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Abstract

We consider the matroid intersection cover problem. This is a special case of set cover where the sets are derived from the inter-
section of matroids. We introduce a technique for computing matroid intersection covers. We give polynomial-time algorithms
to compute partition decompositions for matroids that commonly arise in combinatorial optimization problems. We then give a
polynomial-time algorithm for computing matroid intersection covers given the partition decompositions of the matroids. Combin-
ing these algorithms, we obtain an O(1)-approximation algorithm when each of the O(1) matroids is of a standard type.
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1. Introduction

In the canonical set cover problem the input is a set system
M = (X,I), where X is a collection of n elements, and I ⊆ 2X

is a collection of subsets of X. A sub-collection S ⊆ I is said to
be a cover of Y ⊆ X if each element of Y is in at least one set in
S. A feasible solution is a sub-collection S ⊆ I that covers X.
The objective is to minimize |S|. The optimal objective value is
called the cover number of M, which we denote as α(M). In
this paper we are interested in the following special case of the
set cover problem, which we call the matroid intersection cover
problem:

Matroid Intersection Cover Problem: The input
is a collection of k matroids M1 = (X,I1),M2 =

(X,I2), . . .Mk = (X,Ik). This input represents the
set system M = (X,∩k

i=1Ii). A feasible solution
S ⊆ ∩k

i=1Ii is a collection of sets that covers X.
Each set in S must be independent in every ma-
troid. The objective is to minimize |S|.

This problem can alternatively be viewed as the Matroid
Coloring Problem, where one can color elements with the same
color if they are independent in all the given matroids and the
goal is to color all elements with the minimum number of col-
ors.

In this paper we consider the approximation ratio achievable
by polynomial-time algorithms for natural matroid intersection
cover problems in which the number k of matroids is small.
In particular, we are interested in determining whether one can
achieve O(1)-approximation when k is a constant, which would
be better than what one can achieve for general set cover in-
stances, assuming P , NP. Before stating our results, let us
give some background, and discuss the relationship of matroid
intersection cover with other matroid problems.

1.1. Background

Matroid intersection cover is a natural extension of the ma-
troid intersection problem, as well as a generalization of the
matroid cover problem (also known as the matroid partitioning
problem) [11, 25]. The matroid cover problem is exactly our
problem, matroid intersection cover, when k = 1.

The maximum coverage version of matroid intersection has
been more widely studied in the algorithms community begin-
ning with the work of Nemhauser and Wolsey [20]. In this
problem, the goal is to find a single set of maximum size that is
independent in each of the k matroids. The natural greedy algo-
rithm has approximation ratio k [24]. An approximation ratio of
k − 1 + ε is achievable using local search [18]. No polynomial-
time algorithm can have approximation ratio O( k

log k ) unless
P = NP [20]. The natural repeated application of these maxi-
mum coverage algorithms to matroid intersection cover would
yield approximation ratios that are O(k log n). Extensions to
this maximum coverage problem to other submodular maxi-
mum coverage problems are considered in [24, 18].

The natural greedy algorithm will compute the maximum
profit independent set in a matroid. In fact, this is exactly equiv-
alent to a hereditary set system being a matroid [28, 22]. Ed-
monds showed that computing the minimum cover of a single
matroid can be reduced in polynomial-time to computing the
maximum independent set in the intersection of two matroids,
which in turn can be computed in polynomial time [11, 25].
One can compute in polynomial-time the optimal matroid in-
tersection cover for two partition matroids, since this is just
the problem of edge coloring a bipartite graph [25]. The
cover number of the intersection of two arbitrary matroids is
at most twice the larger of the cover numbers of the two ma-
troids [2, Theorem 8.9]; This proof is non-constructive. Ma-
troid cover intersection is related to Rota’s basis conjecture
[12], which corresponds to the exact (non-approximate) ver-
sion of our problem when one matroid corresponds to a par-
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tition matroid and the other is a linear matroid. It is known that
matroid intersection cover is NP-Hard for k ≥ 3. Indeed, it is
known that it is NP-hard to determine if a 3-partite hypergraph
of degree 3 is 3 edge colorable [21]. This corresponds to the
matroid intersection cover problem when k = 3, the matroids
are three partition matroids and the goal is to determine if the
cover number is 3. As an immediate consequence, it is also
NP-hard to approximate the cover number for three partition
matroids within a factor of 4/3− ε. It is also known that a super
polynomial number of independence queries are required when
k = 2 for two arbitrary matroids when independence of a set is
given via an oracle [5].

Matroid intersection cover is related to scheduling coflows
in a network. In coflow scheduling problems there are some
constraints on the flows that may be simultaneously routed
in the network. Often these constraints are matroid related.
Chowdhury and Stoica [8] cited information gathering at a cen-
tral location in the network as a common communication pat-
tern. Motivated by this, Im et al. [13] considered the prob-
lem of scheduling flows with gammoidal (and more generally
matroidal) constraints. The bulk of the algorithmic literature
on co-flow scheduling has been on scheduling matchings in a
bipartite graph [23, 15, 14, 3, 1]. Bipartite matchings can be
expressed as the intersection of two partition matroids. The
version of the problem with the makespan objective is a special
case of matroid intersection cover problem where k = 2 and
both matroids are partition matroids.

1.2. Our Results
Our motivation for considering approximation algorithms

for matroid intersection cover was sparked by our interest in
more general coflow scheduling problems and the observation
that other natural algorithmic problems can be also modeled as
matroid cover intersection problems. Some examples are given
in Section 5.

We give a general algorithmic technique for computing ma-
troid intersection covers. The first step of this algorithmic tech-
nique is to compute what we call a partition decomposition of
each of the matroids. Roughly speaking a partition decompo-
sition of a matroid M is a partition of the elements into sets of
size O(α(M)) such that any set, that contains no more than one
element from any partition, can be covered by b = O(1) inde-
pendent sets. A partition decomposition generalizes the con-
cept of a weak map into a partition matroid [22]. A weak map
from a general matroid M to a partition matroid is a partition
decomposition in which b = 1. Except for gammoids, all of our
decompositions will be weak maps.

This paper gives polynomial-time algorithms to compute
such partition decompositions for many of the types of ma-
troids that commonly arise in combinatorial optimization prob-
lems. Namely, partition matroids, graphic matroids, laminar
matroids, transversal matroids, and gammoids. We then give
a polynomial-time algorithm for computing matroid intersec-
tion covers given the partition decompositions of the matroids.
Combining these algorithms, we obtain an O(1)-approximation
algorithm when each of the O(1) matroids is of a standard type.

Formally, we define a partition decomposition as follows.

Definition 1. A matroid M = (X,I) is (b, c)-decomposable if X
can be partitioned into sets X1, X2, .., Xt such that:

• For all i ∈ [t], it is the case that |Xi| ≤ c · α(M).

• Any set Y = {r1, . . . , rt}, consisting of one representative
element ri from each Xi, can be covered by b sets from I.

A class of matroids is partition decomposable if there exists
constants b and c such that every matroid in that class is (b, c)-
decomposable.

Although several types of matroid decomposition exist [26],
this type of matroid decomposition does not seem to have been
previously considered. We believe this type of decomposition
is of independent interest, as it seems likely it will be useful for
related problems.

Section 3 is devoted to proving the following theorem:

Theorem 2. There are polynomial-time algorithms to compute:

• A (1, 2)-decomposition of a graphic matroid given the un-
derlying graph as input.

• A (1, 3)-decomposition of a laminar matroid given the
laminar matroid as input.

• A (1, 1)-decomposition of a transversal matroid given the
underlying bipartite graph as input.

• A (18, 1)-decomposition of a gammoid given the underly-
ing directed graph as input.

For graphic, transversal and laminar matroids, the construc-
tion of the partition can be constructed from the natural under-
lying structure of the matroid. For gammoids, the construction
of the partition can be done by leveraging known results on un-
splittably routing flow to a single source [16].

Section 4 will be devoted to proving the following theorem:

Theorem 3. Consider k matroids M1,M2, . . .Mk defined over
a common ground set X, where matroid Mi has cover number
αi. There is a polynomial-time algorithm that, given a (bi, ci)-
decomposition of each matroid Mi, computes a cover of size at
most

∏
i∈[k] bi ·

(
1 +

∑
i∈[k](ciαi − 1)

)
, thus with cover number at

most
(∏

i∈[k] bi

)
·
(∑

i∈[k] ci

)
α∗ where α∗ = maxi∈[k] αi.

As α∗ is an obvious lower bound to the optimal cover num-
ber, an immediate consequence is that this algorithm has ap-
proximation ratio at most

(∏
i∈[k] bi

)
·
(∑

i∈[k] ci

)
. Conceptually

the algorithm is based on a natural greedy algorithm for hyper-
edge coloring k-partite hypergraphs, and the bound on the cover
number follows directly from a simple analysis of the approxi-
mation ratio of this coloring algorithm.

Combining Theorem 2 and Theorem 3, we obtain the fol-
lowing corollaries:

Corollary 4. For instances of the matroid intersection problem
consisting of k matroids that are either graphic, laminar, or
transversal matroids, there is a polynomial-time algorithm that
has approximation ratio O(k).
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Corollary 5. For instances of the matroid intersection prob-
lem consisting of k matroids that are either graphic, laminar, or
transversal matroids and ` matroids that are gammoids, there
is a polynomial-time algorithm that has approximation ratio
O((k + `) · 18`).

In Section 5 we explain the approximation ratios that our
technique yields for some particular matroid intersection cover
problems.

2. Related Results

Set Cover is a canonical problem in the field of approxima-
tion algorithms [27, 29]. The greedy algorithm has an approx-
imation ratio of Hn ≈ ln n on n element instances [27, 29], and
this is essentially optimal assuming P , NP [10]. Polynomial-
time algorithms with approximation ratio o(log n) are known
for two types of special instances. The first type is where
some parameter is known to be small. An example of this type
is vertex cover, where no element can be in more than two
sets. Many different 2-approximation algorithms are known
for vertex cover [27, 29]. The second type is geometric
based/inspired. An example of this type is covering points in
the plane by a minimum number of discs, for which a polyno-
mial time approximation scheme is known [19]. As another ex-
ample, it is known that constant approximation is possible if the
set system has bounded VC dimension [7]. VC dimension is at
least arguably a geometrically inspired concept. One interesting
aspect of the results in this paper is that they give o(log n) ap-
proximations for a different type of natural set cover instances.
There are of course multitudinous papers dealing with gener-
alizations and variations on set cover, e.g. weighted covers,
capacitated covers, and multicovers.

Computing unsplittable flows in single-source networks is
considered in [16, 17, 9, 4], with the main take-away mes-
sage being that for many natural problems the optimal objec-
tive value does not degrade too much if flows are required to be
routed unsplittably. Our partition decomposition of gammoids
is based on techniques from [16].

Recently and independently of this work, [6] gave upper
bounds on the cover number of the intersection of two matroids
for common combinatorial matroids by giving partition decom-
positions. In particular, among other results, [6] also gave a
(1, 1)-decomposition of traversal matroids, and a (1, 2 − 2/α)-
decomposition for graphic matroids. The main result in [6] is
a proof that gammoids are (1, 2 − 2/α)-decomposable. The re-
sults in [6] are not explicitly algorithmic. Although presumably
many of the existential proofs could be readily converted into
efficient algorithms, this is not true for gammoids as [6] states
finding an efficient algorithm to compute such a partition de-
composition of a gammoid as an open problem.

3. Computing Partition Decompositions

In this section, we show how to compute (O(1),O(1))-
decompositions for many types of matroids that commonly
arise in the combinatorial optimization literature. This includes

graphic matroids, transversal matroids, laminar matroids, and
gammoids.

3.1. Graphic Matroids are (1, 2)-Decomposable

We begin by considering the graphic matroid. Let M be a
graphic matroid on a ground set X. In this case, X corresponds
to edges of an undirected graph G = (V, X). Independent sets
of the matroid M correspond to acyclic subsets of edges. Let
α := α(M) be the value of the minimum cover. The goal of this
section is to show the following theorem.

Theorem 6. Graphic matroids are (1, 2)-decomposable and
this decomposition can be computed in polynomial time.

To prove the theorem, we begin by defining the decomposi-
tion. Consider the graph G. Let v be the vertex in G that has the
smallest degree that is non-zero. Let Xv be a set in the decom-
position that contains all of the edges adjacent to v. Remove
v and its adjacent edges from G. Then recurse on the resulting
graph to obtain the next set in the partition. The procedure stops
when there are no remaining edges. Notice that the sets Xv con-
structed are a partition of the ground set X and these correspond
to the sets of the decomposition.

Our goal is to show that this is a valid decomposition. To
do so, we first show that as edges are removed from the graph,
the size of the optimal cover of the remaining edges never in-
creases.

Lemma 7. Consider any undirected graph G = (V, X) and any
vertex v ∈ V. Let M be the graphic matroid corresponding to
G. Let G′ be the graph obtained from G by deleting a vertex v
and all of its adjacent edges and let M′ be the corresponding
graphic matroid for G′. Then we have α(M′) ≤ α(M).

Proof. Let X∗1, X
∗
2, . . . X

∗
α denote the optimal cover of M. Con-

sider removing the edges adjacent to v from the sets X∗. The
resulting sets are a cover of M′ and are independent in M′. This
is because each set X∗i will correspond to an acyclic set of edges
in G′ since they were acyclic in G.

We can use the previous lemma to show every part has size
at most 2α.

Lemma 8. Every partition Xv constructed has size at most 2α.

Proof. Consider any set Xv and let G′ = (V ′, X′) be the graph
that remains in the algorithm just before Xv is constructed. We
know that the edges of G′ can be partitioned into at most α sets
of acyclic edges by Lemma 7. Notice that any acyclic subgraph
of G′ has at most |V ′|−1 edges. This implies that G′ has at most
α(|V ′| − 1) edges and the aggregate degrees of the vertices is at
most 2α(|V ′| − 1). By definition of the algorithm v is the mini-
mum degree vertex in V ′ and therefore has at most 2α adjacent
edges. Hence |Xv| ≤ 2α.

To complete the proof of the theorem, it will be shown that
any set S containing up to one element from each partition Xv

is independent in the original matroid M. This is established in
the following lemma.
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Lemma 9. Let Xv1 , Xv2 , . . . Xv` be the partition of X constructed
by the algorithm. For any set S such that |S ∩ Xvi | ≤ 1 it is the
case that S is an acyclic set of edges in G.

Proof. For the sake of contradiction, suppose S contains a cy-
cle C for some S such that |S ∩ Xvi | ≤ 1. Assume wlog that
Xv1 , Xv2 , . . . Xv` were constructed in this order. Notice the ver-
tices of the cycle will be the vertices vi where |Xvi ∩ S | = 1. If
edge (u, v) is part of C, then either (u, v) ∈ Xu or (u, v) ∈ Xv.
Since C can collect at most one edge from each partition, this
implies that either (vi(1), vi(2)) ∈ Xvi(1) , (vi(2), vi(3)) ∈ Xvi(2) , ...,
(vi(|C|), vi(1)) ∈ Xvi(|C|) or (vi(1), vi(2)) ∈ Xvi(2) , (vi(2), vi(3)) ∈ Xvi(3) , ...,
(vi(|C|), vi(1)) ∈ Xvi(1) for some 1 ≤ i(1) < i(2) < ... < i(|C|) ≤ `.
For the first case, we have a contradiction since Xvi(1) was con-
structed before Xvi(|C|) , meaning that Xvi(|C|) has no edges adjacent
to vi(1). For the second case, we obtain a similar contradic-
tion.

Theorem 6 follows immediately from Lemmas 8 and 9.

3.2. Transversal Matroids are (1, 1)-Decomposable

This section shows that transversal matroids are (1, 1)-
decomposable. Let M be a transversal matroid defined over
a ground set X. In this case, X corresponds to one side of a
bipartite graph G = (X ∪ Y, E). A subset of X is independent
if there exists a matching of G that that matches all vertices in
X. A partition matroid is a special case of a transversal matroid
in which there is a partition X1, . . . Xk of the ground set X and
a bound ui for each Xi. A collection of elements is then inde-
pendent if it does not contain more than ui elements from any
Xi.

Theorem 10. Transversal matroids are (1, 1)-decomposable
and this decomposition can be computed in polynomial time.

Proof. Adopting the above notation, let α := α(M) be the mini-
mum cover of X using sets independent in M. Let X∗1, X

∗
2, . . . X

∗
α

denote a minimum cover of all of the elements in X such that
each of these sets is independent in M. Assume wlog that the
sets are disjoint. For each set X∗i let E∗i be a matching saturating
X∗i in G. Let E∗ = E∗1 ∪ E∗2 ∪ . . . E

∗
α be the subset of E edges

used in the matchings. Let the graph G∗ be the graph induced
by E∗. The partition will be induced by the vertices in Y and
their neighbors in G∗ that are in the ground set X. In particular,
let Xv be all elements in X that are adjacent to v ∈ Y in G∗. This
completes the definition. Notice that these sets are computable
in polynomial time since the minimum cover of M and E∗ are
computable.

We need to show two properties to complete the proof. The
first property is that |Xv| ≤ α. This follows because the con-
struction of the graph G∗ ensures that every vertex has degrees
at most α since E∗ consists of α matchings. The second prop-
erty that needs to be shown is that every set S is independent in
M if |S ∩ Xv| ≤ 1 for all v ∈ Y . Indeed, consider any such set
S . The definition of S implies that each vertex in S is adjacent
to a unique vertex in G∗. Thus, S must correspond to a subset
of X that can be saturated in a matching of G and therefore S is
independent in M.

3.3. Laminar Matroids are (1, 3)-Decomposable

In this section we show that laminar matroids are (1, 3)-
decomposable. Let M be a laminar matroid on a ground set
X. Let F be the laminar family of subsets of X associated
with the matroid – the family is said to be laminar if for any
A, B ∈ F , we have A ∩ B = ∅, A ⊆ B, or B ⊆ A. Further each
set A ∈ F is associated with a positive integer b(A), which is
called the capacity of the set. A set I ⊂ X is independent in M
if |I ∩ A| ≤ b(A) for all A ∈ F .

The goal of this section is to show the following theorem.

Theorem 11. Laminar matroids are (1, 3)-decomposable and
this decomposition can be computed in polynomial time.

We say that a set A ∈ F is a leaf set of the family F if there
is no B ∈ F such that B ⊂ A. For any non-leaf set A ∈ F ,
we can assume wlog b(A) ≥ 2; otherwise, we can remove any
subsets of A fromF as they are redundant. If there is an element
x in X that doesn’t belong to any leaf set, we create a singleton
set {x} with capacity 1 and add it to the family without loss of
generality. We also assume that |X| > 3α since if |X| ≤ 3α, then
the set X itself is an obvious (1, 3)-decomposition of M.

We now describe how we obtain a (1, 3)-decomposition of
M. Let α := α(M) be the min cover size of M.

1. For each leaf set A ∈ F if |A| ≤ α, set b(A) to 1. Oth-
erwise, partition A into disjoint subsets A1, A2, ..., Ak so
that |A1| = |A2| = ... = |Ak−1| = α and |Ak | ≤ α. Let
b(A1) = b(A2) = ... = b(Ak) = 1. Add these leaf sets to
F .

2. Linearly order elements x1, x2, ..., xn so that for any 1 ≤
u < v < w ≤ n, if xu, xw ∈ A, where A ∈ F , then xv ∈ A.

3. From left to right, we repeat the following: collect the
smallest possible collection of leaf sets and take the union
of them, so that the union has least 2α elements. Let the
resulting unions, X1, ..., Xt be our decomposition of X.

The following observation is immediate from the algorithm
definition since after partitioning leaf sets, every leaf set has
cardinality at most α.

Observation 12. For all i ∈ {1, 2, ..., t}, 2α ≤ |Xi| < 3α.

To show X1, X2, ..., Xt is a valid (1, 3)-decomposition of M,
it suffices to show the following.

Lemma 13. For any I ⊆ X such that |I ∩ Xi| ≤ 1 for all i ∈ [t],
we have |I ∩ A| ≤ b(A) for all A ∈ F .

Proof. For the sake of contradiction suppose |I ∩ A| > b(A) for
some A ∈ F that we didn’t create. Let X j(1), X j(2), ..., X j(|I∩A|)
be the sets that include an element from I ∩ A – note that the
number of such sets is exactly |I ∩ A| since I can have at most
one element from each partition. We consider three cases and
show a contradiction for each case.
Case (i) b(A) ≥ 3. Because of the second and third steps,
X j(2), ..., X j(|I∩A|−1) must be subsets of A. Thus, |A| ≥∑

i∈[|I∩A|−1]\{1} |X j(i)| ≥ 2α · (b(A) − 1) by Observation 12 and
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due to the assumption that |I ∩ A| > b(A). However, we have
|A| ≤ α · b(A) since otherwise the min cover size of M would
be greater than α. Combining these two inequalities gives us
b(A) ≤ 2, which is a contradiction.
Case (ii) b(A) = 2. As before, we have X j(2) ⊆ A. Further,
A ∩ X j(1) , ∅. By Observation 12, we have |A| > 2α. This is a
contradiction since b(A) = 2.
Case (iii) b(A) = 1. In this case, A ⊆ Xt′ for some t′ ∈ [t].
This is because A must be a leaf set that we didn’t create. Since
|I ∩ Xt′ | ≤ 1, we have |I ∩ A| ≤ 1, which means I didn’t violate
A’s capacity.

Thus, we have shown Theorem 11.

3.4. Gammoids Are (18, 1)-Decomposable

This section shows that gammoid matroids are (18, 1)-
decomposable. Gammoids are defined as follows. Let M be
a gammoid defined on the ground set X of n elements. The
matroid is associated with an directed graph G = (V, E) with
a sink t ∈ V . The ground set of X is a collection of sources,
{s1, . . . sn} ⊆ V . A subset S ⊆ X is independent in the matroid
if there is routing of a unit of flow from each of the sources in
S to the given sink t so that no more than one unit of flow is
routed over any edge.

We note that this definition of gammoid is equivalent to an-
other definition of gammoid based on vertex-disjoint paths. To
see the equivalence, we assume wlog that every source has no
incoming edges and has only one out-going edge by adding
dummy edges: if si is a source vertex, we can add an edge
(s′i , si) and consider s′i as the new corresponding source. We
first consider the reduction from vertex-disjoint-path gammoids
to edge-disjoint-path gammoids, where we split each vertex v
into vin and vout and connect to vin all vertices adjacent to v and
vout to all vertices adjacent from v, and connect vin to vout. It
is easy to see that each path before the splitting has a uniquely
corresponding path after the splitting, and two paths before the
splitting are vertex-disjoint if and only if the corresponding
paths are edge-disjoint after the splitting. The other direction
can be shown by replacing each vertex v with two sets of ver-
tices S (v)+ and S (v)− where |S (v)+| = δ+(v) and |S (v)−| = δ−(v).
There is a complete bipartite graph from vertices in S (v)− to
vertices in S (v)+. Each edge (v, u) is replaced with an edge go-
ing from a unique vertex in S +(v) to a unique vertex in S −(u).

Theorem 14. There is a polynomial time algorithm to compute
(18, 1)-decomposition of a gammoid M given the representation
(G, t, X) as input.

Proof. Lemma 6.8 in [16] shows how to compute in polynomial
time a collection {T1, . . .Th} of reverse arborescences rooted
at vertices {`1, . . . `h}, and a partition X = {X1, . . . Xh} of the
sources with the following properties:

• Each Xi has size at most α(M).

• For all i, all sources in Xi are connected to an edge in Ti.

• No edge in G is contained in more than two Ti.

• There is a feasible fractional routing F of one unit of flow
from each `i to t such that the flow through any edge is at
most 7.

The collection X will be our partition decomposition.
Now consider a collection S of sources consisting of at most

one arbitrary source si from each Xi. There must then be a
fractional routing of one unit of flow from each source in S to
t such that the flow through any edge is at most 9. One way to
achieve this is to route flow from each si to `i within Ti and then
from `i to the sink t following F. Each edge can have most two
units routed through it due to the initial routing within Ti, and
at most 7 units routed through it due to F.

Lemma 5.5 in [16] shows how to transform a fractional
routing with maximum flow c on any edge into a collection of
2c integral routings that collectively route all the flow, and such
that no edge has more than one unit of flow routed through it
in each of the 2c routings. (Lemma 5.5 in [16] is only stated
for undirected graphs, but it is noted later, right before Theo-
rem 6.14, that it still holds for directed graphs.) Applying the
lemma to our fractional flow, we get a decomposition of S into
18 independent sets.

We note that using techniques from [16] one can also show
that gammoids that arise from undirected graphs are (6, 1)-
decomposable.

4. Covering Partitioned Matroids

The purpose of this section is to prove Theorem 3. Let Pi be
a (bi, ci)-decomposition of matroid Mi. Consider the k-partite
k-uniform hypergraph H = (V1, . . .Vk, E) where there is one
vertex in each Vi corresponding to each partition in Pi, and one
hyperedge e corresponding to each element e in the ground set
X. Hyperedge e will be incident to the vertex in Vi correspond-
ing to the partition to which e belongs in Pi. Define a proper
coloring of the hyperedges to be an assignment of colors to the
hyperedges such that no pair of hyperedges incident on a com-
mon vertex are assigned the same color. Note for all i ∈ [k]
that by the definition of (bi, ci)-decomposability the hyperedges
colored a particular color in a proper coloring of H can be de-
composed into bi independent sets in Mi. And thus for all i ∈ [k]
the color classes in a proper coloring of H correspond to a cover
of X by sets that each be decomposed into bi independent sets
in Mi.

Our algorithm will first color the hyperedges in H in a
greedy fashion. That is, the hyperedges are considered in ar-
bitrary order, and hyperedge e is assigned the first color not
already assigned to any edge that is incident on a common ver-
tex with e. The number of colors used by this greedy algorithm
will be at most one more than the maximum number of hyper-
edges that can be incident on a common vertex with a particular
hyperedge e. This is at most

∑
i∈[k](ciαi − 1). Thus this greedy

algorithm produces a hyperedge coloring that can be interpreted
as a cover C of X of at most 1 +

∑
i∈[k](ciαi − 1) sets.

Then for each S ∈ C and each matroid Mi, our algorithm
uses any polynomial time algorithm for matroid covering to
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partition each set S into a collectionDS
i = {DS

i (1), . . . ,DS
i (b j)}

parts such that each part DS
i ( j) is independent in Mi. Now let

V be the collection k dimensional vectors where component i is
an integer in the range [1, bi]. So the cardinality of V is

∏k
i=1 bi.

Then for all v ∈ V , let S v be the collection of s ∈ S such that for
all i ∈ [k] it is the case that s ∈ DS

i (v(i)), where v(i) is compo-
nent i of v. In other words, S v is the collection of all elements
of S that are in part v(i) in DS

i . Our final cover will be the
collection of all such S v, namely:

{S v | S ∈ C and v ∈ V}

5. Applications of Our Techniques

The following problems can all be modeled as matroid in-
tersection cover problems. We also remark that minimizing
makespan of a co-flow of jobs that arrive all at the same time is
a special case of our problem when k = 2 and the input is two
partition matroids.

1. The input is a k-partite hypergraph G in which each hy-
peredge contains exactly one vertex from each of the k
sets in the partition of the vertices. A feasible solution is
a coloring of the hyperedges such that no two hyperedges
that share a vertex receive the same color. The objective
is to minimize the number of colors. As this problem
plays a special role in our results, let us refer to this as
the hypergraph coloring problem.

2. The input is a directed graph, where each vertex v has
an associated bound bv, each edge has a color, and each
color c has an associated bound uc. A feasible solution is
a partition E1, . . . , Et of the edges such that:

• Each Ei is the union of disjoint arborescences.

• For all vertices v and for all Ei the out-degree of v
in Ei is at most bv.

• For all colors c and for all Ei the number of edges
colored c in Ei is at most uc.

The objective is to minimize t.

3. The input is k = O(1) graphs/networks Gi = (Vi, Ei),
i ∈ [k], a sink vertex ti in each Vi, and a collection S ⊆
∩k

i=1Vi of source vertices common to all networks (the
rest of the networks are disjoint). Each source needs to be
simultaneously connected by a dedicated path Pi in each
Gi to each ti for one consecutive unit of time. Multiple
sources can be connected at the same time as long as their
paths are disjoint. The problem is to minimize the time
that it takes to achieve this.

4. The input is a layered graph G where the vertices are par-
titioned into k layers, and all edges are between vertices
in adjacent layers. Further each layer has an associated
laminar decomposition where each set s in the laminar
decomposition has an associated bound bs. A full path
in G is a simple path from a vertex in the first layer to

a vertex in the last layer. A layered covering of G is a
collection P1, . . . , Pt where each Pi consists of a disjoint
collection of full paths such that:

• Every full path is in some Pi, and

• For every Pi, and for every layer and for every set s
in the laminar decomposition of this layer, the num-
ber of paths in Pi that contain a vertex in s is at most
bs.

The problem is to find the layered covering that mini-
mizes t.

We now explain how to obtain bounds on the approximation
ratios of the polynomial-time algorithm for these problems that
one can derive from Corollary 5:

1. A feasible color class can be represented as the inter-
section of k partition matroids. Since partition matroids
are (1, 1)-decomposable, applying Theorem 3 we obtain
a polynomial-time k-approximation algorithm.

2. The feasible Ai can be represented by the intersection of
a graphic matroid guaranteeing that the edges are acyclic
(ignoring the directions of the edges), a partition matroid
guaranteeing that in-degree of each vertex is at most one,
a partition matroid bounding the out-degree of each ver-
tex, and a partition matroid bounding the number of col-
ors. Thus as there are three partition matroids, each of
which are (1, 1)-decomposable, and one graphic matroid,
which is (1, 2)-decomposable, applying Theorem 3 yields
a polynomial-time 5-approximate algorithm.

3. The collection of sources that can be feasibly routed
in a time step can be represented by the intersection
of k gammoids, which we have shown are (18, 1)-
decomposable. Thus applying Theorem 3 we obtain a
k18k-approximation algorithm.

4. The feasible Pi can be represented as the intersection of k
laminar matroids over the full paths. Each partition cor-
responds to a laminar matroid. As we have shown that
laminar matroids are (1, 3)-decomposable, applying The-
orem 3 we obtain a polynomial time 3k-approximation
algorithm.

6. Conclusion and Open Problems

There are many natural interesting open questions that nat-
ural arise from the results in this paper, including:

• Is there an efficient algorithm to find a (1,O(1)) decom-
position of a gammoid? If not, how about gammoids de-
rived from undirected graphs?

• [6] conjectured that all matroids are (1, 2)-decomposable.
Is this really the case? If not, how about (1,O(1)) or
even (O(1),O(1))? If not, can the class of matroids that
have such partition decompositions have nice characteri-
zations?
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• In the event that general matroids are not (O(1),O(1))-
decomposable, is polynomial-time O(1)-approximation
still possible for matroid intersection cover with O(1)
general matroids?

• Or even stronger, is O(k)-approximation possible with k
general matroids?

• If the sets have weights, is O(1)-approximation possible
for the problem of computing the minimum weight ma-
troid intersection cover?
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