
New Approximations for Reordering Buffer Management

Sungjin Im ∗ Benjamin Moseley †

Abstract
In this paper we consider the buffer reordering management
problem. In this model there are n elements that arrive
over time with different colors. There is a buffer that can
store up to k elements and when the buffer becomes full an
element must be output. If an element is output that has a
color different from the previous element, a cost depending
on the color must be paid. This cost could be uniform or
non-uniform over colors; these are called unweighted and
weighted cases, respectively. The goal is to reorder elements
within the buffer before outputting them to minimize the
total cost incurred.

There has been a search over the last decade to re-
solve the complexity of this problem online and offline.
Very recently, there has been substantial progress for the un-
weighted case – an O(1)-approximation algorithm and an
O(log log k)-competitive randomized algorithm were given
[6, 7]. These results resolve the complexity of the un-
weighted buffer problem, up to constant factors, since the
problem is NP-Hard and there is a matching lower bound on
the competitive ratio. However, the progress for the weighted
case has not been as satisfactory as for the unweighted case.

Our main result is a randomized O(log log kγ)-
approximation for the weighted case, which gives an expo-
nential improvement over the previously best known result of
O(
√

log k) which assumed γ = poly(k). Here γ is the ra-
tio of the maximum to minimum weight. We also revisit the
unweighted case and give an improved randomized 66.0823-
approximation which improves (modestly) upon the approx-
imation guarantee given in [6]. The algorithm and analysis
we use for the unweighted case was done independently of
[6]. We believe that our new interpretation of the problem
and our analysis of an underlying random process could be
of potential use in other settings.

1 Introduction
Buffer management is an area of research with many appli-
cations in practice and due to this there is a vast amount of
literature on the topic. One well-studied buffer management
model is the buffer reordering management problem and its

∗University of California, Merced, CA, 95343, USA.
sim3@ucmerced.edu. Partially supported by NSF grant CCF-1008065.
†Toyota Technological Institute, Chicago IL, 60637, USA.

moseley@ttic.edu

variants. In the buffer reordering problem, n elements ar-
rive over time and the buffer can hold up to k elements. For
simplicity, it can be assumed without loss of generality that
elements arrive at distinct unit times. Each element ei has
some color c(ei). When an element arrives and the buffer is
full, an element must be output. If the color of the element
output is the same as the color of the previous element output
then there is no cost for outputting this element. If there is a
color change, then the cost is wc if the new color is c. Thus,
if wc = 1 for all c, the problem is to output elements such
that the total number of color changes is minimized. If wc is
possibly different for each c then the goal is to minimize the
total weighted color changes.

The buffer reordering management problem studies a
fundamental question regarding the power of a buffer for
minimizing the cost of context switches, and hence it is no
surprise that this problem has abundant applications in net-
work routing, paint shops, networking, logistics, and a va-
riety of other ares. See [21, 11, 20, 3] for extensive ap-
plications of this elegant model. Besides its applications,
the problem has sustained interest in the theoretical com-
puter science community because of the algorithmic chal-
lenges the problem poses. Indeed, the problem has been
extensively studied both in the offline and online settings
[21, 16, 5, 6, 7, 2, 13, 4, 1] . In the online setting, the algo-
rithm only learns of an element once it arrives. It is known
that the problem is NP-Hard [13, 4] and therefore previous
work has focused on finding an algorithm with the small-
est approximation (competitive) ratio. Due to the challenges
faced in algorithm design, much of previous work has fo-
cused on the unweighted setting [21, 6, 7, 13, 1] and others
have resorted to bi-criteria approximations where the algo-
rithm’s buffer is assumed to be larger than the optimal solu-
tion’s buffer [13, 21].

The algorithmic challenge in buffer management prob-
lems occurs because the optimal solution can combine many
elements together into a single output sequence which the
algorithm may not. Indeed, due to this, natural algorithms
for the problem fail. Perhaps the most natural algorithm to
consider for the problem when the weights are uniform (un-
weighted) is Largest Color First, the algorithm that always
outputs the color with the most number of elements in the
buffer. Also, the algorithm never changes colors so long as
there is an element in the buffer of the same color as the last
element output. It is easy to see that there is no reason for

an algorithm to change colors so long as it has an element of
the same color as the last output. This algorithm is natural to
consider because it chooses a color such that many elements
can be output for the color, thus combining many elements
for the same color into a single output sequence and out-
putting many elements creates more space in the algorithm’s
buffer to gather more elements before making its decision on
the next color to switch to. However, it was shown that this
algorithm has an approximation ratio of Ω(

√
n) [21]. A sim-

ple example shows that the algorithm may repeatedly switch
to the same color, which the optimal solution can merge into
a single sequence. The optimal solution outputs other col-
ors to accumulate many elements for the same color which
the algorithm will also need to accumulate a similar cost for.
Similar lower bounds can be shown for other natural algo-
rithms such as Least Recently Used and First-In-First-Out
[21].

Since natural algorithms fail to yield strong positive re-
sults, previous work has focused on developing more sophis-
ticated algorithms. In [21], Räcke et al. introduced the re-
ordering buffer management problem and gave an O(log2 k)
competitive algorithm when all weights are uniform. They
designed an algorithm known as Bounded Waste which uses
an intricate charging scheme to decide which color to output.
This was then extended and improved through a sequence of
papers for [16, 5, 2, 7]. We note that these works use sev-
eral quite non-trivial potential function and dual fitting tech-
niques. Online, the best known algorithms for the uniform
case are an O(log log k)-competitive randomized algorithm
[7] and an O(

√
log k)-competitive deterministic algorithm

[2]. This essentially resolves the complexity of the uniform

case online because there is an Ω(
√

log k
log log k) lower bound

on online deterministic algorithms and an Ω(log log k) lower
bound on randomized algorithms [2].

This line of work has essentially resolved the worst case
online complexity of the unweighted case of the problem.
However, the question remained on what is the best approx-
imation ratio that can be obtained in the offline setting. To
this end, few results have been shown. This is perhaps due
to the fact that it is difficult to use linear programming tech-
niques for the problem – the tight constraint given by the
buffer size k makes most rounding techniques unusable. Un-
til recently, the best offline result was a bi-criteria approx-
imation where the algorithm has a buffer (2 + ε)k for any
constant ε > 0 and is compared against an adversary with
a buffer of size k [13]. In a breakthrough result, Avigdor-
Elgrabli and Rabani gave the first offline algorithm (non-bi-
criteria) which is provably better than any online algorithm
in the unweighted case [6]. They showed an algorithm that
achieves an O(1)-approximation. Unfortunately, their result
strongly uses the fact that the costs are uniform and it is not
clear if their techniques can shed light onto the complexity of

the non-uniform weight version of the problem offline. For
the non-uniform setting the best result (even offline) is an
O(
√

log k)-competitive algorithm. We note that this algo-
rithm requires the ratio of the maximum to minimum weight
γ to be polynomially bounded in k. This algorithm was de-
terministic and essentially resolves the non-uniform case’s
deterministic complexity online due to the lower bound of

Ω(
√

log k
log log k) on deterministic algorithms for the uniform

case. The question remained on whether or not an offline
algorithm can achieve an approximation ratio better than
O(
√

log k) in the non-uniform case.

Results: The main result of our paper is a new algorithm
for the non-uniform case that achieves an O(log log kγ)
approximation.

THEOREM 1.1. There is a randomized O(log log kγ)-
approximation for the non-uniform (weighted) buffering re-
ordering management problem.

This gives an exponential improvement over the best
previously known result ofO(

√
log k) since they assume γ is

polynomially bounded in k. To show our result, we introduce
a new algorithm. Our algorithm is guided by a solution to a
linear programming relaxation. The algorithm rounds the LP
solution in an intricate manner with several phases. The main
idea behind the algorithm is to output elements in a way such
that either the LP solution is accumulating similar cost, or the
LP solution must be accumulating many elements while not
processing them. Eventually, the LP will not be able to hold
all of the elements in its buffer and must accumulate some
cost which the algorithm can charge to. The algorithm itself
is rather involved and intricate, but in Section 3.1 we describe
the main ideas guiding the development of the algorithm.

We also revisit the uniform (unweighted) case. As men-
tioned, it was previously shown that an O(1)-approximation
exists. The algorithm and analysis in [6] giving this result
were fairly involved and the approximation ratio given was
somewhat large1. In this paper, we introduce a new O(1)-
approximation for this problem. We interpret the problem
as a covering problem. Using this new interpretation, we in-
troduce an algorithm that achieves a 66.0823-approximation
which modestly improves the previous approximation guar-
antee given in [6]. However, the main point of this result
is not improving the approximation guarantee, but is in the
algorithm and solution we use. We note that our work here
was done independently of that of [6]. We believe that our
new clean view of the problem could prove useful for algo-
rithm design in variants of the buffer management reordering
problem. Also our formulation and analysis of the underly-
ing random process that fills ‘holes’ arising in the covering
problem may be of independent interest.

1The approximation was not explicitly given in the paper [6], but is on
the order of 100.

THEOREM 1.2. There is a randomized 66.0823-
approximation for the uniform (unweighted) buffering
reordering management problem.

Other Related Work: Besides the non-uniform case we
study, there are several variants of the buffer management
problem that have been considered. A line of work has
focused on the case where the costs of switching between
two colors form a line metric [18, 17]. This also has been
further generalized to the case where the costs form a general
metric [15, 10]. Also, the buffer recording management
problem has been considered with the dual objective of
maximizing the total number of elements output that are
the same as the previous color. For this problem, O(1)-
approximation algorithms are known [19, 9].

2 Preliminaries
In this section, we introduce notation, the linear program
(LP) which we consider as well as some simple lemmas
that will prove useful throughout the paper. We begin by
introducing notation. There are n elements that arrive over
time. Each element ei arrives at a distinct integral time
i ∈ [1, n] and is associated with a color. There is a buffer
of size k and, once the buffer is full, an element must be
output. Outputting an element of color c incurs cost wc
if the last element output has a color different from color
c. Let C denote the set of possible colors and |C| = m
for some m. We let c(ei) denote the color of element ei.
We will let CostLP denote the cost of the LP solution and
CostLPc be the cost the LP accumulates for color c. For a
fixed algorithm, let B(t) denote the set of elements in the
algorithm’s buffer at time t. For a given algorithm A, let
nAc (t) be the total number of elements in the algorithm’s
buffer at time t for color c. Throughout the analysis we
will be concerned with sequences where a set of elements
of the same color is output. We will call these color blocks
or simply block if there is no confusion.

As mentioned before, we can without loss of generality
assume that any reasonable algorithm continues a color
block until exhausting all elements for the color. Further,
we can assume that any algorithm first stores the initial k
elements and outputs an element at each time t ∈ [k+ 1, k+
n]. Hence we will think that the buffer at time t contains
the element et arriving at the time t, and the algorithm must
immediately output an element from the buffer.

2.1 Linear Programming Formulation In order to intro-
duce our integer/linear program we need to define some no-
tation. Let B denote the entire set of possible color blocks.
We can without loss of generality assume that all elements in
each color block b should be ordered in increasing order of
their arrival times. Further, we can WLOG assume that each
color block b is maximal in the sense that the block, which is

specified by its starting element and time, includes the maxi-
mum number of elements of the same color. Note that B has
a size of a polynomial in n. We let c(b) denote the color of
block b. If an element ei is scheduled at time t in block b, we
denote it by (i, t) ∈ b.

We are now ready to present our integer programming
formulation IP.

min
∑
b∈B

wc(b)xb(IP)

s.t. yi,t =
∑

(i,t)∈b

xb ∀i, t(2.1)

∑
i∈[n]

yi,t = 1 ∀t ≥ k + 1(2.2)

∑
t∈[k+1,k+n]

yi,t = 1 ∀i ∈ [n]

(2.3)

ȳi,t =
∑
i,t′≤t

yi,t′ ∀i ∈ [n], t ∈ [k + 1, k + n](2.4)

ȳp(i),t−1 ≥ ȳi,t ∀i ∈ [n], t ≥ k + 1(2.5)
xb ∈ {0, 1} ∀b ∈ B(2.6)

The 0-1 variable xb = 1 if and only if we schedule color
block b. In the objective cost wc(b) is incurred for each color
block b of color c(b) where xb = 1. The variable yi,t = 1 if
and only if element ei is scheduled at time t by a color block,
and this is what constraints (2.1) ensure. Constraints (2.2)
say that at any time after the buffer becomes full, exactly
one element must be scheduled, and this guarantees that the
buffer never overflows. In particular Constraints (2.2) yield

(2.7)
∑

i∈[n],t′≤t

yi,t′ = t− k ∀t ∈ [t+ 1, t+ k]

Constraints (2.3) say that every element must be eventu-
ally output. Constraints (2.4) define variable ȳi,t that denotes
if element ei is scheduled by time t or not. In constraints
(2.5), p(i) denotes the element of color c(ei) that arrives
the latest before ei. If no such element p(i) exists, we let
ȳp(i),t−1 = 1. Constraints (2.5) ensure that elements of the
same color are processed in first-in-first-out order.

We obtain our linear programming relaxation LP by
relaxing constraints (2.6) to xb ∈ [0, 1]. We will refer to the
quantity xb as the height of the color block b. We will say
that LP has element ei by an amount of 1− ȳi,t (in its buffer)
at time t. We will interchangeably say that we schedule an
element and output an element.

2.2 Useful Lemmas and Sampling Before we begin our
analysis, we state some simple lemmas that will be useful

throughout the paper. The first lemma below is similar to
a lemma shown in [2]. The following lemma applies to all
feasible schedules, not only to our algorithm A.

LEMMA 2.1. Consider any color block b output by our
algorithm A which starts at time t and ends at time t′′. Let
t′ ≥ k+1 be the earliest time before t such thatA scheduled
no element of color c(b) during [t′, t). Suppose that LP has
processed the first element ei in b by at least ε by time t. Then
there is a set of color blocks of total height at least ε for color
c(ei) in the LP’s solution that end during (t′, t′′].

Proof. Notice that ei arrives after t′ because otherwise the
algorithm would have scheduled ei with the element it
scheduled at time t′ − 1. Now, we know that ei is not
scheduled by A before time t, and ei is processed by LP
by at least ε during (t′, t]. Then the lemma follows from the
fact that the color block b is maximal, and color blocks in LP
schedule elements in first-in-first-out order.

This lemma will allow us to schedule a color block
by starting with an element that has been processed by the
LP substantially. The following proposition follows from
constraint (2.1) in the LP.

PROPOSITION 2.1. Suppose that the LP has a set I of color
blocks, all starting no later than some time t, for a specific
color c and having total height at least h. Further, suppose
that each of these color blocks processes at least ` (possibly
different) elements after time t for color c that all arrive no
later than t. Then it is the case that LP has at least a total
volume of h` of elements of color c in its buffer at time t.

We now discuss a sampling scheme which will be very
useful for our algorithm and analysis. Our sampling scheme
will be useful when our algorithm has no element in the
buffer that has been substantially processed by the LP. In
that case, we will attempt to schedule an element in the algo-
rithm’s buffer with a probability in proportion to the amount
of the element that has been processed by the LP. One nat-
ural yet naive idea is to sample each element independently,
and schedule one of the sampled elements. However, this ap-
proach makes it difficult to relate the algorithm’s cost to the
LP’s cost since the cost is determined by color blocks output.
Hence we will develop a technique that samples color blocks
from the LP, rather than elements.

We will say that two color blocks are disjoint if they
share no element. Also we say that a color block b is maximal
if it starts with some element ei and, when the block ends,
it schedules all elements that arrive after ei, but before the
current time, of color c(ei).

LEMMA 2.2. For any constant 0 < α < 1, there exists a
randomized algorithm that associates each element ei with a
time step tαi that satisfies the following:

• For any element ei and time step t such that ȳi,t ≤ α,
Pr[tαi ≤ t] ≥ (1− 1/e)ȳi,t/α.
• For any two elements ei and ei′ where c(ei) 6= c(ei′),

the probability Pr[tαi ≤ t] is independent of Pr[tαi′ ≤ t].
• Consider any collection B′ of disjoint maximal color

blocks where each color block b′ ∈ B′ schedules at
least one element ei at time t ≥ tαi . Then the total
expected cost of color blocks in B′ is at most 1

αCostLP
in expectation.

We will refer to tαi as element ei’s α-ready time. We
say that element ei is α-ready at time t if tαi ≤ t. The
properties claimed in 2.2 prove to be very useful. The first
property says that one can get a lot of elements ready for
schedule compared to the volume of work that has been
done on the elements by LP. Intuitively, this will increase
the probability of successfully finding elements to schedule.
The third property ensures that a schedule guided by α-ready
times incurs a cost comparable to that of LP. This property
will allow our algorithm to schedule an α-ready element in
the buffer.

At a high-level, our sampling that achieves the proper-
ties claimed in Lemma 2.2 has a spirit similar to threshold
rounding and configuration style LP rounding. Scheduling
elements that have been processed by LP by ε can be viewed
as a threshold rounding. The α sampling is used to “boost”
the probability that elements are α-ready by scaling up the
sampling probability by a factor of 1/α. The actual process
of associating each element with a color block that sched-
ules the element can be done by sampling color blocks from
the LP solution. Here we have to be careful to cover all el-
ements without sampling too many color blocks. Hence for
each color, we define a suitable set of configurations where
each configuration corresponds to a set of color blocks that
cover each element only once, and sample a configuration.

To prove Lemma 2.2, we first formally describe our
sampling method. We will sample a collection of color
blocks for each color c such that each element of color c
appears exactly once in a color block sampled, and the total
expected number of color blocks sampled is at most the
optimal LP cost, CostLP. We will repeat this 1/α times; for
simplicity, assume that 1/α is an integer, but we can extend
this to any 0 < α < 1. We will call this α-sampling. We can
implement α-sampling as follows. Consider any fixed color
c. We first need to pack color blocks of c into a rectangle Rc
which gives a nice representation of the entire set of color
blocks of c scheduled by the LP. We create a rectangle Rc
with width nc and height 1 where nc is the total number of
elements of color c. The rectangle Rc is slotted into units,
1, 2, 3, ..., j, ..., nc, horizontally. Each slot is mapped to a
unique element of color c based on arrival times of elements
of color c. Let e′1, e

′
2, ..., e

′
nc denote the elements of color c

in increasing order of their arrival times, and the jth slot is

mapped to an element e′j . See Figure 1 for a visualization of
this.

….	

1	 2	 3	 j	 nc	

Figure 1: Rc in the α-sampling

We pack rectangle Rc with color blocks b of color c
chosen by the LP. We say that block b has height xb and
width zb which is equal to the number of elements scheduled
in block b. At each time we consider the earliest slot j
which is not full. Knowing that each element e′j is scheduled
exactly by one unit in LP (constraints (2.3)), we know that
there exist color blocks Bj of color c starting with e′j that
were not used yet for packingRc of total height exactly equal
to the total height of empty area of the slot j. We fill this
empty slot area with block Bj . A block can be used only
once. Here a block can be split into several identical blocks
possibly different heights while preserving the total height.
By an easy induction, we can show that we can fill Rc fully
with the color blocks of color c in LP, in polynomial time.

Let αc denote a value that is chosen from [0, 1] uni-
formly at random. Consider a horizontal ray that is off from
the bottom of the rectangle Rc by αc, and we add to Bagc
each color block packed in Rc that intersects the ray. We
add all color blocks in

⋃
c Bagc to B. We repeat this entire

process 1/α times.

PROPOSITION 2.2. The expected number of color blocks in
Bag is at most (1/α)CostLP.

Proof. Note that each color block b is sampled with proba-
bility xb in each iteration of α-sampling. Since it is repeated
1/α times, the proposition follows.

Note that each element ei appears in exactly 1/α color
blocks in Bag. Let tαi denote the earliest time when ei is
scheduled by any of blocks in Bag. Then we observe the
following property which will be very useful for our analysis.

LEMMA 2.3. Consider any element ei and time t. Suppose
that ȳi,t ≤ α. Then we have Pr[tαi ≤ t] ≥

1−1/e
α ȳi,t.

Proof. Observe that in each random process, the probability
that element ei is scheduled by time t in a color block
sampled is exactly ȳi,t. This is because the total height of the
color blocks in LP that schedule ei by time t is exactly ȳi,t
due to Constraint (2.1). Furthermore, each of those blocks is
sampled with probability of its height since all those blocks
intersect the slot in Rc(ei) corresponding to the element, and

do not properly intersect with each other (but can touch).
Since we repeat α-sampling 1/α times independently, we
know that Pr[tαi > t] ≤ (1−ȳi,t)1/α ≤ exp(−ȳi,t/α). Since
ȳi,t/α ≤ 1, we derive that Pr[tαi ≤ t] ≥ 1−exp(−ȳi,t/α) ≥
(1− 1/e)ȳi,t/α.

Finally, we can extend this sampling to work for arbi-
trary 0 < α < 1 using Poisson distribution, removing the
assumption that 1/α is an integer. That is, we repeat α-
sampling Pois(1/α) times. By a simple calculation, one can
show that Proposition 2.2 and Lemma 2.3 are still satisfied.

We are now ready to prove Lemma 2.2.
Proof of [Lemma 2.2] The first property follows from
Lemma 2.3. The second property holds since we sample a
different αc for each color c independently. To show the last
property, consider each color c and each color block b′ of
color c in B′ in increasing order of the times when they are
scheduled – this ordering also aligns with the order of ele-
ments arrival. Let ei be an element that b′ schedules at time
t ≥ tαi . Then we associate the color block b′ with a color
block b in Bag that schedules ei by time tαi . Note that b′

schedules ei no earlier than b schedules ei. Hence b′ can
schedule as many elements as b after ei. By repeating this,
we can map each block inB′ to a unique block in Bag, hence
the total cost of color blocks in B′ is at most that of color
blocks in B, which is in turn upper bounded by (1/α)CostLP
by Proposition 2.2. 2

3 Weighted Reordering Buffer
In this section we consider the weighted version of the prob-
lem and give an O(log log kγ) approximation algorithm. To
do this, we utilize the α-rounding introduced in Section 2
for some α to be fixed later. At any time, once an element
in the algorithm’s buffer is α-ready, we are going to allow
our algorithm to schedule the color corresponding to this el-
ement. Then using Lemma 2.2 we will be able to bound the
expected cost of these color blocks by the LP’s cost. How-
ever, there will be points in time where the LP will not have
an element to schedule. In these cases, we will have to de-
cide on a color to choose. We will choose these other colors
in a intricate manner that will allow us to charge to the LP.
The high level idea is to do colors in a way that the LP accu-
mulates elements that we already scheduled. Thus, we call
our algorithm Accumulate.

3.1 Algorithm and Analysis Overview and Intuition
Our algorithm specifies which color to switch to once it
runs out of elements for the current color it is outputting.
The algorithm consists of several rules depending on current
state of the LP and the algorithm’s buffer. Before we
formally describe our algorithm, we first give some intuition
on how we designed our algorithm that is an O(log log kγ)-
approximation. The full description of our algorithm will be

presented in Section 3.2, and the pseudocode will be given in
Appendix B. Missing proofs will be given Section 3.3. We
begin with discussing three ‘simple’ rules (i), (ii) and (iii)
that are of similar spirit.
Rule i: The first rule (i) is to output a color c at time t when
there is an element ei in the algorithm’s buffer for the color c
which has been processed by the LP by more than a constant
factor. Intuitively, we can charge the cost of this c-color
block to CostLP since LP also has accumulated substantial
cost for the element ei. Essentially, between each time we
output color c due to this case, the LP must accumulate cost
εwc because it completes an element for color c by ε. This
is similar to an idea used in [2]. For this case we appeal to
Lemma 2.1, which we use to show the following lemma.

LEMMA 3.1. Let CostA,1 be the total cost incurred when
the algorithm switches to color c according to Rule (i).
That is there is an element ei ∈ B(t) for color c that
is completed by ε by LP at time t. Then it follows that
CostA,1 ≤ O(1

ε)CostLP.

Rule ii: The second rule (ii) is to output a color c at time t
when it is α-ready. Here we say that a color c is α-ready
when there is an element of the color that is α-ready at the
time. In this case the algorithm can safely output color c in
this case because Lemma 2.2 shows that the expected cost is
1
αCostLP.

LEMMA 3.2. Let CostA,2 be the total cost incurred when
the algorithm switches to a color according to Rule (ii). Then
it follows that E[CostA,2] ≤ 1

αCostLP.

Rule iii: The last rule (iii) of simpler cases it to output a
color c when a constant fraction of the algorithm’s buffer
is occupied by elements for color c. Intuitively, in this case
the algorithm can output the same color at most a constant
number of times before the LP must output this color. This
is because the LP also must output color c before its buffer
overflows.

LEMMA 3.3. Let CostA,3 be the total cost accumulated by
the algorithm when the algorithm switches colors because of
Rule (iii). Then CostA,3 ≤ O(1

ε)CostLP.

We now discuss more involved rules (iv), (v) and (vi)
in the algorithm. Note that these rules can be applied only
when all the previous rules cannot be applied.
Rule iv: Here we keep an indicator variable φc for each
color c, and if φc is 0 for colors, the following operation is
performed and some of the colors’ indicator variables are set
to one. We will only output a color if its indicator variable
is 0, so that it is safe to charge to the LP. Now, in this case
instead of outputting a single color, we will set many colors

which are safe to output. We will ‘mark’ a set of colors
which are now safe to do. Once we output the color, we
unmark it. To decide which colors to mark, we geometrically
group colors in the buffer based on their weight and the
number of elements in the buffer for the color. There will
be at most log kγ groups. Then we find the group with the
largest number of elements for the colors in the group, which
will be most effective for emptying the buffer as much as
possible. We mark all colors in this group, but we do not
set all indicator variables. Rather, we sort the colors roughly
based on the next time the LP will output these colors by
a constant amount. We then set the indicator variables for
essentially only for the first half of the colors in this group.
Since we geometrically grouped colors by the number of
elements and weight, we can show the weight of the colors
whose corresponding indicator variables were set to one can
be used to pay for all colors in the group. At the same time,
we can also show that the colors whose indicator variables
are set to one, as well as the other colors in the group, contain
a constant fraction of the the total number of elements in
the group. Finally there are at most log kγ groups, and we
marked the group with the most number of elements, so
there are Ω(k/ log kγ) elements in the group. Since we only
allow these colors to be output if their indicator variable was
originally 0 and they are only reset once the LP accumulates
some cost for the corresponding colors, we will be able to
show the following lemma.

LEMMA 3.4. Let CostA,4 be the total cost accumulated by
the algorithm such that the algorithm switches colors due to
Rule (iv). It is the case that CostA,4 ≤ O(1

ε)CostLP.

The reason we only increase the indicator variables for
the first half of the colors is the following. Whenever, there
is any color c such that φc is non-zero and there are no
colors left which are marked, there are at least Ω(k/ log kγ)
elements in the LP’s buffer that are not in the algorithm’s
buffer. To see that this is the case fix some time t where
this holds and let t′ be the time last time φc was set to be
non-zero. At time t′ the colors in the group were sorted
by when the LP processes the colors next after t′. The
indicator variables were only increased for the colors which
the LP will output the soonest. Further, by construction
there are Ω(k/ log kγ) elements in the group whose indicator
variables were not increased, the LP must not have processed
these elements by a constant factor by time t′ (otherwise, at
time t the algorithm would have processed the color which
has an element processed a lot by the LP) and since we
marked all colors in the group, the algorithm must have
already scheduled these elements by time t. Thus, all
the elements in the algorithm’s buffer at time t′ for colors
which were marked but whose indicator variables were not
increased must be in the LP’s buffer at time t.

The LP can partially process some elements, but es-

sentially what the previous step ensures is that there are
Ω(k/ log kγ) elements in the LP’s buffer, that are not in the
algorithm’s buffer, processed by at most a small constant.
This implies that when we see φc is non-zero for some c, no
element is processed by more than a small constant in the al-
gorithms buffer and there are no colors left which are marked
this implies that the LP must have done an Ω(k/ log kγ) vol-
ume of processing on the elements in the algorithm’s buffer.
This is because the LP has all the elements in the algorithm’s
buffer plus the Ω(k/ log kγ) elements extra elements all at
most scheduled by a small constant factor and the LP’s buffer
can hold a total volume of at most k. The remaining two rules
depend on whether these extra elements consist of many col-
ors or not.
Rule v: We now discuss Rule (v). We only perform this
case when there is a color whose indicator variable is set.
The above argument shows that this implies that the LP
must have processed elements in the algorithm’s buffer by
a substantial amount in total, Ω(k/ log kγ). For this case
we assume that most of this processing is done on colors
which the algorithm has a small number of elements for.
Specifically, less than k/ log3 kγ elements. Now we know
the LP has concentrated a lot of work on a small number
of elements. Knowing this, we will be able to show that
although each element e(c) has been processed in the LP
for just a small amount, the α-sampling will make at least
one element α-ready with probability at least 1 − 1/k2.
This crucially relies on the assumption that the LP did a
large amount of work on colors that have a small number of
elements. If the bad event occurs, the algorithm will choose
some element to output. We will show that even if the bad
event occurs, the algorithm will only output an element for
color c a total O(k) times before the LP accumulates cost
Ω(wc) for the color. In expectation, we can charge the cost
the algorithm accumulates in this case to the LP. We will
show the following lemma.

LEMMA 3.5. Fix any color c. Let CostA,5,c be the total
cost the algorithm accumulates due to switching to color c
because of Rule (v). Then E[CostA,5,c] ≤ O(1

ε)CostLPc .

Rule vi: In the final case, the LP puts the Ω(k/ log kγ) total
processing into elements which the algorithm has a lot of
elements for. Specifically, more than Ω(k/ log3 kγ). In this
case, we can show that for at least one of these colors the total
number of elements in the algorithm’s buffer for the color
is within a constant factor of the total number of elements
the LP has for the color. This argument is technical and
depends on the specific state of the LP’s buffer. In this case,
the algorithm will output such a color.

Now we discuss why it is okay for the algorithm to
output such a color. Fix any color c If the total number
of elements output for color c by the algorithm is within

a constant factor of the number of elements the LP has
for color c, it can be shown that since the last time the
algorithm performed this operation and switched to color c,
the total number of elements in the LP’s buffer for color c
has increased by a constant factor. Say that this factor is 1/4.
This holds so long as the LP does not output this color. If the
LP does output this color, then the algorithm simply charges
the accumulated cost to the LP. Otherwise, knowing that
the algorithm always outputs at least Ω(k/ log3 kγ) elements
every time it performs this operation, the total number of
elements in the LP’s buffer for color c after performing
this operation Ω(log log kγ) times for the same color c will
be Ω(k/ log3 kγ)(1 + 1/4)Ω(log log kγ) > k. However, all
of these elements will be in the LP’s buffer, which will
contradict the size of the LP’s buffer. Thus, the algorithm
will switch to the same color c at most O(log log kγ) times
due to Rule (vi) between each time the LP outputs the color
by a constant amount. Showing the following lemma will
complete our analysis.

LEMMA 3.6. Let CostA,6,c be the total cost generated by
the algorithm for color c due to Rule (vi). It is the case that
CostA,6,c ≤ O(log log kγ

ε)CostLPc .

Lemmas 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 will imply
Theorem 1.1. The actual analysis of each of these cases
is more complicated because the LP can partially process
elements, start many color blocks which contain the same
elements and can merge many elements together which the
algorithm does separately. However, this is the high level
intuition.

3.2 Algorithm Let ε be any constant between 0 and 1/100
and α be a constant at most ε. We will later set ε = 1/100
and α = ε. For each color c define the following times
inductively. Let tc,1 be the first time the LP accumulates
cost εwc for color c. That is, there exists a set of color blocks
for color c of height at least ε which start at time tc,1 or
earlier. Assuming tc,i−1 is defined, let tc,i be the earliest
time that the LP accumulates cost εwc for color c since time
tc,i−1. That is, during (tc,i−1, tc,i] there exists a set of color
blocks for color c of total height at least ε that start during
(tc,i−1, tc,i] . Let Tc be the set of such times for color c.

We now define our algorithm. First the algorithm
performs the α-rounding in Section 2. For each color c, we
have an indicator variable φc. Initially the indicator variables
are set to 0. When the algorithm outputs a color at certain
times, it will increment these variables. When any time in
Tc passes, the variables φc are reset to 0. At any time if
the algorithm find elements in the buffer of color that is the
same as the current color being output, then the algorithm
outputs the earlier arriving element among those. The
following algorithm is used whenever the algorithm needs
to change colors. Let B(t) denote (the set of elements in) the

algorithm’s buffer at time t. Let nAc (t) denote the number
of elements for color c in B(t). Let nOc (t) be the number
of elements in the LP at time t for color c that have been
processed by at most 1/2+ε. LetGj(t) contain the elements
ei ∈ B(t) where 2j−1 ≤ wc(ei)/n

A
c(ei)

(t) ≤ 2j . Here
we only need consider j ∈ [log(wmaxγn) − 1, logwmax + 1]
where wmax denotes the maximum weight that an element
can have. Let M(t) denote a set of marked colors at time t.
This set is initially empty. A color that is marked, is a color
the algorithm is free to schedule.

Now we will also be concerned with elements in the
algorithm’s buffer which are not being currently scheduled
by the LP by more than a constant factor. Let c∗(t) be the
color (if it exists) which the LP has a set of color blocks
for, that intersect time t, and whose total height is more
than 1/2. Note that there can be at most one such color at
any time by constraint (2.2) in the LP. We define B(t) to
be all elements in the algorithm’s queue excluding those for
color c∗(t). Let Gj(t) contain the elements ei ∈ B(t) where
2j−1 ≤ wc(ei)/nAc(ei)(t) ≤ 2j .

The algorithm is formally described as follows. The
pseudocode of the algorithm can be found in Appendix B.

Algorithm: Accumulate(t). The algorithm prioritizes
Rules (i), (ii), (iii), (iv), (v) and (vi) in this ordering. That
is, whenever the algorithm outputs a color, it starts from the
beginning and performs the first rule that is applicable. The
algorithm is used to make a decision at any time t where
there is no element in the buffer which is the same color as
the last element output.
Rule (i) if there is an element ei where ȳi,t ≥ ε output color
c(ei).
Rule (ii) if there is an element ei that is α-ready, output
color c(ei).
Rule (iii) if there is a color c where nAc (t) ≥ k/10, output
color c.
These are the simple cases.

Now we describe the more complicated cases. Each
color c has a indicator φc variable initially set to 0. We
also maintain a set M(t) of colors which is initially empty.
Colors in this set we called marked. If we come to a time step
where the previous rules do not apply, M(t) = ∅ and φc = 0
for all colors then we do the following. Let S be the colors
for elements in Gj∗(t) where j∗ = argmaxj |Gj∗(t)|. Now
we sort the colors in S based on when the LP will do
them next. That is, we sort them c1, c2, . . . c|S| so that
tcl ≤ tcl+1

for all l. Now we find the index of the color
which roughly divides the elements corresponding to these
colors into two equal sized sets. That is we find the index
j′ where

∑j′

a=1 n
A
ca(t) ≥

∑|S|
a=1 n

A
ca(t)/2. We now set the

indicator variables for the first half of the colors. That is we
set φca = 1 for all A ≤ j′. We finally added all colors in S
to M(t). Recall that we reset φc to 0 if a time in Tc passes.

Rule (iv) ifM(t) is non-empty output a color c ∈M(t) and
remove c from M(t). Now for the final two cases. These
cases are only applicable if M(t) = ∅, but φc 6= 0 for
some color c. Let Cs(t) contain the colors which there are
not too many elements in the algorithm’s buffer for; that is,
the colors where 0 < nAc (t) ≤ k/ log3 kγ. Let Cb(t) be
the other colors in B(t). Let EO(t) := {ei /∈ B(t) | i ≤
t, ȳi,t ≤ 1/2 + 2ε} be the elements which still require lots of
processing by the LP, but are not in B(t).
Rule (v) if

∑
ei∈B(t),c(ei)∈CS(t) ȳi,t ≥ |EO(t)|/8 then

switch to the color c ∈ Cs(t) such that tc = mint′∈Tc,t′>t t
′

is minimized. Otherwise,
Rule (vi) switch to the color c ∈ Cb(t) where nAc (t) ≥
3
5n

O
c (t). Note that for this case, it is not obvious such a color

must exist, but we will show that this is the case any time the
algorithm reaches Rule (vi). This completes the algorithm
descriptions.

3.3 Analysis In this section we prove Theorem 1.1 by
completing the proof of Lemmas 3.3, 3.4, 3.5, and 3.6.

Proof of [Lemma 3.3] Consider any color c and a time tc,i−1

in Tc for any i. Let tc,i be the earliest time in Tc after tc,i−1

and if no time exists set tc,i = ∞ . We will show that the
algorithm cannot output a color 51 times during [tc,i−1, tc,i)
due to Rule (iii). If this holds for all i this will imply the
lemma. This is because between two times in Tc the LP
accumulates cost at least εwc for color c and if tc,i = ∞
we can charge to the total cost the LP accumulates for color
c. For the sake of contradiction, say that a color c is output
50 times by Rule (iii) between tc,i−1 and tc,i. Let tj and
tj+1 be any two times in [tc,i−1, tc,i) where the algorithm
switches to color c by Rule (iii). Let t′j and t′j+1 be the time
the color blocks started by the algorithm at times tj and tj+1

end, respectively. Notice that there are at least k/10 elements
for color c that arrive in the time interval [t′j , tj+1) and are
not scheduled by the algorithm until time tj+1. Since the
algorithm outputs color c 51 by Rule (v), we deduce that at
least 5k elements for color c arrive during [tc,i−1, tc,i).

We claim that there must exist a set of color blocks,
I, in the LP of total height greater than 1/2, which start
before time tc,i−1, such that each of them contains all but
at most (2 + 10ε)k elements for color c that arrive during
[tc,i−1, tc,i). Otherwise each of the last (2 + 10ε)k elements
of color c arriving during [tc,i−1, tc,i) is processed by at most
half by color blocks starting before time tc,i−1. Further, it
can be processed by at most ε by color blocks starting after
the same time tc,i−1 since in the LP the total height of all the
color blocks for color c beginning during [tc,i−1, tc,i) can
be at most ε by definition of times in Tc. Hence LP will
have a volume of at at least (2 + 10ε)k/2 − ε(2 + 10ε)k =
(1−2ε)(1+5ε)k left for color c at time tc,i. Since ε ≤ 1/100,
this contradicts constraint (2.2) in the LP.

However, from the above we also know that between

two times tj and tj+1 where the algorithm starts a c color
block by Rule (iii) in the time interval [tc,i−1, tc,i), it is
the case that the algorithm outputs k/10 elements of colors
different from c while accumulating no smaller than k/10
elements of color c. The intervals in I which intersect tj+1

must span over these times. This implies that each color
block in I processes at least 5k − (2 + 10ε)k elements for
color c after time tc,i−1 which also arrive before this time.
This can be deduced from the fact that LP has “long” while
the algorithm has 50 color c blocks of length at least k/10
separated by at least k/10 element of other colors – such
gaps must be bridged by elements arriving before tc,i−1.
Since each color block in I starts before time tc,i−1 and the
total height of the color blocks in I is at least 1/2, the LP
must have a total volume of at least (5k− (2 + 10ε)k)/2 for
elements of color c at time tc,i−1 by Proposition 2.1. Since
ε ≤ 1/100, this is greater than k and this is a contradiction
to constraint (2.2) in the LP. 2

Now we bound the cost of Rule (iv). In this case, our
goal is to show that the colors whose indicator variables are
set to one can be used to pay for all of the elements we mark.
We note that this is similar to an idea used in [2].
Proof of [Lemma 3.4] Consider a time t where colors are
marked. Notice that a color can only become marked if
φc = 0 for all colors corresponding to elements in B(t).
Now the indicator variable φc = 0 is only increased for some
colors corresponding to elements in B(t). Let S be the set
of colors that are marked at time t and S′ ⊆ S be the set
of colors c whose indicator variables φc are set to 1 at time
t. We first argue that 4

∑
c∈S′ wc ≥

∑
c∈S wc. Indeed, by

definition of the algorithm, there is a j∗ such that for any
color c ∈ S it is that case that 2j

∗−1 ≤ wc/n
A
c (t) ≤ 2j

∗
.

Further,
∑
c∈S′ n

A
c (t) ≥

∑
c∈S n

A
c (t)/2. Knowing this we

have that,∑
c∈S

wc

≤ 2j
∗∑
c∈S

nAc (t)

[Since 2j
∗−1 ≤ wc/nAc (t) ≤ 2j

∗
for all c ∈ S]

≤ 2j
∗+1

∑
c∈S′

nAc (t)

[Since
∑
c∈S′ n

A
c (t) ≥

∑
c∈S n

A
c (t)/2]

≤ 4
∑
c∈S′

wc

[Since 2j
∗−1 ≤ wc/nAc (t) ≤ 2j

∗
for all c ∈ S′]

Thus we have that 4
∑
c∈S′ wc ≥

∑
c∈S wc. Now we set

each indicator variable φc to be 1 for every color c in S′. A
indicator variable φ4 is only reset to 0 if a time point in Tc is
passed. We know that between two consecutive times in Tc
the LP accumulates εwc cost due to processing color c. We

charge 4
∑
c∈S′ wc ≥

∑
c∈S wc to these points. If no time

in Tc ever passes again, then we charge to the total cost the
LP accumulates for color c, which proves the lemma. 2

Now we bound the cost of the more sophisticated oper-
ations performed by the algorithm, rules (v) and (vi). Before
we bound the cost of these operations, our goal is to show
a structural property of the LP’s buffer at times these oper-
ations are performed. The property we want to show is that
the LP has a lot of elements, not processed by at least con-
stant factor, which are not in the algorithm’s buffer. This will
be useful to bound the amount the LP must have processed
the elements which are in the algorithm’s buffer when these
operations are performed. Recall that EO(t) is the set of el-
ements not processed by 1/2 − 2ε in the LP’s buffer at time
t which are not in B(t).

LEMMA 3.7. Consider any time t where φc′(t) > 0 for
some color c′, and c(ei) is not marked for any ei ∈ B(t).
Then |EO(t)| ≥ 3k

8 log kγ . Further, for any color, either in
Cb(t) or Cs(t), the elements for the color are processed by
at least |EO(t)|/4 in total.

Proof. Consider any time t and color c′ as described in the
lemma. Our goal is to show that there are at least 3k

8 log kγ
elements in the LP’s buffer at time t, that are not in the
algorithm’s buffer at time t, that are not processed by more
than 2ε + 1/2. Let t′ be the last time no later than time t
where φc′ was set to be non-zero. At time t′, we marked
all colors in Gj∗(t′) for some j∗. Let S be the set of colors
that were marked at time t′ and let S′ ⊆ S be the set of
colors cwhose indicator variables φc where set to be positive
at time t′. Let tc be the earliest time after t′ in Tc. Let
c1, c2, . . . , c|S| be the ordering of the colors in S such that
tcl ≤ tcl+1

. Say c′ has index i∗ in this ordering. We know
that since the indicator variable φc′ has not been reset by
time t that tcl > t for all l ≥ i∗. Further, we know that∑
c∈S n

A
c (t′) ≥ k

log kγ −
k
10 ≥

3k
4 log kγ because there are

at most log kγ groups, there are k elements in the buffer, at
most k/10 elements are for color c∗(t′) since we set φc′ to be
non-zero at time t′ and we mark the group with the maximum
number of elements. By definition of the algorithm, we know
that

∑|S|
i=i∗ n

A
ci(t
′) ≥ 1

2

∑
c∈S n

A
c (t′) ≥ 3k

8 log kγ . However,
knowing that tci > t for all i ≥ i∗, the LP has not processed
any element in B(t′) by ε at time t′ and no element in B(t′)
has a color block of height greater than 1/2 intersecting time
t′ in the LP, it must be the case that every element for a color
ci in B(t′) is completed by at most 2ε + 1/2 by the LP by
time t. Thus, the LP has at least 3k

8 log kγ elements that are not
in the algorithm’s buffer at time t, that are not processed by
more than 2ε+ 1/2.

Finally, we know that the LP can have a total volume of
at most k in its buffer at time t by constraint (2.2) in the LP.
Thus, the LP must process the elements in B(t) by at least
(1/2 − 2ε)|EO(t)|. Knowing that ε ≤ 1/100 this implies

that elements in B(t) either for colors in Cb(t) or Cs(t) are
processed by at least |EO(t)|/4. 2

Now our goal is to bound the cost the algorithm accumu-
lates due to Rule (v). In this case we will show that Rule (v)
happens with small probability at certain moments in time.
To do this, we begin by showing the following lemma which
bounds the number of elements that should be available to
schedule due to the randomized rounding.

LEMMA 3.8. Fix a color c, a time t and a set S of elements
such that the following conditions hold

• |S| ≤ k

• For all ei ∈ S, ȳi,t ≤ ε.

• For all colors c′, the total number of elements in S for
color c′ is at most k/ log3 kγ, i.e. |{ei ∈ S | c(ei) =
c′}| ≤ k/ log3 kγ.

•
∑
ei∈S ȳi,t ≥ η/8 for some η ≥ k

8 log kγ .

Then it is the case that at time t there are at least 2η
elements in S which are α ready by time t with probability
at least 1 − 1/k2 for all k greater than a sufficiently large
constant.

Proof. We use a concentration inequality stated in Theo-
rem A.1 in Appendix A. Let Nc be the number of elements
of color c which are α ready by time t. We would like to
show that

Pr
[∑
c∈S

Nc ≤ 2η
]
≤ 1

k2

For notational simplicity, let µ := E[
∑
c∈S Nc]. Note

that Nc ≤ k/ log3 kγ. Further we know that µ ≥ 1
16εη

by Lemma 2.2. This is because our α-rounding makes an
element ei ready for schedule by time t with a probability
of at least (1/(2ε))vi where vi denotes the volume of work
that the LP does on the element ei by time t. Note that we
required α ≤ ε.

We are now ready to prove the lemma.

Pr
[∑
c∈S

Nc ≤ 2η
]

≤ exp
(
− (µ− 2η)2

2
∑
c∈S E[N2

c]

)
[By Theorem A.1]

≤ exp
(
− (µ− 2η)2

2(k/ log3 kγ)
∑
c∈S E[Nc]

)
[Since Nc ≤ k/ log3 kγ]

≤ exp
(
− (µ− 32εµ)2

2(k/ log3 kγ)µ

)
[Since µ ≥ 1

16εη]

≤ exp
(
− (µ/2)2

2(k/ log3 kγ)µ

)
[Since ε < 1/100]

= exp
(
− µ

8(k/ log3 kγ)

)
≤ exp

(
− log3 kγ

8k
· k

128ε log kγ

)
[Since µ > 1

16εη and η ≥ k
8 log kγ]

≤ exp
(
− log2 kγ

12

)
[Since ε < 1/100]

≤ 1/k2

The last inequality holds for any k greater than a sufficiently
large constant. 2

The goal of the next lemma is to show how often the
algorithm could possibly switch to a color before the LP
accumulates as least some small cost for this color. Later,
this will give us an upper bound on how many times the
algorithm switches to a color due to Rule (v).

LEMMA 3.9. Fix any color c. Let t1 ∈ Tc and t2 be the first
time in Tc after t1. If no time exists set t2 = ∞. The total
number of times the algorithm can switch to color c during
[t1, t2) is at most O(k).

Proof. Indeed, for the sake of contradiction say that the
algorithm switches to color c at 6k + 2 distinct times during
[t1, t2). Let E be the set of times during [t1, t2) where the
algorithm switches to color c. Let t′ be the second time the
algorithm switches to color c at a time during [t1, t2) and t′′

be the second to last time the algorithm switches to color c
at a time during [t1, t2). At least 6k elements for color c are
output by the algorithm during [t′, t′′] since the algorithm
switches to color c at least 6k times after t′ but before t′′.
Further these elements must arrive after t1, since they were
not output the first time the algorithm switched to color c
after t1.

We now consider two cases. In the first case assume
that the LP does not have a set of color blocks intersecting
t′ and 3k times in E of total height at least 1/2 for color
c. By definition of t1 and t2 it is the case that the LP does
not accumulate cost εwc for color c between t1 and t2−1 for
color blocks starting between t1 and t2−1. Thus, at any time
before t2 and after time t′′ there are 3k elements for color c
in the LP’s buffer processed by at most 1/2 + ε which the
algorithm has already output. However, the LP has a total
volume greater than 3k(1/2− ε) > k in its buffer at time t′′

since ε ≤ 1/100. This contradicts the constraint (2.2) in the
LP.

For the second case, assume that the LP has a set of
color blocks I intersecting t′ and 3k times in E during
[t′, t′′] of total height at least 1/2 for color c. We know that
the algorithm always outputs an element if its color is the
same as the current color and, therefore, there are 3k times
during [t′, t′′] that intersect every color block in I where the

algorithm is outputting an element that is not of color c. This
implies that every color block in I processes 3k elements
for color c after time t′ which arrive before time t′. Knowing
that the total height of the color blocks in I is at least 1/2,
this and Proposition 2.1 implies that the LP has total volume
of at least 3

2k of elements for color c at time t′. This is a
contradiction to constraint (2.2) in the LP. 2

Finally, we are ready to bound the cost the algorithm
accumulates due to Rule (v). The high level idea is that
Rule (v) happens with low probability and therefore there is
a color which the algorithm can output such that the expected
cost charged to the LP is small.
Proof of [Lemma 3.5] Consider any time t1 ∈ Tc and
the time t2 such that t2 is the earliest time in Tc after t1. If
no such time exists, then t2 = ∞. To prove the lemma we
will show that the expected number of times the algorithm
outputs color c during [t1, t2) is at most O(1). Before we
give the formal proof, we give a roadmap for the proof. Fix
color c. We first define a set X of time steps during [t1, t2)
where the algorithm can possibly switch to color c due to
Rule (v). The definition of X will rely on the LP solution
with no dependency of the algorithm’s decision, and hence
X is a deterministic set. Then we further refine X into at
most O(log k) disjoint subsets {Xl} such that at all time
steps in Xl the algorithm has at least one element in B(t)
to schedule following Rule (i), (ii), (iii), or (iv) if a good
event Goodl occurs.

We then move to proving Pr[Goodl] ≥ 1 − 1/k2.
This is where we use the precondition of Rule (v). At
this point, we can show that the algorithm has processed a
certain set of elements of many distinct colors substantially
in total. Then with high probability, the α sampling will
make some elements α-ready. However, this may not be
sufficient since the algorithm might have already scheduled
all those elements at some point in Xl. Hence we will try
to find “enough” α-ready elements such that the algorithm
cannot help but include at least one element in its buffer at
all times in Xl. This is done via a careful argument about
the volume of several sets of elements we handle. This is
also where we appeal to Lemma 3.8. The volume argument
requires some carefully chosen conditions in Lemma 3.8
together with definition of Xl.

We now give a formal proof. For a color c′, let tc′(t)
denote the earliest time in Tc′ after time t. If no such time
exists then tc′(t) = ∞. Define X to be the set of times t
during [t1, t2) such that
• (1) |{ei | ȳi,t ≤ ε}| ≥ k, and
• (2) ηt := |{ei | ȳi,t ≤ 1/2 + 2ε}| ≥ k + k

8 log kγ , and
• (3) there exists a set of D (can be different for each t)

of at most k elements such that
• (3-a) for all ei ∈ D, ȳi,t ≤ ε, and
• (3-b) for all ei ∈ D, tc(ei)(t) ≥ t2, and

• (3-c) for all c′, |{ei ∈ D | c(ei) = c′}| ≤ k
log3 kγ

,
and

• (3-d)
∑
ei∈D ȳi,t ≥ (ηt − k)/8.

Note that X is a deterministic set depending solely on
the LP solution. Before provingX includes all time steps we
need to consider, we explain the conditions of X in words
to help the reader have a feel. At the current time t when
Rule (v) is considered, we would like to find a subset D
of elements some of which will likely to become α-ready.
To apply α sampling, recall that we require that the element
has been processed by at most ε (Condition (3-a)). Also to
apply α sampling effectively, we need that LP has processed
elements in D a lot (Condition (3-d)). Since each color has
not many elements in D (Condition (3-c)), this will imply
that D consists of many colors. Since α-sampling uses
an independent random value αc for each color, this will
help argue that there must exist some α-ready elements by
Lemma 3.8. The Condition (3-b) says that all elements in
D are processed by LP by ε before time t2. This condition
will be useful to show Rule (v) is applied at no time in
X if a “good” event occurs. The Conditions (1) and (2)
will be useful in the volume argument that will lead to the
conclusion that some of the α-ready elements we found must
exist in the algorithm’s buffer at many time steps. More
details will be given as we proceed with the analysis.

CLAIM 3.10. If the algorithm switches to color c at time
t ∈ [t1, t2), then it must be the case that t ∈ X .

Proof. Suppose the condition stated in the lemma is satis-
fied. The first condition in the definition of X is satisfied
since for all elements ei ∈ B(t), ȳi,t ≤ ε – this is because
otherwise Rule (i) would be applied. By considering element
ei with ȳi,t ≤ 1/2 + 2ε depending on whether ei ∈ B(t) or
not, it follows that ηt = |EO(t)| + |B(t)| = |EO(t)| + k ≥
k + k

8 log kγ ; the last inequality is due to Lemma 3.7. Hence
the second condition holds true. To see the remaining con-
ditions hold, set D := Cs(t) ∩ B(t). By definition of Cs(t),
it follows that for all ei ∈ Cs(t), tc(ei)(t) ≥ t2. This
is because the algorithm chose to schedule c over all other
colors, in particular c(ei). Also we know that for all c′,
|{ei ∈ Cs(t) | c(ei) = c′}| ≤ k

log3 kγ
from definition of

Cs(t). Finally, the last condition follows from the condi-
tion of Rule (v), and the fact that |EO(t)| = η − k. Finally
|D| ≤ k since |B(t)| ≤ k.

Now we define Xl by partitioning X into disjoint sub-
sets Xl of X such that (1 + 1/2)l−1 ≤ ηt − k < (1 + 1/2)l.
Observe that l = O(log k) since there are ηt elements ei
with ȳi,t ≤ 1/2 + 2ε, and therefore ηt(1/2 − 2ε) ≤ k due
to constraint (2.2). This in turn implies that (1 + 1/2)l−1 ≤
ηt − k ≤ 1/2+2ε

1/2−2ε · k ≤ 2k since ε ≤ 1/100. Also we know
that l ≥ 1 from Condition (2). Now consider a fixed set Xi

and let t be the first time in Xi. Define Goodl be the event
where there is a subset D′ ⊆ D of 2(η − k) elements ei that
are α-ready by time t. Note that since D′ is a subset of D, it
inherits all conditions (3-a), (3-b), and (3-c).

CLAIM 3.11. Pr[Goodl] ≥ 1− 1/k2.

Proof. The claim immediately follows by applying
Lemma 3.8 with set S := D stated in Condition (3).

We now argue the usefulness of partitioning time steps
in X into Xl with respect to the event Goodl.

CLAIM 3.12. Suppose the event Goodl occurs. Then at all
time steps t′ in Xl, there must exist an element ei that is
ready for schedule by Rules (i) or (ii), i.e. ȳi,t′ ≥ ε or ei is
α-ready by time t′.

Proof. Consider any time t′ ∈ Xl. Since Goodl occurs,
there exists a set D′ of elements as described above. From
definition of D′ and Xl, note that |D′| ≥ 2(ηt − k), and
(ηt′ − k) ≤ (1 + 1/2)(ηt − k). Let D′c∗ be the elements in
D′ for a fixed color c∗(t) which have a set of color blocks
intersecting time t with height greater than 1/2. We know
that there are at most k/ log3 kγ elements in D′c∗ and there
can at most one color c∗(t) with a set of of color blocks in
the LP intersecting time t with total height greater than 1/2
by constraint (2.2). Due to Condition (3-b), we know that for
all ei ∈ D′ \D′c∗ , ȳi,t′ ≤ 2ε+ 1/2, therefore the elements in
D′ \ D′c∗ contribute to ηt′ . Also observe that |D′ \ D′c∗ | ≥
2(ηt−k)−8(ηt−k)/ log2 kγ > 3

2 (ηt−k) ≥ ηt′−k where
the first and second inequalities follow from Condition (3-c)
and (2), respectively, and the second to last inequality holds
when k is greater than a sufficiently big constant.

To recap, we have shown that D′ \D′c∗ ⊆ {ei | ȳi,t′ ≤
1/2 + 2ε} and that |D′ \ D′c∗ | > ηt′ − k. Also we know
that ηt′ := {ei | ȳi,t′ ≤ 1/2 + 2ε} and that B(t′) ⊆
{ei | ȳi,t′ ≤ 1/2 + 2ε}. Hence it must be the case that
|B(t′) ∩ (D′ \D′c∗) > 0|. This completes the proof.

Now we are ready to complete our proof. We have
shown that if

∧
l Goodl occurs, then Rule (v) is not per-

formed. Observe that Pr[¬
∧
l Goodl] ≤ O(log k/k2) =

O(1/k) by a simple union bound. By Lemma 3.9 the most
number of times the algorithm can switch to color c during
[t1, t2) is O(k). Hence the expected number of times the al-
gorithm switches to color c for times in X due to Rule (v) is
at most O(k) ·O(1/k) = O(1), which implies the lemma. 2

Finally we focus on the last case, bounding the the
algorithm’s cost incurred due to Rule (vi). The following
lemma shows that the algorithm always has a color to
schedule at each time. That is the conditions of Rule (vi)
are satisfied if the algorithm cannot use rules (i), (ii), (iii),
(iv) or (v).

LEMMA 3.13. At any time t, if none of the Rules (i), (ii),
(iii), (iv) or (v) cannot be performed, then there exists a color
c ∈ Cb(t) where nAc (t) ≥ 3

5n
O
c (t).

Proof. Let TOb (t) denote the set of elements in the LP’s
buffer, processed by at most 1/2 + ε at time t, which are
for colors in Cb(t). Let TAb (t) be the set of elements in B(t)
for colors in Cb(t). Note that |TOb (t)| =

∑
c∈Cb(t) n

O
c (t)

and |TAb (t)| =
∑
c∈Cb(t) n

A
c (t).

To show the lemma, it suffices to show |TAb (t)| ≥
(3/5)|TOb (t)|. Let S = TOb (t)\B(t). Note that by definition
of EO(t) that S ⊆ EO(t). By Lemma 3.7 and due to
prerequisite condition of Rule 6, at time t the LP must have
processed elements in B(t) for colors in Cb(t) by at least
|EO(t)|/4 − |EO(t)|/8 = |EO(t)|/8. This implies that
|TAb (t)| ≥ |EO(t)|/(8ε) ≥ 10|EO(t)| since ε ≤ 1/100
and no element in B(t) has been processed by LP by more
than ε. Thus |TAb (t)| ≥ 10|S| = 10 · |TOb (t) \ B(t)|.
Clearly, |TAb (t)| = |TOb (t) ∩ B(t)| by definition. Thus
|TOb (t)| = |TOb (t) ∩ B(t)| + |TOb (t) \ B(t)| ≤ 11

10 |T
A
b (t)|.

This yields |TAb (t)| ≥ (3/5)|TOb (t)|, which completes the
proof. 2

Finally we bound the cost due to Rule (vi) which will
complete the proof for the weighted case.
Proof of [Lemma 3.6] Let E be the set of times the algorithm
switches to color c according to Rule (vi) as described in the
lemma. At any time t ∈ E , it is the case that nAc (t) ≥ k

log3 kγ

and nAc (t) ≥ 3
5 · n

O
c (t) by Lemma 3.13 and the definition

of elements in Cb(t). Let t1 be a time in Tc and t2 be the
earliest time in Tc after t1. If t2 does not exists, set t2 =∞.
We will show that the algorithm can only switch to color
c O(log log kγ) times during [t1, t2]. Knowing that the LP
accumulates cost εwc for color c during (t1, t2] if t1 and t2
are in Tc we can charge this cost to the cost LP accumulates
for color c during (t1, t2]. If t2 = ∞ we charge to the total
cost the LP accumulates for color blocks corresponding to
color c.

For the sake of contradiction, suppose that there are at
least 40 log log(kγ) + 4 times in E during [t1, t2]. We break
the analysis into two cases. For the first case assume that
there are at most 20 log log(kγ) + 2 time steps in E during
[t1, t2] where the LP has a set of color blocks for color c of
total height greater than 1/2 that all intersect time t1. Let t′1
be the first time in E during [t1, t2] when there is not a set of
color blocks for color c of total height greater than 1/2 that
intersect t1. There are at least 20 log log(kγ) + 2 time steps
in E during [t′1, t2] where there is not a set of color blocks
for color c of total height greater than 1/2 in the LP since the
LP can start color blocks for color c of total height at most
height ε during [t1, t2].

Let t′′1 be the second time the algorithm starts a color
block for c at a time in E during [t′1, t2]. Any element for

color c output by the algorithm during [t′′1 , t2] arrives after
time t′1. Further, by definition of t′1, for any of these elements
ei it is the case that ȳi,t2 ≤ 1/2 + ε. Let nOc (t) be the
elements ei with ȳi,t2 ≤ 1/2 + ε which arrive after time
t′1 for color c. Note that this implies that nOc (t) ≥ nOc (t) at
all times t ∈ [t′′1 , t2].

The first time the algorithm processes color c at a time
t ∈ E during [t′′1 , t2], it processes at least k

log3 kγ
elements

which arrive after t′1 and, therefore, nOc (t) ≥ k
log3 kγ

at this
time. Consider any time t′ ∈ E and the time t′′ that is the
earliest time in E after t′. We know that all of the elements
contributing to nOc (t′) also contribute to nOc (t′′). All of
the elements contributing to nAc (t′′) arrive during (t′, t′′],
these elements contribute to nOc (t′′) and do not contribute
to nOc (t′). Hence, nOc (t′′) ≥ nOc (t′) + nAc (t′′). Further,
we know that nAc (t′′) ≥ 3

5 · n
O
c (t′′) ≥ 3

5 · n
O
c (t′′). Thus,

nAc (t′′) ≥ 3
5 (nOc (t′) + nAc (t′′)) which implies nAc (t′′) ≥

3
2 · n

O
c (t′), hence nOc (t′′) ≥ 3

2 · n
O
c (t′). This implies that at

time t2 the LP has k
log3 kγ

(3/2)20 log log(kγ) ≥ 3k elements
for color c processed by at most 1/2 + ε. However, then
the LP has a total volume of at least 3k(1/2 − ε) > k at
time t2 unprocessed, a contradiction to constraint (2.2) since
ε < 1/100.

For the second case, assume that there are at least
20 log log(kγ) + 2 time steps in E where the the LP has a
set of color blocks for color c of total height greater than
1/2 that each intersect time t1. Let S be a set of such
color blocks of non-zero height in the LP solution. Let t′2
be the third to last time in E during [t1, t2] where all of
these color blocks intersect. Let bi be a color block from
this set, which processes element ei at time t1 and i is as
large as possible. Notice that since bi contains two times
in E after t′2 it is the case that at any time t in E during
[t1, t

′
2] bi has not processed any element that the algorithm

has in its buffer for color c. Otherwise, bi could not extend
until the second in E after t′2. We know that all the color
blocks in S will eventually process all elements for color c
which are in B(t) for t ∈ [t1, t

′
2] because the color blocks

the LP is allowed to use are assumed to be maximal. Further,
every element that bi will process, which it has not by time
t, will be processed by every color block in S after t by
definition of bi. We also know that since each element can
be processed by at most 1 in the LP by constraint (2.2) and
the total height of all color blocks in S is at least 1/2, this
implies that all elements bi will process after time t during
[t1, t

′
2] have not been processed by 1/2 in the LP solution at

time t. Thus, every element which bi will process after time
t during [t1, t

′
2] contributes to nOc (t).

Let t′ be a time in E during [t1, t
′
2] and t′′ be the

earliest time in E after t′. We know that the color block
bi must not have processed any element in B(t′) for color
c at time t′. Further we know for the algorithm to have

nAc (t′′) elements for color c at time t′′, it must be the case
that during (t′, t′′] the algorithm is outputting at least nAc (t′′)
which are not of color c, which implies that there are nAc (t′′)
elements for color c that arrive before t′ and bi have not
processed by time t′. As observed before, this implies that
there exist nA(t′′) + nA(t′) elements for color c such that
LP has processed by at most half by time t′. Hence we
derive nOc (t′) ≥ nA(t′′) + nA(t′). We also know that
5
3 · n

A(t′) ≥ nO(t′). Thus, 5
3 · n

A(t′) ≥ nA(t′′) + nA(t′)
and we have that nAc (t′) ≥ 3

2n
A(t′′). Knowing that at

time t′2 the algorithm outputs k/ log3 kγ elements for color
c, this implies that at time t1 the algorithm has at least

k
log3 kγ

(3/2)20 log log(kγ) ≥ 3k elements for color c in B(t1).
This contradicts the size of the algorithm’s buffer. 2

4 Unweighted Reordering Buffer
In this section we study the unweighted version of the
Reordering Buffer Management problem, i.e. wc = 1 for
all c ∈ C. We use the same linear programing we used for
the weighted case (see Section 2), hence the objective will
be simply to minimize

∑
b∈B xb. However, we strengthen

the LP via knapsack covering inequalities. It will allow us to
view the Buffer Management Problem as a covering problem
and enable our improved analysis. We first explain the extra
constraints we add, and give a high-level overview of our
algorithm and analysis. Our algorithm and analysis build
on an understanding of a procedure that fills some “holes”
random sampling leaves, which may be of independent
interest; see Section 4.2. We first show how we strengthen
LP and give a high-level overview of our algorithm. We will
then presents our algorithm and analysis.

4.1 Linear Programming The linear programming LP is
strengthened by the following constraints.∑

b∈B\B′
(|Eb,≤t \ E′|)xb ≥ (t−′ k − |E′|)(1−

∑
b∈B′

xb)(4.8)

∀t ∈ [k + 1, k + n], B′ ⊆ B,E′ ⊆ E

The notation Eb,≤t denotes the elements that are sched-
uled by block b by time t. What the constraints imply is
the following: Consider any integer solution {xb}, b ∈ B.
For a while consider the case where B′ = ∅. We know that
t − k elements are scheduled by time t. Hence without us-
ing any set E′ of elements, we should be able to find at least
t − k − |E′| elements that are scheduled by time t. Now
suppose B′ 6= ∅. The left-hand-side is non-negative while
the right-hand-side is non-positive, hence the constraints are
satisfied. As before, we relax xb ∈ {0, 1} into 0 ≤ xb ≤ 1.
These constraints are essentially knapsack covering inequal-
ities which have been shown to be useful for a variety of
covering problems. For example, see [12, 8]. However, the
number of these constraints can be exponential in the size of

the number of elements, hence in order to solve LP in poly-
nomial time we will give a separation oracle.
Separation Oracle: The total number of constraints, besides
those in (4.8), is at most a polynomial in n. Hence to solve
the LP in polynomial time, we need a separation oracle
only for constraints (4.8). Unfortunately, we do not have
a separation oracle for constraints (4.8). However, we do
not need an “exact” separation oracle since we will need to
satisfy constraints (4.8) only for a specific set E′ (which can
vary depending on xb for a fixed time).

LEMMA 4.1. Suppose that we are given 0 ≤ xb ≤ 1 that
satisfy all constraints in LP possibly except some in (4.8).
Then consider any t ∈ [k+1, k+n], and letE′ = {ei | ȳi,t ≥
ρ, i ≤ t′} for any time t′ and some constant 0 < ρ ≤ 1. Then
if there exists a violated constraint for some B′ in (4.8) we
can find it in polynomial time.

Proof. Fix time t and t′. Since E′ is fixed we only need
to consider arbitrary B′ ⊆ B. Note that |Eb,≤t′ \ E′| and
t− k − |E′| are now fixed. By rearranging terms, we have(∑

b∈B

|Eb,≤t \ E′|)xb
)
− (t− k − |E′|)

≥
∑
b∈B′

(
(|Eb,≤t \ E′|)− (t− k − |E′|)

)
xb,

which is equivalent to (4.8). Note that the left-hand-side
is fixed. Hence if there exists any violated constraint in
(4.8), the constraint for B′ that maximizes the right hand
side must be a violated one. Also it is easy to see that the
right-hand-side is maximized when b ∈ B′ if and only if
(|Eb,≤t \E′|)− (t− k− |E′|) ≥ 0. If the right-hand-side is
greater than the left-hand-side for such B′, we have found a
violated constraint. Otherwise, there is no violated constraint
in (4.8) for time t.

Using this separation oracle, we can find a solution to
LP that is good enough for our purpose.

COROLLARY 4.1. One can find a LP solution x∗b in polyno-
mial time that satisfies the following:
•
∑
x∗b is no greater than CostLP, the cost of the optimal

solution to LP.
• For any t, t′ and E′ := {ei | ȳi,t ≥ ρ, i ≤ t′}, all
constraints (4.8) are satisfied.
• All other constraints in LP are satisfied.

4.2 Overview of Algorithm and Analysis As mentioned
before, our algorithm crucially relies on viewing the Buffer
Management Problem as a covering problem. To have a feel
of what we mean by a covering problem, suppose we have a
pool Pool of color blocks where each element appears in at
least one color block in Pool. Then we can associate each

element ei with the earliest time step when ei is scheduled
in a color block in Pool. Say that element ei is ready (to
be scheduled) at time t if it is associated with the time step
t or earlier. We observe that if there is always an element
ready for schedule in our buffer (or equivalently that we
haven’t scheduled) then the cost of the schedule is at most
the number of color blocks in Pool. This is because when
we schedule an element ei ready for schedule, we know that
there is a block in Pool that schedules ei, so it must be case
that we schedule all elements (not scheduled yet) in b with
element ei.

Hence to have a low cost schedule, it is essential to
construct a set of color blocks Pool that has a small number
(cost) of color blocks, and that covers all time steps by
‘ready-for-schedule’ elements. More precisely, for any time
t ≥ k + 1, if there are at least t − k ready-for-schedule
elements by time t, and the Pool size is small, we will be
in good shape. Then how can we construct such a pool?
As observed in previous work, one can always schedule
an element that has been processed by LP substantially.
Intuitively, the resulting blocks can be compared to CostLP
since LP must have processed some elements in such blocks
substantially (See Lemma 2.1). However, if LP schedules
many colors fractionally, such ‘above-threshold’ covering
will leave some times where there is no element available.
We can think of such times as being ‘holes’.

Using the α-sampling we already used for the weighted
case, the algorithm will likely find elements which are ready
for schedule. However, there can be still some uncovered
time steps. In this case, roughly speaking, we will try to
schedule a color with the most elements in the current buffer.
Ideally we would like to bound the number of such color
blocks since they did not come from sampling and hence
are hard to compare to the LP cost. Our observation is that
after the threshold rounding and α-sampling, the number of
additional color blocks needed to fill the remaining holes
is not many. Here the tricky part is that the elements of
the same color behave dependently. Nevertheless, we show
the following “Filling the Gap” lemma which may be of
potential use for other covering problems. The proof will
be presented in Section 4.4.1.

LEMMA 4.2. Consider a collection of independent random
variables Zl, 1 ≤ l ≤ ` where Zl can take an integer
value in [0, L] for a positive integer L. Let maxZl de-
note the maximum value that Zl can take. Suppose that∑
l∈` E[Zl] ≥ ηL for some constant η > 1. Let S denote

the minimum subset of indices with highest maxZl such that∑
l∈S maxZl+

∑
l/∈S Zl ≥ L. Then it follows that E[|S|] ≤

g(η), where g(η) := 1/
(

1− 1/ exp(2(1− 1/
√
η)2)

)
.

Roughly speaking the above lemma says that if the
expected number of elements that are ready to be scheduled

is large (by more than η factor), then by adding elements
of only a constant number of colors in expectation, one can
meet the demand.

Our algorithm and analysis look involved, however,
the underlying covering view and sampling ideas are fairly
intuitive. The large volume of algorithm description and
analysis is mostly on combining the above three main ideas,
threshold rounding, α-sampling and “Filling-the-Gap.” We
feel that our algorithm and analysis are fairly different from
the previous work on the Buffer Management problem, and
could give a more direct view that interprets the problem as a
covering problem, thereby making other analysis tools more
accessible.

4.3 Algorithm For each element we will define time steps
when it becomes available for schedule. Intuitively, the time
is when it is scheduled by a color block we sample. More
specifically, we will associate each element ei with possibly
four different time steps, tρi , tαi , tβi , and tσi , which we call
element ei’s ρ, α, β, and σ-times, respectively. All elements
have tρi and tαi , but some elements may not have tβi or tσi .
Also tρi and tαi may induce times tρ

′

i , tα
′

i , respectively. We
say that an element ei is ready for schedule at time t if its
ρ, ρ′, α, α′, β, or σ-time is no greater than t. Once we fix
these time steps our algorithm becomes straightforward to
describe. As before, once we start a new color, we continue
to schedule elements of the same color until we run out of
such elements. Also for the same color, we always schedule
elements in first-in-first-out order. Scheduling a color means
scheduling an element of the color. The ρ-ready elements
have the highest priority and the σ-ready elements have the
lowest priority.

Algorithm: Algorithm–Unweighted (Au)

At each time t, schedule a color of an element in the buffer
that is ready at the time t while prioritizing elements ei by
ρ, α, ρ′, α′, β and σ-times as in this order.

We will ensure there is at least one element ready for
schedule at any time so that the algorithm never gets stuck.
We say that element ei is ρ-ready if tρi ≤ t. Similarly we
define ρ′, α, α′, β, σ-ready times. We now describe how to
associate each element with these times.

Setting ρ-times, tρi : This is the simplest part. For each
element ei, we let tρi denote the first time t when LP
schedules element ei by time t by at least ρ, i.e. ȳi,t ≥ ρ.
The constant 0 < ρ < 1 will be fixed later.

Setting α-times, tαi : We use the α-sampling we introduced
in Section 2. This defines tαi time for each element ei. Later,
α will be set to be equal to ρ.

We now explain how to set β and σ-times, and also ρ′

and α′-times. We will define phases by partitioning the time
horizon. We note that an element may have a different β, σ,
ρ′, α′ for each phase. However, for notational simplicity, we
will mostly drop the notation denoting the phase. Also our
analysis will focus on each phase separately.

Setting β, σ-times, tβi , tσi : Partition the time horizon [k +
1, n + k] by time steps, k = τ0 < τ1 < τ2 < τ3..., where
τj is defined as the earliest time after τj−1 when the LP cost
increases by at least ∆ where 0 < ∆ < 1 is a constant which
will be fixed later. For each color block b in LP, we increase
the cost of LP by its height xb at the time when it ends.
Note that this is the opposite of the weighted case where we
associate the cost of color blocks with the time it starts in
the LP. We refer to the interval Ij := (τj−1, τj] as phase
j. When we say that we charge to phase j, we mean that
we charge to the increase of at least ∆ in LP cost during Ij .
Now consider any j, and the latest time step tj1 ∈ (τj−1, τj]
such that there are at least t − k ρ-ready elements at each
time t during (τj−1, t

j
1]. If tj1 does not exist, set tj1 = τj−1.

Note that the total height of color blocks I ′j that end during
(τj−1, τj) is at most ∆. Let tj2 ≥ tj1 be the earliest time step
when one of the color blocks Ij that intersect τj , schedules
only the elements arriving after time tj1, during (tj2, τj]. If tj2
does not exists, set tj2 = τj . Note that if tj2 < τj then there
must exist a color block in Ij that since time tj2 schedules
only the elements arriving after time tj1. Fix one such color
block and let σj denote this block. Now if σj schedules an
element ei at time t′, then we set tσi = t′.

We now set β-times. The goal of this step is to find
enough elements to schedule by time tj2 without using el-
ements arriving after tj1. Later we will show that we only
need to use a constant number of colors Cβj in expectation,
and this will be the most interesting part of our algorithm
and analysis. Let Cβj = ∅. We add a color c to Cβj with the
maximum number of elements arriving by time tj1 until we
have that,∑

c∈Cβj

|Ec,≤tj1 |

+|{ei ∈ E≤tj1 | c(ei) /∈ C
β
j and min{tρi , t

α
i } ≤ t

j
2}|

≥ tj2 − k.

Here Ec,≤tj1 denotes the set of elements arriving by time tj1
for color c, and E≤tj1 denotes the set of elements arriving

by time tj1 (for any color). Then for each element ei with
color c(ei) in Cβj , that arrives by time t1, we set tβi = tj1.
As mentioned before, each element may have a different β,
σ-time in each phase.

Setting ρ′, α′-times, tρ
′

i , tα
′

i : It now remains to set ρ′, α′-
times. If there exists any element ei ∈ E≤tj1

that becomes

ρ-ready during (tj1, t
j
2] for the first time, we let all elements

of color c(ei) arriving by time tj1 to have ρ′-ready time tj1,
and we add c(ei) to Cρ

′

j . We will refer to the elements with
ρ′-ready time tj1 as ρ′-ready elements in phase j, and add
them to Eρ

′

j . Also if there exists any element ei ∈ E≤tj1 that

becomes α-ready during (tj1, t
j
2] for the first time, we let all

elements of color c(ei) arriving by time tj1 to have α′-ready
time tj1, and add c(ei) to Cα

′

j , and add all those elements
to Eα

′

j . We refer to the elements with α′-ready time tj1 as
α′-ready elements in phase j. We note that some colors my
appear both inCρ

′

j andCα
′

j . As mentioned before an element
may have a different ρ′, α′-time in each phase.

4.4 Analysis We will say that an element ei is ready for
schedule at time t if its ρ, ρ′, α, α′, β or σ time is not greater
than time t. We first show that the algorithm never gets stuck.
Our analysis will be done for each phase Ij = (τj−1, τj]. For
notational convenience, we will refer to tj1, tj2 simply as t1,
t2.

LEMMA 4.3. Suppose ρ ≤ 1 −∆, then at any time t, there
is at least one element ready to be scheduled.

Consider any j. By definition of t1, we know that there
is at least one ρ-ready element in the buffer during (τj−1, t1].
Also we know that using the block σj , we can find one σ-
ready element arriving after t1 in the buffer at each time
during (t2, τj]. Hence if we can find t2 − k elements that
become ρ, ρ′, α, α′ or β-ready by time t1 (and that arrive by
time t1), then we will be done.

We note that Lemma 4.3 is not completely obvious
since LP may schedule some elements arriving after t1 (by
a small amount though) during (t1, t2], and our goal to find
enough elements arriving by t1 to cover all time steps by
time t2. Here constraints (4.8) play a crucial role. We use
the constraint by setting E′ to be the elements that are ρ-
ready by time t2 and that arrive by time t1, and by setting
B′ = I ′j ; see Corollary 4.1. Knowing that the total height of
color blocks I ′j (that end during (τj−1, τj)) is at most ∆, we
have

(4.9)
∑

b∈B\I′j

|Eb,≤t2 \E′| · xb ≥ (1−∆)
(
t2 − k − |E′|

)
Note that the volume of work in the left-hand-side is only on
the elements that arrive before time t1, and do not become
ρ-ready by time t2. This is because by definition of tj2, the
only possible color blocks that can work on elements arriving
after time t1 during (t1, t2] are all in I ′j , and we discarded
them by setting B′ = I ′j . Hence we know that each element

contributing to the left-hand-side has been processed by the
LP by at most ρ. Thus, we know that there are at least
(1−∆)(t2− k− |E′|)/ρ elements that are scheduled by LP
that arrive before time t1 that do not become ρ or ρ′-ready by
time t1 when (1−∆)/ρ ≥ 1. By the way we defined β-time
steps, we conclude that Lemma 4.3 holds.

We now upper bound the (expected) cost of our solution.
We say that a color block b is ρ, α, β, σ, ρ′, or α′-block if it
is initiated by ρ, α, β, σ, ρ′, α′ times respectively. Bounding
the cost of ρ, σ blocks is easy. We will abuse the notation ρ′

and let ρ′ also denote a constant such that 0 < ρ′ < ρ, which
will be fixed soon.

Note that the following lemma bounds the total cost of
ρ-blocks.

LEMMA 4.4. The total cost (number) of color blocks (in-
cluding ρ-blocks) that schedule an element that LP has pro-
cessed by at least ρ′ is at most 1

ρ′CostLP.

Proof. The proof immediately follows from Lemma 2.1.

LEMMA 4.5. The total expected cost (number) of α-color
blocks is at most 1

αCostLP.

Proof. The proof immediately follows from Lemma 2.2.

LEMMA 4.6. The total cost (number) of σ-blocks is at most
1
∆CostLP.

Proof. Note that there is at most one color block σj for each
phase j. We charge this cost to the LP cost increase in phase
j. To see the details, say that element ei is scheduled by σj .
Then if there is any σ-block that is started by one of these
elements σj , it must continue to schedule all elements in σj .
Hence σj can result in at most one σ-block.

LEMMA 4.7. The total expected cost (number) of ρ′ and α′-
blocks that do not schedule an element processed by more
than ρ′ is at most

∆ + 1

∆
· 1

ρ− ρ′
CostLP

Proof. Consider any ρ′-block that is scheduled by a ρ′-ready
element ei in phase j. Since it has not been processed by
LP by more than ρ′ when it is scheduled, there exists an
element of the color that is processed during (t1, t2] by at
least ρ − ρ′. In other words, color c(ei) ∈ Cρ

′

j used at least
ρ − ρ′ height during (t1, t2]. Let hρ

′
be the total height of

color blocks of a color in Cρ
′

j . Then we know that the total
number of ρ′-blocks that meet the description of the lemma
is at most hρ

′

ρ−ρ′ . This is because there can be at most one
ρ′-color block of the same color in each phase (all ρ′-ready
elements in phase j have the same ρ′-ready time t1).

Also consider any α′-block that is scheduled by a α′-
ready element ei in phase j. Since it is not ρ-ready by time
t2, for it to be a α′-ready element in phase j, a color block
that intersects a time in (t1, t2] and schedules the element
must have been sampled by α-sampling. And we know that
the expected number of color blocks sampled out of Ij ∪I ′j ,
the set of color blocks that intersect a time in (t1, t2], is at
most hα

′
/αwhere hα

′
denote the total height of color blocks

of a color not in Cρ
′

j .
Note from definition of τj that the total height of Ij ∪I ′j

is at most (1 + ∆), hence we have hρ
′

+ hα
′ ≤ 1 + ∆. We

charge the total expected cost of

hρ
′

ρ− ρ′
+
hα
′

α
≤ max{ 1

ρ− ρ′
,

1

α
} · (1 + ∆)

to the LP cost increase in phase j. Since α ≥ ρ, the lemma
follows.

To bound the cost of β-blocks we need to understand the
underlying random process behind the construction of Cβj .
Lemma 4.2 will be crucial for our analysis. The lemma upper
bounds the expected number of “corrections” (additional
colors) needed to meet the given demand. Now let us take
a close look at (4.9) again. The set E′ includes all elements
that arrive by time t1 and ρ-ready by time t2, or equivalently
all elements that are ρ or ρ′-ready time at t1. As discussed
already, (4.9) implies that there is enough volume of work
that has been done on the elements that arrive by time t1 and
that do not become ρ-ready by time t2. Hence for each color
c, we create a random variable Zc that denotes the number
of elements of color c that arrive by time t1 and that do not
become ρ-ready by time t2, but become α-ready by time t2.
Let L := t2 − k − |E′|. By (4.9) and Lemma 2.2, then we
have ∑

c

E[Zc] ≥ η · L where η = (1−1/e)(1−∆)
ρ .

Then by applying Lemma 4.2 we have that E|Cj | ≤
g((1−1/e)(1−∆)

ρ). Since one can schedule all elements of
each color c ∈ Cj that arrive by time t1 in one color block
since t1, by charging the cost E[|Cj |] to phase j, we have

LEMMA 4.8. The total expected cost (number) of β-blocks
is at most 1

∆g((1−1/e)(1−∆)
α).

By combining Lemma 4.5, 4.6, 4.7, 4.8, we conclude
that the approximation ratio of our algorithm is at most

(
1

ρ′
+

1

α
+

1

∆
+

∆ + 1

∆
· 1

ρ− ρ′
) +

1

∆
g(

(1− 1/e)(1−∆)

α
)

We set α = 0.19, ∆ = 0.45, ρ = 0.19, ρ′ = 0.0678, and
the quantity has value 66.0823. This proves Theorem 1.2.

4.4.1 Proof of Lemma 4.2 This section is devoted to
proving Lemma 4.2. We partition random variables into
two groups depending on the ratio of their expected value
to their maximum value. All random variables Zl such that
maxZl ≥ ζEZl are put into Zbig , where ζ > 1 is a constant
to be fixed later. All other random variables are put into
Zsmall. (For notational convenience, we letZbig andZsmall
refer to the indices of the random variables they have.) Now
we scale down the non-zero probability of each random
variable Zl ∈ Zsmall by a factor of ζ–this decreases EZl by
a factor of ζ. Obviously this can only increase the expected
number of |S|. Note that now we have

∑
l EZl ≥ (η/ζ)L,

and for all Zl, maxZl ≥ ζEZl; η/ζ will be set to be greater
than 1.

We use the concentration inequality which can be found
in Appendix A . We reindex Zl such that maxZl non-
increases in l. To prove Lemma 4.2, we consider the
probability that we are forced to add Xl to S. This can
happen only if

∑
l′<l maxZl′ +

∑
l′≥l Zl < L. Hence we

conclude the following:

(4.10) E|S| ≤
∑
l≥1

Pr
[∑
l′<l

maxZl′ +
∑
l′≥l

Zl < L
]

Let L′ = maxZl; note that L′ ≥ Zl, Zl+1, ..., Z`.
Hence

Pr
[∑
l′≥l

Zl′ ≤ L−
∑
l′<l

maxZl′
]

= Pr
[∑
l′≥l

Zl′ ≤ E(
∑
l′≥l

Zl′)−
(∑
l′≥l

EZl′ +
∑
l′<l

maxZl′ − L
)]

≤ exp
(
−

(
∑
l′≥l EZl′ − L+

∑
l′<lmaxZl′)

2

2
∑
l′≥l EZ2

l′

)
[By Theorem A.1]

= exp
(
−

(
∑
l′ EZl′ − L+

∑
l′<l(maxZl′ − EZl′))2

2
∑
l′≥l EZ2

l′

)
≤ exp

(
−

(
∑
l′ EZl′ − L+ (1− 1/ζ)

∑
l′<lmaxZl′))

2

2
∑
l′≥l EZ2

l′

)
[Since maxZl′ ≥ ζEZl′]

≤ exp
(
−

((1− ζ
η
)
∑
l′ EZl′ + (1− 1/ζ)

∑
l′<lmaxZl′))

2

2
∑
l′≥l EZ2

l′

)
[Since

∑
l′ EZl′ ≥

η
ζ
L]

≤ exp
(
−

((1− ζ
η
)
∑
l′ EZl′ + (1− 1/ζ)(l − 1)L′)2

2
∑
l′≥l EZ2

l′

)
[Since maxZ1 ≥ ... ≥ maxZl = L′]

≤ exp
(
−

((1− ζ
η
)
∑
l′ EZl′ + (1− 1/ζ)(l − 1)L′)2

2L′
∑
l′≥l EZl′

)
[Since L′ = maxZl ≥ Zl+1 ≥ ... ≥ Z`]

≤ exp
(
−

4(1− ζ
η
)(1− 1/ζ)(l − 1)L′

∑
l′ EZl′

2L′
∑
l′≥l EZl′

)
[Since (a+ b)2 ≥ 4ab for a, b ≥ 0]

≤ exp
(
2(1− ζ

η
)(1− 1/ζ)(l − 1)

)
Hence from (4.10) we have

E|C| ≤
∑
l≥1

exp
(

2(1− ζ

η
)(1− 1

ζ
)(l − 1)

)
=

1

1− 1/ exp(2(1− ζ
η)(1− 1

ζ))

=
1

1− 1/ exp(2(1− 1√
η)2)

The last equality follows by setting ζ =
√
η.

References

[1] A. Aboud. Correlation clustering with penalties and approx-
imating the reordering buffer management problem. Masters
thesis, Computer Science Department, The Technion - Israel
Institute of Technology, 2008.

[2] Anna Adamaszek, Artur Czumaj, Matthias Englert, and Har-
ald Räcke. Almost tight bounds for reordering buffer man-
agement. In STOC, pages 607–616, 2011.

[3] Houman Alborzi, Eric Torng, Patchrawat Uthaisombut, and
Stephen Wagner. The k-client problem. J. Algorithms,
41(2):115–173, 2001.

[4] Yuichi Asahiro, Kenichi Kawahara, and Eiji Miyano. Np-
hardness of the sorting buffer problem on the uniform metric.
Discrete Applied Mathematics, 160(10-11):1453–1464, 2012.

[5] Noa Avigdor-Elgrabli and Yuval Rabani. An improved com-
petitive algorithm for reordering buffer management. In
SODA, pages 13–21, 2010.

[6] Noa Avigdor-Elgrabli and Yuval Rabani. A constant factor
approximation algorithm for reordering buffer management.
In SODA, 2013.

[7] Noa Avigdor-Elgrabli and Yuval Rabani. An optimal ran-
domized online algorithm for reordering buffer management.
CoRR, 1303.3386, 2013.

[8] Nikhil Bansal, Anupam Gupta, and Ravishankar Krish-
naswamy. A constant factor approximation algorithm for
generalized min-sum set cover. In SODA, pages 1539–1545,
2010.

[9] Reuven Bar-Yehuda and Jonathan Laserson. Exploiting lo-
cality: approximating sorting buffers. J. Discrete Algorithms,
5(4):729–738, 2007.

[10] Siddharth Barman, Shuchi Chawla, and Seeun Umboh. A
bicriteria approximation for the reordering buffer problem. In
ESA, pages 157–168, 2012.

[11] Daniel K. Blandford and Guy E. Blelloch. Index compression
through document reordering. In DCC, pages 342–351, 2002.

[12] Robert D. Carr, Lisa K. Fleischer, Vitus J. Leung, and Cyn-
thia A. Phillips. Strengthening integrality gaps for capacitated
network design and covering problems. In SODA, pages 106–
115, 2000.

[13] Ho-Leung Chan, Nicole Megow, René Sitters, and Rob van
Stee. A note on sorting buffers offline. Theor. Comput. Sci.,
423:11–18, 2012.

[14] Fan Chung and Linyuan Lu. Complex Graphs and Networks
(Cbms Regional Conference Series in Mathematics). Ameri-
can Mathematical Society, Boston, MA, USA, 2006.

[15] Matthias Englert, Harald Räcke, and Matthias Westermann.
Reordering buffers for general metric spaces. Theory of
Computing, 6(1):27–46, 2010.

[16] Matthias Englert and Matthias Westermann. Reordering
buffer management for non-uniform cost models. In ICALP,
pages 627–638, 2005.

[17] Iftah Gamzu and Danny Segev. Improved online algorithms
for the sorting buffer problem on line metrics. ACM Transac-
tions on Algorithms, 6(1), 2009.

[18] Rohit Khandekar and Vinayaka Pandit. Online sorting buffers
on line. In STACS, pages 584–595, 2006.

[19] Jens S. Kohrt and Kirk Pruhs. A constant approximation
algorithm for sorting buffers. In LATIN, pages 193–202,
2004.

[20] Jens Krokowski, Harald Räcke, Christian Sohler, and
Matthias Westermann. Reducing state changes with a
pipeline buffer. In VMV, page 217, 2004.

[21] Harald Räcke, Christian Sohler, and Matthias Westermann.
Online scheduling for sorting buffers. In ESA, pages 820–
832, 2002.

A Concentration Inequality
The following theorem can be found in Chapter 2 in [14].

THEOREM A.1. Let X1, X2, ..., Xn be non-negative inde-
pendent random variables, then we have the following bound
for the sum X =

∑n
i=1Xi.

Pr[X ≤ EX − λ] ≤ exp
(
− λ2

2
∑n
i=1 E(X2

i)

)

B Pseudocode

Algorithm: Accumulate(t)

1: Rule (i)..
2: if There is an element ei ∈ B(t) that is completed by ε by the LP at time t then
3: Switch to color c(ei) for any such element ei
4: end if
5: Rule (ii)..
6: if There is an element ei ∈ B(t) that is α ready at time t then
7: Switch to color c(ei) for any such element ei
8: end if
9: Rule (iii)..

10: if There is a color c where nAc (t) ≥ k/10 then
11: Switch to color c
12: end if
13: Rule (iv)..
14: if There is an element ei ∈ B(t) such that c(ei) ∈M(t) then
15: Switch to color c(ei) for any such element ei
16: Set M(t) = M(t) \ {c(ei)} // unmark color c(ei)
17: end if
18: if For every element ei ∈ B(t), φc(ei) = 0 then
19: Set j∗ = argmaxj |Gj(t)|
20: Let S be the set of colors corresponding to elements in Gj∗(t)
21: For color c let tc be the earliest time after t such that tc ∈ Tc
22: Sort the colors in S, c1, c2, . . . c|S| such that tcl ≤ tcl+1

23: Let j′ be the smallest index such that
∑j′

a=1 n
A
ca(t) ≥

∑|S|
a=1 n

A
ca(t)/2

24: Set φca = 1 for all colors ca where a ≤ j′
25: Add all colors in S to M(t)
26: Go to line (13)
27: else
28: Let Cs(t) contain all colors c where 0 < nAc (t) ≤ k

log3 kγ

29: Let Cb(t) contain all colors c where nAc (t) > k
log3 kγ

30: Let EO(t) be the set of elements that have been processed by at most 1/2 + 2ε in the LP at time t which are
not in B(t), i.e. EO(t) := {ei /∈ B(t) | i ≤ t, ȳi,t ≤ 1/2 + 2ε}.

31: if The LP has processed elements in B(t) corresponding to colors in Cs(t) by a total of at least |EO(t)|/8 by
time t then

32: Rule (v)..
33: For color c let tc be the earliest time after t such that tc ∈ Tc
34: Switch to the color c ∈ Cs(t) at time t such that tc is minimized
35: else
36: Rule (vi)..
37: Switch to a color c ∈ Cb(t) such that nAc (t) ≥ 3

5n
O
c (t) // We will show that such a color exists

38: end if
39: end if

	Introduction
	Preliminaries
	Linear Programming Formulation
	Useful Lemmas and Sampling

	Weighted Reordering Buffer
	Algorithm and Analysis Overview and Intuition
	Algorithm
	Analysis

	Unweighted Reordering Buffer
	Linear Programming
	Overview of Algorithm and Analysis
	Algorithm
	Analysis
	Proof of Lemma ??

	Concentration Inequality
	Pseudocode

