, for concave polynomial speedup functions, there is an O(logP)-competitive
algorithm that is a hybrid algorithm between SRPT and Round Robin (here P is the
size of the largest job); this bound is essentially tight.

Convex Speedup Functions We offer a model of online scheduling for arbitrary
speedup curves which allows speedup functions to be convex as well as concave.
All of the previous work on the online arbitrary speedup curves setting only allow
speedup functions to be concave. However, several works have considered convex
speedup functions in the malleable task model, the offline equivalent of our setting
[3, 4, 18].

Blazewicz et al. in [4] give some examples of applications of parallel computer
systems in scientific computing of highly parallelizable tasks to justify the consider-
ation of convex speedup curves. Their examples include 1) simulation of molecular
dynamics, 2) Cholesky factorization, and 3) operational oceanography.

For completeness, we summarize the molecular dynamics problem and why it
experiences convex speedup. Simulation of molecular dynamics of large organic
molecules (like proteins) is usually a very complicated task, because the simulation
must calculate interactions between hundreds of thousands of atoms at each step.
These simulations require massive amounts of space, and when an instance does
not fit in main memory the cost of repeatedly writing/reading from disk dictates the
time of execution. As a result, increasing the number of processors working on the
problem decreases these disk accesses. This leads to a convex speedup (see Figure 1
in [4]).

Several other studies report convex speedup curves in practice. For example,
Beaumont and Guermouche in [2] report that implementing the sparse matrix factor-
ization method of Prasanna and Musicus [19] in a real multifrontal solver results in
a measured speedup function of p1.15. They state that this superlinear speedup orig-
inates from unusual requirements on processor utilization: the algorithm generates
master and slave tasks which must be scheduled on different processors.

Our Contributions In this work, we consider scheduling jobs in the online setting
with speedup curves that may be convex or concave for the first time. In our model,
each job Ji is comprised of phases 〈J 1

i , J 2
i , · · · , J

qi

i 〉. We assume that the paralleliz-
ability of phase μ of job Ji , denoted Γi,μ, is either a convex or concave function, and
that each job must be assigned an integral number of processing units at each time.
Note that each phase of each job can have different parallelizability, and can change
from convex to concave or visa versa. Since this setting is more general than the paral-
lel identical machines setting, there are strong lower bounds on the competitive ratio

Theory Comput Syst

of any online algorithm.1 Thus, we consider algorithms in the resource-augmentation
model.

The scheduler is online and does not know of a job until it arrives. Furthermore,
our scheduling algorithm does not know the size of a job nor the specific function
of its speedup curve. However, we assume that the algorithm knows whether Γi,μ

for each phase μ of job Ji is convex or concave. That is, while that algorithm does
not know the exact function Γi,μ for each phase J

μ
i , it is aware if Γi,μ is convex

or concave. We refer to such an scheduler as a convexity-sensitive scheduler. We
note that a convexity-sensitive scheduler has only one bit per phase of each job more
information than non-clairvoyant LAPS algorithm in [9]. Here we show the following
result.

Theorem 1 There exists a (1 + λε)-speed and O(1
λε4

)-competitive convexity-
sensitive scheduling algorithm for minimizing average flow time in the arbitrary
speedup curves setting when the speedup curves can be a concave or convex function,
for any 0 < ε ≤ 1/2 and λ > 7/3.

Thus, for any fixed ε′, we can achieve a (1+ε′) speed,O(1)-competitive algorithm
by appropriately choosing ε and λ in the above theorem. Given the strong lower
bound on the competitive ratio for any algorithm without resource augmentation, this
is essentially the best positive result that can be shown in the worst-case analysis
setting.

Organization Section 2 outlines some preliminary tools for our analysis. In
Section 3, we present our convexity-sensitive algorithm. Section 4 provides the proof
for Theorem 1.

2 Preliminaries

In our setup we consider n jobs that arrive over time. Each job Ji has a release
time ri and a sequence of phases χi = 〈J 1

i , J 2
i , · · · , J

qi

i 〉. Each phase μ of job
Ji has a processing time pi,μ which means that it needs this amount of processing
to be completed. We assume that there are m available processing units and that
when phase μ of job Ji is given x (integral) units of processing it is processed at
a rate of Γ i,μ(x). We assume that Γi,μ(0) = 0. If the algorithm is given resource
augmentation s, then we assume Γi,μ(x) is scaled by s for the algorithm (whose
performance is then compared to the unscaled optimal solution). We say that a job is
unsatisfied if it has not yet been completed.

Our algorithm assigns fractional units of processing units to jobs, which might
seem to contradict the model described above. We describe how this assumption
is justifiable. First, since Γi,μ(x) is only defined on integral x, we can extend the
definition to where x can be fractional. This is naturally defined by making Γi,μ a

1Specifically, [17] gives an Ω(log n/m) lower bound.

Theory Comput Syst

piecewise linear function. Consider any fractional x = x′ +λ where λ ∈ (0, 1) and x′
is integral. We assume that Γi,μ(x) = (1− λ)Γi,μ(x′) + λΓi,μ(x′ + 1). Note that this
preserves convexity and concavity of Γi,μ. In this case, [10] has shown that an online
O(c)-competitive algorithm that fractionally assigns processors to jobs can be con-
verted to an O(c)-competitive online algorithm that integrally assigns processors to
the jobs without knowing the functions Γi,μ. In short, one can simulate fractional pro-
cessor assignments by assigning jobs to an additional processor for a small amount
of time, leading to equivalent speedup. Thus, we assume WLOG that our algorithm
can assign processors fractionally to the jobs. Furthermore, by scaling Γi,μ, we may
assume that m = 1 throughout the analysis.

Note that the notions of convex and concave are not clear over the integers. We
apply these definitions using the above piecewise linear extension. Intuitively, a
concave function is sublinear, while a convex function is superlinear.

We also extend this problem definition to allow job phases J
μ
i where Γ i,μ(x) = 1

for all x ∈ [0, ∞). We note that this implies that J
μ
i is processed even though no

processor is assigned to it. Although this is not realistic in practice, this only makes
our problem harder, yet, in fact, it will help to simplify our analysis. We will call such
phases sequential. Note that in this case, these phases are not explicitly identified to
the algorithm (since it is convexity-sensitive and does not know the functions Γi,μ),
so the algorithm may waste processing power on them.

The following simple proposition about concave and convex functions will be
useful throughout the analysis.

Proposition 1 – For any positive value x, any positive α < 1, and any concave
function f where f (0) = 0, we have that αf (x) ≤ f (αx).

– Also, for any values a and b where b ≥ a > 0, we have that f (b)
f (a)

≤ b
a
.

– Likewise, for any positive value x, any positive value α < 1, and any convex
function g where g(0) = 0, we have that αg(x) ≥ g(αx).

– Also, we have that for b ≥ a > 0 g(b)
g(a)

≥ b
a
.

2.1 Amortized Local Competitiveness

We let FA(I) and FO(I) refer to the objective values of the algorithm and OPT on
input I . A scheduling algorithm is said to be d-competitive if

max
I

FA(I)

FO(I)
≤ d.

To prove the competitiveness of an online algorithm, we use an amortized local
competitiveness argument. See [14] for a tutorial on this technique. To incorporate
such an argument it suffices to show for an algorithm A that a potential function Φ(t)

with the following properties exists, where Φ(t) is continuous at all times except
possibly when jobs arrive or are completed:

Boundary condition Before any job is released Φ(0) = 0, and after all jobs are
finished Φ(∞) ≥ 0.

Theory Comput Syst

Completion condition When a job completes (in either the algorithm or the optimal
solution), Φ may be discontinuous. The sum of the instantaneous changes in Φ, over
all of these discontinuities, is at most α1F

O for some α1 ≥ 0.

Arrival condition Similarly, summing over any discontinuities at the arrival time of
jobs, Φ does not increase by more than α2F

O for some α2 ≥ 0.

Running condition At any time t when no job arrives nor is completed,

∂FA(t)

∂t
+ ∂Φ(t)

∂t
≤ α3

∂FO(t)

∂t
. (1)

By integrating (1) over time and applying the boundary, arrival, and completion
conditions we get

FA − Φ(0) + Φ(∞) ≤ (α1 + α2 + α3)F
O

FA ≤ (α1 + α2 + α3)F
O − Φ(∞). (2)

Equation (2) implies that algorithm A is (α1 + α2 + α3)-competitive.

3 A Convexity-Sensitive Scheduling Algorithm

In this section, we present a convexity-sensitive scheduling algorithm that is
O(1/λε4)-competitive with (1+λε)-speed augmentation for every 0 < ε ≤ 1/2 and
λ > 7/3. Note that ε can be set independent of λ. For the remaining portion of the
algorithm definition and analysis, fix a pair of such λ and ε.

We introduce some definitions and then present our scheduling algorithm.

Definition 1 We say that phase μ of job Ji , J
μ
i is sequential if ∀x ≥ 0, Γi,μ(x) = 1.

A linear phase
is a phase J

μ
j with speed-up function Γj,μ(x) = x. We define both of these phases

to be concave.

Definition 2 Fix a unit time step at time t . For a given scheduling algorithm, we
let A(t) be the set of unsatisfied jobs at time t . Also let A′(t) be the ε|A(t)| latest-
arriving unsatisfied jobs. Let γt be the fraction of unsatisfied jobs that are in a concave
phase at time t .

Algorithm 1 The convexity-sensitive scheduling algorithm

1: On each time step do the following:
2: Give each of the jobs in a convex phase all of the processing units

for 1 fraction of the unit time slot.
3: Give each of the jobs in a concave phase 1 of the processing units for

a fraction of the unit time slot.

Theory Comput Syst

4 Proof of Theorem 1

We first define our potential function in Subsection 4.1. Then, in Subsection 4.2
we argue the amortized local competitiveness conditions for our potential function,
proving that the convexity-sensitive scheduling algorithm is O(1)-competitive.

4.1 The Potential Function Φ

Definition 3 Let pAi,μ(t), and pOi,μ(t) be the remaining processing time for Ji’s μ-th
phase in the algorithm’s schedule, and OPT’s schedule at time t respectively.

If job Ji is processed using xi processing units by the algorithm when it is in
phase μ in the algorithm’s schedule at time t then pA

i,μ(t) decreases at a rate of
(1 + λε)Γi,μ(xi). Similarly, if job Ji is processed using xi processing units by the
optimal solution in phase μ at time t then pO

i,μ(t) decreases at a rate of Γi,μ(xi)

Definition 4 We define the lag of the algorithm on job Ji’sμ-th phase, Jμ
i , compared

to OPT as follows:

zi,μ(t) = max{pA
i,μ(t) − pO

i,μ(t), 0}.

Note that zi,μ is never negative.

Definition 5 At time t , we define the rank of job Ji, ranki(t), as the number of jobs
in A(t) that arrived before job Ji in the system.

Definition 6 We define β i,μ(x) to be equal to

βi,μ(x) =
{

Γi,μ (1/εx) if Γi,μ is concave;
Γi,μ(1)/εx if Γi,μ is convex.

Finally, we are ready to define our potential function.

Definition 7 Let c = 20/ε2(9λ − 21). We define the potential function Φ(t)

Φ(t) = c
∑

i∈A(t)

∑

μ∈χi

zi,μ(t)

βi,μ(ranki (t))
.

4.2 Amortized Local Competitiveness of Φ

In this subsection, we show that our potential function Φ satisfies the four conditions
laid out in the Section 2 and thus the convexity-sensitive scheduling algorithm is
constant competitive.

Theory Comput Syst

The following lemma shows that the algorithm has the first three conditions.

Lemma 1 The potential function, Φ(t), satisfies the boundary, arrival and comple-
tion conditions. In particular, the potential does not increase at any of these events
(the conditions are satisfied with α1 = α2 = 0).

Proof We prove the boundary, arrival, and completion conditions separately.

Boundary condition At time t = 0, for all i, zi,μ = 0 (since no job can be processed
yet) and hence Φ(0) = 0. When all the jobs are finished by the algorithm and OPT
we also have the case that zi,μ = 0 for all jobs. Therefore, Φ(∞) = 0 as well.

Arrival conditionWe prove thatΦ does not increase when a new job Ji arrives at time
t . Notice that zi,μ(t) is 0 for all phases μ of job Ji , when job Ji arrives since neither
OPT nor the algorithm has worked on the job. Furthermore, rankj (t) of every other
job Jj and zj,μ for all of their phases do not change due to job Ji’s arrival. Thus,
there is no change in Φ(t).

Completion conditionWe prove that Φ does not increase when jobs complete. When
a job Jj completes, the terms for that job are removed from Φ. As for other jobs,
their rank could decrease by 1 or remain unchanged.

– Concave Jobs: If J
μ
i is concave, we have

zi,μ(t)/βi,μ(ranki (t)) = zi,μ(t)/Γi(1/εranki (t)).

Recall that Γi,μ is a non-decreasing function. When another job completes, the
ranki (t) term for job Ji might decrease. Then, Γi,μ(1/εranki (t)) would only
increase, and thus the whole term can only decrease.

– Convex Jobs: If J
μ
i is convex, we have

zi,μ(t)/βi,μ(ranki (t)) = zi,μ(t)εranki (t)/Γi,μ(1).

Since ranki (t) is in the numerator, when another job completes, the term for
job Ji will only decrease.

Both the above cases rely on the fact that zi,μ(t) is always positive.

To prove Theorem 1, we need to show the running condition for Φ. To do this,
we show that we can focus on certain classes of problem instances. The following is
a simple extension of a lemma proven in [9].

Lemma 2 Let S be a convexity-sensitive scheduler with s-speed augmentation. Let
I be an instance of jobs with phases that have concave or convex speed up func-
tions. There exists an instance I ′ that includes the same set of convex phases for jobs
in I , and for every concave phase J

μ
i in I ′ it is the case that either J

μ
i is sequen-

tial (Γi,μ(x) = 1), or linear (Γi,μ(x) = x). Furthermore, such an I ′ exists where

Theory Comput Syst

FS(I) = FS(I ′) and FO(I ′) ≤ FO(I) where FO is the objective of the optimal
solution and FS is the objective of the convexity-sensitive scheduler.

The proof of the above lemma is implied immediately by the proof of Lemma 3.1
in [9]. Specifically, the proof proceeds constructively, by substituting each concave
phase that is not sequential or linear with one that is; in each case, the objective of
the optimal solution decreases, while that of the convexity-sensitive scheduler stays
the same. Our construction does not change the convex phases.

This lemma implies that if an instance has concave phases that are not sequential
or linear, the performance of our algorithm can only improve relative to the opti-
mal solution. Thus we assume throughout the proof that concave phases are either
sequential or linear.

Definition 8 Let U(t) be the set of unsatisfied jobs in the optimal solution, OPT, at
time t .

First we show how much Φ can increase at time t due to the optimal solution
processing jobs. Then, later, we bound the decrease due to the algorithm processing
separately.

Recall that for total flow time, the increase in the objective at any point in time is
the number of unsatisfied jobs. Thus, for an instantaneous time t we have

∂FA(t)

∂t
= |A(t)|, ∂FO(t)

∂t
= |U(t)|.

Lemma 3 For all times t where no job arrives or completes,

∂Φ(t)

∂t
≤ c|U(t)| + cε|A(t)|.

Proof Our goal is to show that the optimal solution cannot increase the potential
function too much. To show this, consider the number of processing units the optimal
solution assigns to the jobs.

Definition 9 Let mO
i (t) be the number of processing units OPT assigns to job Ji at

time t .

Let μO
i (t) be the phase of job Ji in OPT’s schedule at time t . Job Ji is processed

by OPT at the rate of Γi,μO
i (t)(m

O
i (t)) (the remaining processing time pO

i,μO
i (t)

(t) of

phase μO
i (t) for job Ji would decrease at this rate). Then zi,μO

i (t)(t) could increase
by this amount in the worst case. Hence,

∂Φ(t)

∂t
≤ c

∑

i∈U(t)

Γi,μO
i (t)(m

O
i (t))

βi,μO
i (t)(ranki (t))

.

Theory Comput Syst

Let Uv(t) be the unsatisfied jobs in OPT at time t that are in a convex phase at
time t in OPT’s schedule and Uc(t) be those in a concave phase.

∂Φ(t)

∂t
≤ c

∑

i∈U(t)

Γi,μO
i (t)(m

O
i (t))

βi,μO
i (t)(ranki (t))

≤ c

⎛

⎝
∑

i∈Uc(t)

Γi,μO
i (t)(m

O
i (t))

βi,μO
i (t)(ranki (t))

+
∑

i∈Uv(t)

Γi,μO
i (t)(m

O
i (t))

βi,μO
i (t)(ranki (t))

⎞

⎠

= c

⎛

⎝
∑

i∈Uc(t)

Γi,μO
i (t)(m

O
i (t))

Γi,μO
i (t)(1/εranki (t))

+ε
∑

i∈Uv(t)

ranki (t)Γi,μO
i (t)(m

O
i (t))

Γi,μO
i (t)(1)

⎞

⎠ .

We now bound each of these terms separately.

First summation term If mO
i (t) ≤ 1/(εranki (t)), then the corresponding term in

the first summation is at most 1. Note that this is true even if the job is in a sequential
phase and we can assume OPT does not assign any processors to sequential jobs since
it does not increase the rate they are processed.

On the other hand, if mO
i (t) > 1/(εranki (t)), then by Proposition 1, we have

Γi,μO
i (t)(m

O
i (t))

Γi,μO
i (t)(1/εranki (t))

≤ εranki (t)m
O
i (t).

due to the concavity of any job Ji’s phase in the first sum. Therefore,

∑

i∈Uc(t)

Γi,μO
i (t)(m

O
i (t))

Γi,μO
i (t)(1/εranki (t))

≤ |Uc(t)| +
∑

i∈Uc(t)

εranki (t)m
O
i (t).

Second summation term As for the second term we know that mO
i (t) ≤ 1. Hence,

due to the convexity of the jobs phases, Proposition 1 implies that

Γi,μO
i (t)(m

O
i (t))

Γi,μO
i (t)(1)

≤ mO
i (t).

Thus, we get that

∑

i∈Uv(t)

ranki (t)Γi,μO
i (t)(m

O
i (t))

Γi,μO
i (t)(1)

≤
∑

i∈Uv(t)

ranki (t)m
O
i (t).

Substituting the above simplifications, we get

∂Φ(t)

∂t
≤ cε

⎛

⎝
∑

i∈Uc(t)

ranki (t)m
O
i (t) +

∑

i∈Uv(t)

ranki (t)m
O
i (t)

⎞

⎠ + c|Uc(t)|

≤ c|Uc(t)| + cε|A(t)|
∑

i∈U(t)

mO
i (t).

Theory Comput Syst

The last line follows because the rank of each job is at most A(t) at time t , by defi-
nition of the ranks of the jobs and because there are only A(t) unsatisfied jobs in the
algorithm’s schedule at time t .

Finally, we know that
∑

i∈U(t) mO
i (t) ≤ 1, because the amount of processing units

divided between jobs at any time can not exceed m = 1. Hence,

∂Φ(t)

∂t
≤ c|Uc(t)| + cε|A(t)| ≤ c|U(t)| + cε|A(t)|.

We divide the rest of the analysis into two cases depending on the relation-
ship between U(t) and A(t). First, we consider the easier case where |U(t)| ≥
ε2|A(t)|/10.

Lemma 4 If |U(t)| ≥ ε2|A(t)|/10, then ∂FA(t)/∂t + ∂Φ(t)/∂t is at most
O(1/λε4)

(
∂FO(t)/∂t

)
.

Proof By Lemma 3 we know that OPT can increase Φ(t) by at most c|U(t)| +
cε|A(t)|. Hence,

c|U(t)| + cε|A(t)| ≤ c(1 + 10/ε)|U(t)| since ε|A(t)| ≤ 10|U(t)|/ε.
Therefore,

∂FA(t)

∂t
+ ∂Φ(t)

∂t
≤ A(t) + c(1 + 10/ε)|U(t)|
≤ c(1 + 10/ε + 10/ε2)|U(t)| since |A(t)| ≤ 10|U(t)|/ε2,
≤ O(1/λε4)

(
∂FO(t)

∂t

)

since c = 20

ε2(9λ − 21)
.

Now we consider the more challenging case where |U(t)| < ε2|A(t)|/10.

Lemma 5 If |U(t)| < ε2|A(t)|/10, then ∂FA(t)/∂t + ∂Φ(t)/∂t is at most
O(1/λε4)

(
∂FO(t)/∂t

)
.

Proof In the proof of Lemma 4 we focused on howOPT can increaseΦ (by assuming
that the algorithm did not decrease the pA

i,μO
i (t)

(t) variables at all). Let μA
i (t) be the

phase job Ji is in at time t in the algorithm’s schedule. In this proof, we focus on how
the algorithm can decrease zi,μA

i (t)(t)—and thus Φ(t)—while OPT increases Φ(t).

Let CO(t) be the change in Φ(t) due to the optimal solution processing jobs at time
t and let CA(t) denote the change in Φ(t) due to the algorithm processing of jobs at
time t . Lemma 3 says that CO(t) ≤ c|U(t)| + cε|A(t)|.

Now, we bound CA(t) at a time t where |U(t)| < ε2|A(t)|/10. Recall that
zi,μA

i (t)(t) = max{pA

i,μA
i (t)

(t) − pO

i,μA
i (t)

(t), 0}. Therefore, zi,μA
i (t) can only decrease

due to the algorithm’s processing. Further, zi,μA
i (t)(t) will decrease at the rate the

algorithm process job Ji at time t if the optimal solution has completed Ji by time t .

Theory Comput Syst

That is, for jobs not in U(t). Since OPT only has U(t) < ε2|A(t)|/10 unfinished
jobs, the algorithm’s processing on at least a (1 − ε/10) fraction of the jobs in A′(t)
causes zi,μA

i (t) to decrease at the rate they are processed.

Let Ac(t) be the set of jobs in A′(t) that are in a concave phase at time t in the
algorithm’s schedule. Let Av(t) be the set of jobs in A′(t) that are in a convex phase
at time t in the algorithm’s schedule. A′(t) = Ac(t) ∪ Av(t). Recall that at time t a
(1 − γt) fraction of jobs in A′(t) are in Av(t) and a γt fraction are in Ac(t)

Recall the assumption (justified by Lemma 2) that any concave phase for a job is
either sequential or linear. In particular, all the jobs in Ac(t) are either sequential or
linear. Let Sc(t) be the jobs in Ac(t) that are in a sequential phase at time t and the
others are in Lc(t). Ac(t) = Sc(t) ∪ Lc(t).

Here are the progress rates of the algorithm on Av(t), Sc(t), and Lc(t).

– The algorithm processes each convex job in Av(t) at a rate given by
Γi,μA

i (t)(1)/ε|A(t)|.
– For each linear job in Lc(t), the rate of progress is γtΓi,μA

i (t)(1/γtε|A(t)|) =
1/ε|A(t)|.

– For each sequential job in Sc(t), the rate of progress is always 1 no matter how
many processing units are assigned to the job (even if there are 0 units assigned).

The algorithm is (1 + λε)-speed augmented; therefore we multiply its change in
the potential function by (1 + λε). Combining all the above, we get

C(t)A ≤ −c(1 + λε)

⎛

⎝
∑

i∈Av(t)\U(t)

Γi,μA
i (t)(1)/ε|A(t)|

βi,μA
i (t)(ranki (t))

+
∑

i∈Sc(t)\U(t)

1

βi,μA
i (t)(ranki (t))

+
∑

i∈Lc(t)\U(t)

1/ε|A(t)|
βi,μA

i (t)(ranki (t))

⎞

⎠ . (3)

Note that since the algorithm works on the latest A′(t) arriving jobs, the rank of
each job in A′(t) is bounded between

(|A(t)| − |A′(t)|) ≤ ranki (t) ≤ |A(t)|
(1 − ε)|A(t)| ≤ ranki (t) ≤ |A(t)|.

By starting from Inequality (3), replacing the definition of βi,μA
i (t), and using the

above bounds on the rank of each job inA′(t), we can show the following proposition.

Proposition 2 Let CA(t) be the change in Φ(t) due to the algorithm processing of
jobs at time t . For ε < 1/2 and |U(t)| < ε2|A(t)|/10 we have

CA(t) ≤ −cε|A(t)|
(
1 + (9λ − 21)

ε

20

)
.

Theory Comput Syst

Proof We replace the definition of βi,μA
i (t) to simplify Inequality (3).

C(t)A ≤ −c(1 + λε)

⎛

⎝
∑

i∈Av(t)\U(t)

�i,μA
i (t)(1)

ε|A(t)|
εranki (t)

�i,μA
i (t)(1)

+
∑

i∈Sc(t)\U(t)

1

+
∑

i∈Lc(t)\U(t)

1/ε|A(t)|
1/εranki (t)

⎞

⎠

≤ −c(1 + λε)

⎛

⎝
∑

i∈Av(t)\U(t)

ranki (t)

|A(t)| +
∑

i∈Sc(t)\U(t)

1 +
∑

i∈Lc(t)\U(t)

|A(t)|
ranki (t)

⎞

⎠ .

In this stage, note that since the algorithm works on the latest A′(t) arriving jobs,
the rank of each job in A′(t) is between

(|A(t)| − |A′(t)|) ≤ ranki (t) ≤ |A(t)|
(1 − ε)|A(t)| ≤ ranki (t) ≤ |A(t)|.

Applying the above inequalities, we get

CA(t) ≤ −c(1 + λε)

⎛

⎝
∑

i∈Av(t)\U(t)

(1 − ε) +
∑

i∈Sc(t)\U(t)

1 +
∑

i∈Lc(t)\U(t)

1

⎞

⎠

CA(t) ≤ −c(1 + λε)(1 − ε)

⎛

⎝
∑

i∈Av(t)\U(t)

1 +
∑

i∈Sc(t)\U(t)

1 +
∑

i∈Lc(t)\U(t)

1

⎞

⎠

≤ −c(1 + λε)(1 − ε)
(|A′(t) \ U(t)|) .

Now using the fact that |A′(t)| = ε|A(t)| and that |U(t)| ≤ ε2|A(t)|/10 by
assumption, we have the following.

CA(t) ≤ −cε|A(t)|(1 + λε)
(
1 − ε

10

)
(1 − ε) . (4)

We can further simplify CA(t).

CA(t) ≤ −cε|A(t)|(1 + λε)
(
1 − ε

10

)
(1 − ε)

≤ −cε|A(t)|
(

1 + λε − ε

10
− λε2

10

)

(1 − ε)

≤ −cε|A(t)|
(
1 + (9λ − 1)

ε

10

)
(1 − ε) since λε2/10 < λε/10;

≤ −cε|A(t)|
(

1 + (9λ − 11)
ε

10
− (9λ − 1)

ε2

10

)

≤ −cε|A(t)|
(
1 + (9λ − 11)

ε

10
− (9λ − 1)

ε

20

)
since ε < 1/2 → ε2 < ε/2;

≤ −cε|A(t)|
(
1 + (18λ − 22 − 9λ + 1)

ε

20

)

≤ −cε|A(t)|
(
1 + (9λ − 21)

ε

20

)
.

Theory Comput Syst

Using Proposition 2, we can upper bound ∂Φ(t)/∂t .

∂Φ(t)

∂t
= CO(t) + CA(t)

≤ (c|U(t)| + cε|A(t)|) −
(

cε|A(t)| + cε2
(
9λ − 21

20

)

|A(t)|
)

≤ c|U(t)| − cε2
(
9λ − 21

20

)

|A(t)|.

With this we get the running condition (1) which finishes the proof of Lemma 5:

∂FA(t)

∂t
+ ∂Φ(t)

∂t
≤ c|U(t)| + |A(t)|

(

1 − cε2
(
9λ − 21

20

))

≤ c|U(t)| = c

(
∂FO(t)

∂t

)

since c = 20

ε2(9λ − 21)
, λ > 7/3.

Lemmas 4 and 5 together imply the running condition and complete the proof of
Theorem 1.

5 Conclusion

In some situations, our scheduler may have preemption costs. These may occur on a
per-job basis, or it may be a cost to reallocate the processing units. For example, if
the speedup function depends on the amount of memory used, reallocating k blocks
of memory to a job has a cost of O(k).

Our techniques are particularly bad at handling this situation. In particular, our
algorithm reallocates the entire resource many times during each time slot. Requiring
a large amount of time to perform a full reallocation invalidates this method entirely.
Our analysis also depends on this very fast switching, so it appears new methods are
needed to handle this circumstance.

Another further line of work is placing bounds on how the resource is used. It
may be that a job requires some minimum amount of the resource to make progress.
Similarly, it may be that only a bounded number of jobs can be scheduled at one
time. These modifications require us to modify our algorithm to schedule fewer jobs
at one time, which makes the analysis much more difficult. It is not clear if a similar
strategy can give the same guarantees under these constraints.

Acknowledgments Wewould like to thankMichael Bender for helpful discussions, and Bertrand Simon
for informing us of reference [2]. We would also like to thank the anonymous reviewers for their helpful
comments.

Theory Comput Syst

References

1. Bansal, N., Krishnaswamy, R., Nagarajan, V.: Better Scalable Algorithms for Broadcast Scheduling.
In: Proceedings of the Thirty-Seventh Annual International Colloquium on Automata, Languages, and
Processing (ICALP), pp. 324–335 (2010)

2. Beaumont, O., Guermouche, A.: Task Scheduling for Parallel Multifrontal Methods. In: Euro-Par
Parallel Processing, pp. 758–766. Springer (2007)

3. Blazewicz, J., Kovalyov, M.Y., Machowiak, M., Trystram, D., Weglarz, J.: Preemptable malleable
task scheduling problem. IEEE Trans. Comput. 55(4), 486–490 (2006)

4. Blazewicz, J., Machowiak, M., Weglarz, J., Kovalyov, M.Y., Trystram, D.: Scheduling malleable tasks
on parallel processors to minimize the makespan. Ann. Oper. Res. 129(1-4), 65–80 (2004)

5. Chadha, J.S., Garg, N., Kumar, A., Muralidhara, V.N.: A Competitive Algorithm for Minimizing
Weighted Flow Time on Unrelated Machines with Speed Augmentation. In: Proceedings of the 41st
Symposium on Theory of Computation (STOC) (2009)

6. Chan, S.H., Lam, T.W., Lee, L.K., Zhu, J.: Nonclairvoyant Sleep Management and Flow-Time
Scheduling on Multiple Processors. In: Proceedings of the 25Th Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 261–270 (2013)

7. Edmonds, J.: Scheduling in the dark. Theor. Comput. Sci. 235(1), 109–141 (2000). Preliminary
version in STOC 1999

8. Edmonds, J., Im, S., Moseley, B.: Online Scalable Scheduling for the
k-norms of flow time without
conservation of work. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA) (2011)

9. Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup curves. ACM Transac-
tions on Algorithms 8(3), 28:1–28:10 (2012)

10. Fox, K., Im, S., Moseley, B.: Energy Efficient Scheduling of Parallelizable Jobs. In: Proceedings of
the 24Th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 948–957 (2013)

11. Fox, K., Moseley, B.: Online Scheduling on Identical Machines Using SRPT. In: Proceedings of the
22nd ACM Symposium on Discrete Algorithms (SODA) (2011)

12. Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling Jobs with Varying Paralleliz-
ability to Reduce Variance. In: Proceedings of the Twenty-Second Syposium on Parallel Algorithms
and Architectures (SPAA), pp. 11–20 (2010)

13. Im, S., Moseley, B.: Online scalable algorithm for minimizing
k-norms of weighted flow time on
unrelated machines. In: Proceedings of the Twenty-Second Annual ACM Symposium on Discrete
Algorithms (SODA), pp. 95–108 (2011)

14. Im, S., Moseley, B., Pruhs, K.: A tutorial on amortized local competitiveness in online scheduling.
SIGACT News 42(2), 83–97 (2011)

15. Im, S., Moseley, B., Pruhs, K., Torng, E.: Competitively scheduling tasks with intermediate paral-
lelizability. In: Proceedings of the Twenty-Sixth ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pp. 22–29 (2014)

16. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643 (2000)
17. Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. J. Comput. Syst. Sci.

73(6), 875–891 (2007)
18. Ludwig, W., Tiwari, P.: Scheduling malleable and nonmalleable parallel tasks. In: Proceedings of the

5Th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 167–176 (1994)
19. Prasanna, G.N.S., Musicus, B.R.: Generalized multiprocessor scheduling and applications to matrix

computations. IEEE Trans. Parallel Distrib. Syst. 7(6), 650–664 (1996)
20. Pruhs, K., Sgall, J., Torng, E.: Handbook of Scheduling: Algorithms, Models, and Performance

Analysis, chap. Online Scheduling. CRC press (2004)

	Scheduling Parallel Jobs Online with Convex and Concave Parallelizability
	Abstract
	Introduction
	Convex Speedup Functions
	Our Contributions
	Organization

	Preliminaries
	Amortized Local Competitiveness
	Boundary condition
	Completion condition
	Arrival condition
	Running condition

	A Convexity-Sensitive Scheduling Algorithm
	Proof of Theorem 1
	The Potential Function
	Amortized Local Competitiveness of
	First summation term
	Second summation term

	Conclusion
	Acknowledgments
	References

