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Abstract

We study trade networks with a tree structure,
where a seller with a single indivisible good is con-
nected to buyers, each with some value for the
good, via a unique path of intermediaries. Agents
in the tree make multiplicative revenue share of-
fers to their parent nodes, who choose the best
offer and offer part of it to their parent, and so
on; the winning path is determined by who finally
makes the highest offer to the seller. In this pa-
per, we investigate how these revenue shares might
be set via a natural bargaining process between
agents on the tree, specifically, egalitarian bargain-
ing between endpoints of each edge in the tree. We
investigate the fixed point of this system of bar-
gaining equations and prove various desirable for
this solution concept, including (i) existence, (ii)
uniqueness, (iii) efficiency, (iv) membership in the
core, (v) strict monotonicity, (vi) polynomial-time
computability to any given accuracy. Finally, we
present numerical evidence that asynchronous dy-
namics with randomly ordered updates always con-
verges to the fixed point, indicating that the fixed
point shares might arise from decentralized bar-
gaining amongst agents on the trade network.

1 Introduction

Motivated by applications to ad exchanges such as the Ya-
hoo!’s Right Media Exchange [Yah, 2007], we consider a
theoretical model of trade networks which take the form of a
rooted tree. In this model, publishers selling impressions can
be connected via a string of intermediary ad-networks [Feld-
man et al., 2010] to advertisers interested in buying these im-
pressions at the leaf nodes. These intermediaries want a cut
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of the surplus generated when a trade facilitated by them oc-
curs. Typically, these cuts are specified as multiplicative rev-
enue shares or cuts on edges that link a pair of entities. In
practice, the value of these revenue shares would be set by
business negotiations between the entities. A natural theoret-
ical question, is what constitutes a reasonable set of values for
these revenue shares. Of course, a complete solution to this
problem would require analyzing a very complex setting with
advertisers and intermediaries optimizing over multiple het-
erogeneous impressions and publishers in a network setting:
in this paper, we take the first steps towards understanding
this problem by analyzing the sale of a single impression.

In our model, each buyer makes an offer to pay its parent
intermediary in the tree a revenue share in the form of some
fraction of its value for the item, i.e., for being matched to the
seller; the parent intermediary chooses the highest offer from
all the buyers it is connected to. Each such intermediary then
makes an offer to its parent, who selects the highest offer, and
so on. Finally, the seller selects the highest offer it receives
from its children in the tree, which determines the winning
buyer. Given the tree structure and buyer values, the revenue
shares completely specify the winning path and all winners’
payoffs.

The two-player bargaining problem widely studied in co-
operative game theory, where the seller and a single buyer
with value v must fairly divide the value v generated from
their trade, is a special case of this setting: in the simplest
version, the bargaining solution is to split the value v equally
amongst the two agents. Now consider a tree network where
the child and parent nodes on each edge bargain about the
revenue share using two-player bargaining. Here, the child
might want to offer a revenue share greater than 1/2 for two
reasons: first, the parent node might have other children to
trade with that this node needs to beat out. Second, and more
unique to our setting, even if the child does beat out its sib-
lings, the parent may not be able to make an adequately large
offer to beat out its siblings higher up in the tree, and so on—
if this happens, neither the parent nor the child belongs to the
winning path, and the value actually realized by the child is
zero. So how much the child offers its parent, accounting for
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both of these effects, will depend on shares elsewhere in the
tree, i.e., the revenue share negotiated on an edge depends on
shares elsewhere in the tree. The key question we consider
in this paper is whether there is a set of mutually consistent
shares on all edges, and if yes, what kinds of outcomes it gen-
erates.

While there has been plenty of work on network bargain-
ing problems building on the seminal work of Kleinberg and
Tardos [2008], the model considered in those papers is unsuit-
able to our problem since the values that are being bargained
on the edges are exogenous. In our setting, the value being
split on an edge is endogenous, depending on the splits else-
where in the tree. In the language of bargaining games, in the
Kleinberg-Tardos model for network bargaining the feasible
set for the bargaining problem on each edge is independent
of shares on other edges (although the disagreement point is
not), whereas in our setting the feasible set for an edge in the
tree bargaining problem changes with shares elsewhere in the
tree.

Such endogenous values on edges arise naturally in bar-
gaining networks arising from trading settings, where there
is competition for goods being sold. We consider the sim-
plest possible version of this new bargaining model, which is
bargaining on a tree. There are certainly many possible gener-
alizations, but the goal of this paper is to analyze the simplest
setting fully. Thus, while many ad-hoc schemes can be pro-
posed to compute these values, in this paper we investigate a
natural bargaining game motivated by the fact that entities in
the trade network negotiate revenue shares, and show that the
outcome corresponding to the unique fixed point of this bar-
gaining game on the trade network has many desirable prop-
erties.

Overview of Conceptual Contributions and Technical Re-
sults. Our key conceptual contribution in this paper is the
formulation of a bargaining game on the trading tree and a
new solution concept for the game based on fixed points of
the bargaining game. In this bargaining game, the nodes at
the endpoints of each edge in the tree negotiate about how
to split the value arriving at the child node according to two-
player egalitarian, or proportional, bargaining [Kalai, 1977],
given the splits elsewhere in the tree (§3). Each such two-
player bargaining game gives us a (non-linear) equation for
the revenue share on that edge, and a fixed point of the game
is a simultaneous solution to this system of equations.

We first show a reduction from tree bargaining to path bar-
gaining (§4). We prove that for any tree and any set of buyer
values, there is a reduced path such that every fixed point of
the system of bargaining equations on the path corresponds
to a fixed point of the system of bargaining equations on the
tree, and vice versa. This reduction to path bargaining allows
us to analyze a smaller set of simultaneous equations, with
one variable for each edge in the path, which we use to prove
the following set of results:

1. Existence and uniqueness: We show that a fixed point to
the bargaining equations always exists; further, the fixed
point is unique.

2. Efficiency: The winner is always a buyer with highest

value. (This is not true with Nash bargaining.)
3. Core: The payoffs given by the fixed point of the bar-

gaining equations belong to the core of the natural coop-
erative game corresponding to our setting.

4. Strict Monotonicity: If the maximum value in the sub-
tree rooted at a node in the winning path increases, the
node’s final payoff strictly increases as well.

5. Computability: The fixed point of the system of bargain-
ing equations can be efficiently computed to any accu-
racy in polynomial time by a centralized algorithm.

Finally, in §6.4, we present exhaustive numerical simulations
indicating that asynchronous dynamics, where at each step a
random edge in the tree renegotiates the share xe given the
current shares in the remaining edges, converges rapidly to
the fixed point– this suggests that decentralized bargaining on
edges should lead to the shares specified by this fixed point.

The outcome corresponding to the fixed point of the bar-
gaining equations can be thought of as a solution concept for
the corresponding cooperative game. A natural question is
the suitability of other solution concepts such as the Shapley
value or the nucleolus for our setting, or using Nash bargain-
ing instead to define the solution concept: all these candidates
seem to have some deficiency compared to our concept. We
refer the interested reader to the full version [Ghosh et al.,
2013] for a discussion.

Techniques. Our results are based on several analytical and
combinatorial techniques. First, we prove several structural
properties that any fixed point solution, if one exists, must
satisfy, which allows us to reduce the general tree bargain-
ing problem to a structurally simpler path bargaining prob-
lem (see §4). Next, for the path bargaining problem, we use
analytic techniques to deduce certain monotonicity properties
of any fixed point solution. These properties directly give us
uniqueness of the fixed point, assuming it exists. To show
existence, we appeal to Brouwer’s fixed point theorem by
constructing a continuous mapping that is closely related to
the bargaining equations. Our proofs of the core and strict
monotonicity properties of the fixed point are again based
on analytic techniques, and the use of an optimal substruc-
ture result for the fixed point which follows from our unique-
ness result. Finally, by refining our monotonicity arguments
quantitatively, we give an algorithm based on binary search
to compute the fixed point to any accuracy, with running time
that is polynomial in the number of nodes and the logarithms
of the accuracy parameter and the gap between the highest
and second highest values.

Related work. The problem we study relates to many well-
studied branches of the economics and computer science lit-
erature. The question of how agents on the winning path
should split the generated value can be thought of as a fair
division or revenue-sharing problem on which there is an ex-
tensive literature, albeit in settings different from ours; for
an overview, see [Moulin, 2004]. The work of Blume et al.
[2007] is perhaps the most similar in spirit to ours from this
literature, though it looks at a different setting where traders
set prices strategically and buyers and sellers react to these
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offers in a general trade network, and investigates subgame
perfect Nash equilibria.

There is much recent work on bargaining in social net-
works, starting with the work of Kleinberg and Tardos [2008].
This work extends the classic two-player bargaining prob-
lem to a network where pairs of agents, instead of bargain-
ing in isolation, can choose which neighbor to bargain with1.
A number of papers since [Kleinberg and Tardos, 2008]
have addressed computational and structural aspects of the
network bargaining problem, as well as extensions to the
model and dynamics; see [Chakraborty and Kearns, 2008;
Chakraborty et al., 2009; Azar et al., 2009; Celis et al., 2010;
Azar et al., 2010; Kanoria, 2010]. While there are similarities
between the network bargaining and our model, there are also
fundamental differences: there, an outcome is a matching on
the network, whereas we seek a path. More importantly, the
values that are being bargained over on the edges are exoge-
nous in their model, while in ours the value being split on an
edge itself depends on the splits elsewhere in the tree: in the
language of bargaining games, the feasible set for the bargain-
ing problem on each edge is independent of shares on other
edges in the network bargaining problem (although the dis-
agreement point is not), whereas the feasible set for an edge
in the tree bargaining problem changes with shares elsewhere
in the tree.

2 Model

There is a seller selling a single item, buyers, each of whom
derives some value from the item, and a number of intermedi-
aries who assist in connecting buyers to the seller. The trade
network between these agents is given by a rooted tree T : the
leaf nodes in T (denoted generically by l) are the buyers, the
root r is the seller, and the internal nodes (denoted generically
by i) are the intermediaries. We use vl to denote leaf l’s value
for the item. The tree structure of the trade network means
that each buyer has a unique path to the seller. An instance
(T,�v) of the tree bargaining problem is specified by the tree
topology T , and the values vl at the leaves of T .

We use e to denote edges and p to denote paths con-
necting the seller and a buyer in T . Given a path p =
{r, i1, . . . , ik, l}, we define the value of the path v(p) = vl.
For any two nodes t1 and t2 let pt1t2 denote the unique path
from t1 to t2 in the tree T . A child node in the tree makes an
offer to its parent, who chooses the highest of these and offers
part of it to its parent, and so on, as described next.

The endpoints of each edge e = (t, s) in T split the value
that arrives at the child node t, specifying what portion of this
value t retains and what portion it is willing to pass up to s.
We use xe, where xe ∈ [0, 1], to denote the multiplicative
split or ‘revenue share’ on edge e: if the potential value2 ar-
riving at t is wt, t keeps wt(1− xe) and passes up wtxe to s.
We use the multiplicative split xe rather than an additive split
for convenience in correctly writing the bargaining equations.

1For a nice survey of the literature on network exchange theory
as well as two-player bargaining, see [Kleinberg and Tardos, 2008;
Chakraborty and Kearns, 2008] respectively.

2We say potential value because this value is realized only if
these nodes belong to the winning path.

Note that the value of xe can, of course, depend on wt, as well
as the splits xe′ on other edges e′ ∈ T .

Given an instance (T,�v), an outcome consists of a winning
buyer l∗, which also specifies the winning path p∗ = pl∗r,
and a split of the value vl∗ amongst the nodes on the winning
path (including the leaf and the root).

The set of revenue shares xe completely specifies the out-
come for an instance (T, v) as follows. Every node in the
tree, when presented with multiple children offering differ-
ent payoffs, chooses to transact with the child that gives her
the highest payoff. Define the value reaching a non-leaf node
s ∈ T , ws, recursively as follows. Set wl = vl for all leaves
l, and let Cs be the set of children of s in T . Then, we have
ws = maxt∈Cs

xtswt.
Let t∗(s) = argmaxt∈Cs

xtswt, with ties broken arbitrar-
ily, denote the ‘winning child’ of the parent node s. The path
p∗ = (r, t∗(r), t∗(t∗(r)), . . . , l∗) from root r to leaf l∗ is the
winning path, and l∗ is the winning buyer. The value vl∗ ,
generated by matching l∗ to r is split among the nodes on p∗
using the revenue shares on edges of p∗. For all other nodes
in the tree, the payoff is zero.

This setting can also be modeled as a cooperative game;
we do this in §6.

3 Bargaining on Trees

Given an instance (T,�v), the splits xe on the edges e ∈ T
completely specify the outcome, namely who the winning
agents are, and what payoffs they receive. How might these
splits xe be determined?

We consider a bargaining-based determination of the
shares xe. We suppose that the agents corresponding to the
endpoint of each edge negotiate according to two-player bar-
gaining about how to split the value arriving at that edge. The
trading tree structure affects the two-player bargaining that
takes place on each edge in two ways: first, the disagreement
point for the parent node is determined by the offers it ne-
gotiates with its other children, and second, the feasible set
of splits depends on the revenue share on the edge connect-
ing the parent node to its parent, because the parent node must
pass up this fraction of the value that it receives from the split.
Note that the revenue shares on these edges all influence each
other, since the split of the value on one edge influences the
bargaining power and therefore the split of the value on a dif-
ferent edge.

A natural choice for xe, then, would be a fixed point to the
system of bargaining equations, that is, a set of splits that are
mutually consistent in the following sense: given the shares
xe′ on all remaining edges e′, the solution ye to the two-player
bargaining problem on any edge e with parameters specified
by the remaining xe′ is precisely xe. It is not clear if such a
fixed point exits, and even if it does, whether the final winner
in a fixed point is the buyer with highest value.

Bargaining equations. The egalitarian, or proportional,
bargaining solution [Kalai, 1977] for the two-player bargain-
ing problem on the edge e = (t, s), given the shares xe′ on all
other edges e′ ∈ T , specifies that the parent and child node
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each receive an equal incremental benefit from participating
in the transaction.

Let Cs be the set of children of s in T . Let s′ be the parent
of s (if s = r, we consider a fictitious parent r′ of r, with the
revenue share on edge (r, r′) always set to 0). Define ws\t =
maxt′∈Cs\t wt′xt′s. This is the maximum value that would
reach s given a set of shares x if t did not exist as a child of s.
Then, the two-player egalitarian bargaining solution on (t, s)
specifies splitting wt, the value reaching node t, according to
xts where xts ∈ [0, 1] satisfies

(1− xts)wt = (1− xss′)
(
max(ws\t, wtxts)− ws\t

)
. (1)

The left-hand side is the incremental benefit to node t from
transacting with s: it receives a payoff of (1 − xts)wt if it
retains the edge with s, and nothing if it cuts off the edge.
The right-hand side is the incremental benefit to the parent
node s: if it retains the edge (t, s), s can choose the highest
payoff from Cs of which it will keep a (1−xss′) share (since
it needs to share this payoff with its parent); if it cuts off the
edge (t, s), it only gets (1 − xss′) times the highest payoff
from the set Cs \ t.

The system of bargaining equations is given by writing (1)
for all edges in the tree. A solution to this system is a fixed
point of the bargaining game on the tree.

Note: It may seem that Equation (1) implicitly assumes
that the parent node s indeed lies on the winning path because
the payoff to s is (1− xss′)(maxt∈Cs

xtswt) only if s lies on
the winning path, and is 0 otherwise. However, we can show
that (see full version [Ghosh et al., 2013] for proof) when x
is fixed point of these equations as opposed to an arbitrary set
of shares, the right hand side is indeed s’s payoff irrespective
of whether or not it lies in the winning path.

4 Reduction to path bargaining

The fixed point computation on the tree can be reduced to
finding a fixed point of bargaining equations on a single path–
the path from the least common ancestor of the highest value
leaves to the root (if there is a unique leaf with highest value,
this is the path from that leaf to the root). For want of space
we omit this reduction.

We summarize the reduction as follows. Let v� = maxl vl
be the maximum value in T . Find the least common ancestor
s0 of the leaves {l1, . . . , lk} with vli = v∗. Remove the entire
subtree rooted at s0, and replace it with a fictitious buyer with
value d0 = v∗ at l∗ = s0.

Let the path from l∗ to the root be of length n; call this
path P ∗. We relabel nodes from l∗ to the root 0, 1, . . . , n (so
that l∗ is 0 and the root is n). For i ∈ [n], ei is the edge
connecting i − 1 to i. We can show (see full version [Ghosh
et al., 2013] for proof) that xe = 1 for all other edges e ∈ T .
So to each node i = 1, . . . , n, we can add a single edge with
xe = 1, to a fictitious buyer— this fictitious buyer’s value
is the largest value excluding v∗ in the subtree rooted at i.
Call this value di; this is node i’s disagreement point, and we
may also think of di as node i’s bid for the item being sold.
We refer to this reduced instance as a path because the only
edges with unknown revenue shares xi lie on a path. Denote
this new path bargaining instance by (P ∗, �d). Note that di is

strictly less than d0 for i = 1, . . . , n. The following theorem
summarizes this reduction:

Theorem 1. Given an instance (T,�v) of the tree bargaining
problem, construct the path bargaining instance (P ∗, �d) as
described above. Then, �x is a fixed point for T if and only if
xe = 1 for e /∈ P ∗, and the shares xe, e ∈ p∗ constitute a
fixed point to the path bargaining problem (P ∗, �d).

5 Existence and Uniqueness of Fixed Point

We now investigate fixed points of the path bargaining prob-
lem, having shown that every tree bargaining instance can be
reduced to a path bargaining instance.

Recall that the value at node 0 is d0 and the remaining val-
ues at the leaves d1, d2, . . . , dn are all strictly less than d0.
The share on edge ei is xi. For notational convenience, we
assume there is a fictitious edge en+1 going up from the root
to a fictitious node labeled n + 1 with share xn+1 := 0. For
i = 0, 1, . . . , n, define wi = d0

∏i
j=1 xj , i.e. the value that

reaches node i.
A fixed point solution �x = 〈x1, x2, . . . xn〉 satisfies the

bargaining equations (2) for all edges i, with xi ∈ [0, 1]: that
is, it simultaneously solves the following system of equations,
one for each edge ei:

(1− xi)wi−1 = (1− xi+1)(xiwi−1 − di). (2)

We note that in replacing the max{xiwi−1, di} term by
xiwi−1 on the right-hand side of the bargaining equation, we
have used the fact (see full version [Ghosh et al., 2013] for
proof) that we must have wi−1xi ≥ di in any fixed point xi

since di < d0.
We can rewrite each bargaining equation in two ways: the

“upward equation” gives xi+1 in terms of xi:

xi+1 = 1− (1− xi)wi−1

xiwi−1 − di
= 1− wi−1 − wi

wi − di
. (3)

The “downward equation” gives xi in terms of xi+1:

xi =
wi−1 + (1− xi+1)di

(2− xi+1)wi−1
. (4)

Now we show that a fixed point to the path bargaining
equations always exists, and is unique. The existence proof
is via Brouwer’s fixed point theorem. We show that the map-
ping f that is (essentially) obtained by simultaneous updates
to the shares on all edges using the downward equations (4) is
a continuous mapping from [0, 1]n to itself. The uniqueness
proof requires more effort. We write two equations for xn in
terms of x1: one by using the upward equations (3) and one
by using the downward equations (4). These equations can be
represented by two curves, and any intersection point of the
two curves leads to a fixed point. We next show that in the
feasible range for the curves, one is strictly increasing, and
the other strictly decreasing; thus there is a unique intersec-
tion point. We now formalize this.

First, we use the upward equations to write x2, x3, . . . , xn

in terms of x1 and �d. However, not every value of x1 ∈ [0, 1]
will give us to values of xi in [0, 1] and wi > di. We will say
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that x1 is feasible if it does lead to xi ∈ [0, 1] and wi > di.
The following lemma (see full version [Ghosh et al., 2013]
for proof) characterizes some monotonicity properties of the
xi’s and wi’s when written in terms of x1.
Lemma 1. If x′

1 < 1 is feasible, then for all x1 ∈ [x′
1, 1),

and for all i = 1, 2, . . . , n:
1. xi ∈ [x′

i, 1)
2. wi > di.
3. dxi

dx1
> 0 (so xi is strictly increasing as a function of x1).

4. dwi

dx1
> 0 (so wi is strictly increasing as a function of x1).

Here, xi, wi (resp. x′
i, w

′
i) etc. are defined by x1 (resp. x′

1)
using the upward equations (3).

Since xi = 1 for all i is a feasible solution, in particular
x1 = 1 is feasible, and Lemma 1 immediately implies the
following structure of the feasible region:
Lemma 2. Let x◦

1 = inf{x1 : x1 is feasible}. Then the fea-
sible region for x1 is either the interval [x◦

1, 1] or (x◦
1, 1], de-

pending on whether x◦
1 is feasible or not.

If x1 is feasible, and x2, . . . , xn, are computed using the
upward equations, then the balance conditions for edges
e1, e2, . . . , en−1 are automatically satisfied. The equation for
en may not be satisfied, however. A fixed point is obtained
precisely when xn satisfies the balance condition for en. Geo-
metrically, equations (3) and (4) for xn define two curves, the
upward curve, and the downward curve respectively. A fixed
point is obtained at any intersection point of the two curves
for xn in the feasible region of x1. The following lemma (see
full version [Ghosh et al., 2013] for proof) gives monotonic-
ity properties of the two curves:
Lemma 3. In the feasible region for x1, the upward curve
for xn is strictly increasing, and the downward curve for xn

is strictly decreasing.
We immediately get our uniqueness result:

Theorem 2 (Uniqueness). If a fixed point to the equations
(2) exists, then it is unique.

Proof. This is immediate from Lemma 3: a strictly increasing
and strictly decreasing curve can intersect in at most 1 point.

Finally, using Brouwer’s fixed point theorem we can show
(see full version [Ghosh et al., 2013] for proof) that a fixed
point always exists:
Theorem 3 (Existence). A fixed point to the bargaining
equations (2) exists.

Briefly, we consider the following function f : [0, 1]n →
[0, 1]n, which represents a simultaneous update of the shares
vector �x on all edges using the downward equations:

fi(x) = min

{
wi−1 + (1− xi+1)di

(2− xi+1)wi−1
, 1

}
,

where wi−1 = d0
∏i−1

j=1 xj as usual, xn+1 := 0, and we make
the convention that when wi−1 = 0, the first expression in
the minimum above is +∞, so that fi(x) = 1. The above
function is continuous, and its domain [0, 1]n is a convex,

compact set. By Brouwer’s Fixed Point Theorem, f has a
fixed point. The main work in the proof of Theorem 3 then
consists in showing that any fixed point of f is a fixed point
to the bargaining equations (2).

6 Properties of the Fixed Point

6.1 Core Property

The setting we study is naturally modeled as a cooperative
game (T, V ), where the agents are the nodes in the trad-
ing tree T , and the coalition values V are defined as fol-
lows. The value of the coalition consisting of nodes on a path
p = (l, i1, . . . , ik, r) is V (p) = vl. A coalition cannot gen-
erate value unless it contains a path from a leaf to the root;
if it does contain such paths, its value is the maximum value
amongst these paths: V (S) = maxp∈S V (p), and V (S) = 0
if S does not contain any such path p. Note specifically that
V (S) = 0 for all sets that do not contain the seller r, and that
V (T ) = V (p∗) = v∗.

The core [Leyton-Brown and Shoham, 2008] of a cooper-
ative game (N,V ) is defined as a set of nonnegative payoff
vectors (u1, . . . , uN ) with

∑
ui = V (N) such that every

coalition’s total payoff is at least as much as the value it gen-
erates:

∑
i∈N ui ≥ V (S) ∀S. The core consists of the set

of payoff vectors that are not blocked by any coalition which
can increase its total payoff by splitting from the grand coali-
tion and playing amongst themselves — an outcome not in
the core is unlikely to occur in practice since there is a coali-
tion that can benefit by deviating. In general, the core of a
game can be empty, but our particular cooperative game does
have a non-empty core, and in fact, our fixed point lies in the
core. We can show the following theorem (see full version
[Ghosh et al., 2013] for proof):

Theorem 4. The payoff vector u∗ belongs to the core of
(T, V ).

6.2 Monotonicity

Monotonicity, which means that increasing the bargaining
power of an agent increases his payoff, is a desirable prop-
erty for a solution concept to our game. We establish a strict
monotonicity property for the payoff to all nodes on the win-
ning path in terms of their bargaining power. Since we are
only interested in nodes on the winning path, we can restrict
ourselves to discussing reduced path instance P ∗.3 (We note
that strict monotonicity cannot hold for nodes outside the
winning path since the outcome itself must change for these
nodes to receive a nonzero payoff; however, a weak mono-
tonicity condition trivially holds.) We can prove the follow-
ing strict monotonicity property (see full version [Ghosh et
al., 2013] for proof):

Theorem 5. Consider the path bargaining problem. If any di
is increased (but is still kept less than d0) while the remaining
di′ are unchanged, the payoff of i strictly increases.

3When there is more than one leaf with value v∗, P ∗ does not
contain all nodes on the winning path, but the strict monotonicity re-
sult extends easily to that case since an increase in bargaining power
for a winning node not in P ∗ means that there is now a leaf with
value greater than v∗.
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6.3 Computability

We know that there exists a unique fixed point, x�, of the
bargaining equations. We now turn to computability of the
fixed point. Note that since the shares affect the bids multi-
plicatively, the fixed point solution is scale-free: if we scale
all bids by the same amount, the fixed point stays the same.
So to simplify calculations, we assume that the maximum bid,
d0, is normalized to 1, and all other bids di are less than 1. We
can give a polynomial-time algorithm to compute an ε-fixed
point: i.e., a set of shares such that all bargaining equations
are satisfied within an additive ε error. For the original un-
scaled bids where the maximum bid may not be equal to 1,
the additive error gets scaled by the maximum bid as well.

We now state our theorem (see full version [Ghosh et al.,
2013] for proof) regarding computability of an approximate
fixed point. It is given in terms of a parameter γ = min{1−
maxi>0{di}, 1

n+2}, which is essentially how close the sec-
ond highest bid is to the maximum. Note that the dependence
on the error parameter ε and γ is only poly-logarithmic. In
practice, the algorithm converges extremely fast.

Theorem 6. There is an algorithm that, for any given ε > 0,
computes an ε-fixed point to the bargaining equations (2) in
poly(n, log(1/γε)) time.

The algorithm essentially works by running a binary search
to find the intersection point of the upward and downward
curves for xn. The parameter γ is important in giving bounds
on the number of iterations needed in the binary search to ob-
tain the desired accuracy, essentially by obtaining quantitative
versions of the arguments of §5.

6.4 Dynamics

We have already seen in the previous sections that the so-
lution prescribed by the fixed point of the bargaining equa-
tions has several desirable properties. A natural question is
whether the agents on the tree would, without help from a
centralized authority, be able to converge to this fixed point.
We now present numerical evidence that this is indeed likely.
Our experiments suggest that a natural dynamics consisting of
asynchronous updates— where in each step a random edge e
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Figure 1: Asynchronous dynamics convergence: accuracy vs.
average number of rounds to achieve accuracy.

updates xe according to the two-player egalitarian bargaining
equation (1), using the current values of xe′ on other edges—
indeed converges to the fixed point.

We run 10, 000 tries of the following experiment: gener-
ate random bids at the leaves of a depth-8 balanced binary
tree with 256 leaves and 510 edges; this is a convenient size
that permits 10, 000 tries to be run in a few hours. The bids
are drawn from the lognormal distribution e(1+N) where N
is the normal distribution with zero mean and unit variance.
We initialize all 510 edge multipliers to the arbitrary value
0.99, and then repeatedly re-negotiate the edge multipliers
one at a time in a random order: the negotiation for each edge
consists of solving equation (2) for that edge (while freezing
the values of all other multipliers). More specifically, binary
search down to an tolerance of 1.0 × 10−15 is used to solve
the equation. The edge updates are organized into “rounds”
during each of which every edge is individually updated in a
random order specified by a different random permutation for
every round.

We continue iterating until the solution is close enough to
the fixed point computed using the reduction to the path and
the algorithm in §6.3. The efficient fixed point finding al-
gorithm uses the reduction of §4 to convert the tree problem
to a path problem. This path problem is then solved using
a heuristic program (not described here) that uses the algo-
rithm of §6.3 as a subroutine and computes the 8 multipliers
to a nominal accuracy of 2.0 × 10−16. The multipliers for
the original tree are obtained by copying those 8 values onto
the winning path and then setting the 502 multipliers lying on
side branches to the value 1.0.

Every one of the 10,000 tries converged to the desired tol-
erance. The plot in Figure 1 shows the average convergence
rate summarizing those 10,000 tries. It is clear that the shares
always converge to within the desired accuracy at a reason-
able rate. While we do not include the figures here, we also
observed similar convergence behavior on trees with differ-
ent structures and sizes, as well as for several different bid
distributions.

7 Further Directions

In this paper, we defined a bargaining game on trees moti-
vated by a fair division question in display ad exchanges, and
investigated the properties of its fixed point. There are a num-
ber of interesting directions for further work. The most inter-
esting open question is proving the convergence of dynamics,
since numerical simulations strongly suggest that even asyn-
chronous dynamics converge to the fixed point. Another in-
teresting direction is that of a Bayesian model for values—
suppose instead of values vi at the leaves, we had distribu-
tions of values. The problem of solving the bargaining equa-
tions to set the shares xe in this case is a very meaningful one,
but also one that appears to be technically extremely chal-
lenging. Finally, there are questions related to extending the
trade network model itself: for example, in this paper, we
only consider a single seller and a tree topology. The ques-
tion of how to model and solve for multiple sellers, and how
the fixed point behaves if the underlying trade network is a
directed acyclic graph instead of a tree, are also interesting
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directions for further work.
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