
Algorithms for Massive Data Science Lecture date: April 8, 2019
Instructor: Ben Moseley Scribe: Thomas Lavastida, Yuyan Wang

1 Densest Subgraph

Let G = (V,E) be a graph and let S ⊆ V be a subset of vertices. Define E(S) := {uv ∈ E | u, v ∈ S}
be the edges with both endpoints in S. We define the density of S to be

f(S) :=
|E(S)|
|S|

. (1)

Note that 2f(S) is the average degree of the induced subgraph G[S]. The problem of interest is
to find the subset S which maximizes f(S). This corresponds to an induced subgraph G[S] with
maximum density.

In practice, the graph G may represent a social network. So finding a maximum density sub-
graph corresponds to finding a community within the social network that is very well connected.
This may be of use for people who study social networks. In addition to this, social network graphs
can be quite large, motivating the need for distributed algorithms.

Polynomial time algorithms are known for solving this problem exactly [3]. However, they are
based on constructing flow networks so they do not easily translate to MPC. Thus we will study a
Greedy algorithm that gives a 2-approximation and then show how to adapt it to MPC.

2 LP Formulation

Before defining and analyzing the Greedy algorithm, we will give an exact linear programming
formulation that will assist us in the analysis. Consider the following LP in which we have variables
xij for each edge ij ∈ E and yi for each vertex i ∈ V .

max
∑
ij∈E

xij

s.t xij ≤ yj ∀j ∈ V,∀ij ∈ E∑
j∈V

yj ≤ 1

xij , yj ≥ 0 ∀ij ∈ E,∀j ∈ V

(2)

Let f∗ be the optimal value of the LP. We show that the LP exactly captures the densest
subgraph problem.

Lemma 1 For all ∅ 6= S ⊆ V , there is a feasible variable assignment (x, y) such that the objective
value of this assignment is at least f(S).



Proof: We set the variables (x, y) as follows.

yj =

{
1
|S| if j ∈ S
0 otherwise

xij =

{
1
|S| if both i, j ∈ S
0 otherwise

(x, y) clearly satisfy non-negativity so we just need to check the other constraints. We have∑
j∈V

yj =
∑
j∈S

1

|S|
= 1.

For the other constraint note that if either i or j is not in S, then xij = 0, so xij ≤ yj . Otherwise
xij = yj = 1/|S|. Finally, note that the objective value is∑

ij∈E
xij =

∑
ij∈E(S)

1

|S|
=
|E(S)|
|S|

= f(S).

This proves the lemma. 2

The above lemma implies that f∗ ≥ maxS⊆V f(S). We show the other direction in the next
lemma.

Lemma 2 If (x, y) is a feasible LP solution with objective value α, then there exists a subset S ⊆ V
such that f(S) ≥ α.
Proof: Let (x, y) be a feasible solution to the LP. WLOG we may assume that xij = min{yi, yj}
since we can always raise xij to reduce the slack min{yi, yj} − xij ≥ 0 to 0, and this only increases
the LP’s objective value. Now for any r ≥ 0 define E(r) := {ij ∈ E | xij ≥ r} and S(r) := {j ∈
V | yj ≥ r}

Since xij ≤ min{yi, yj}, we have that ij ∈ E(r) =⇒ both i, j ∈ S(r). Further if both
i, j ∈ S(r), then ij ∈ E(r) since xij = min{yi, yj}. These two facts imply that E(r) are the edges
induced within S(r), i.e. E(S(r)) = E(r). Consider integrating |S(r)| and |E(r)| over r ≥ 0:∫ ∞

r=0
|S(r)|dr =

∑
j

yj ≤ 1.

Similarly, ∫ ∞
r=0
|E(r)|dr =

∑
ij

xij = α

If we find an r such that |E(r)|/|S(r)| ≥ α, then we are done, as taking S = S(r) will correspond
to a subset with f(S) ≥ α. Suppose for contradiction that no such r exists. Then we have that
|E(r)| < α|S(r)| for all r ≥ 0, and so:

α =

∫ ∞
r=0
|E(r)|dr < α

∫ ∞
r=0
|S(r)|dr ≤ α

producing a contradiction. 2

Note that we can make the above proof constructive by considering the distance values r = yj
for each j ∈ V . Lemmas 1 and 2 imply the following.



Theorem 3 max∅6=S⊆V f(S) = f∗, i.e. the value of the densest subgraph equals the optimal objec-
tive value of the LP.

3 Greedy Algorithm for Densest Subgraph

So we have established that we can solve this problem optimally. We now show that there is a
simple 2 approximation. This greedy algorithm due to [2] will be the basis of our distributed
algorithm.

Consider the following algorithm:

Algorithm 1 Greedy for Densest Subgraph

Input: A graph G = (V,E)

Output: A set S∗ ⊆ V , such that it maximizes f(S) = |E(S)|
|S| .

1: Let S = V , S∗ = V and f(S∗) = f(V ).
2: while S 6= ∅ do
3: Find imin ∈ S, the vertex of minimum degree in G(S). Delete it from S.
4: if f(S) > f(S∗) then
5: S∗ = S.
6: end if
7: end while

We want to show that this algorithm is a 2 approximation. First we construct a lower bound
on the optimal solution by constructing a feasible solution.

Consider the following: For each edge ij ∈ E assign the edge to one of i and j arbitrarily. Let
d(i) be edges assigned to i ∈ V . Let dmax = maxi∈V d(i). The following lemma shows dmax is an
upper bound of OPT.

Lemma 4 maxS⊆V {f(S)} ≤ dmax for any edge assignment.

Proof: Consider the set S that maximizes f(S). Each edge in E(S) is assigned to exactly one

vertex in S. So |E(S)| ≤ |S|dmax. This implies f(S) = |E(S)
|S| ≤ dmax. 2

Now consider the following assignment of edges to vertices based on the algorithm. Each edge
assigns itself to the first incident vertex deleted by the algorithm, and dmax is defined as before.
Note that prior lemma still holds. We use this fact to bound the algorithm’s objective function
value.

Lemma 5 Let α = f(S∗) be the maximum value of f(S) over all sets S seen by the greedy algo-
rithm. Then dmax ≤ 2α.

Proof: Fix an iteration of the algorithm and let S be the current set, so algorithm deletes imin. By
average argument, let deg(imin) be the degree of imin, deg(imin) ≤ 2|E(S)|

|S| ≤ 2α since 2|E(S)|
|S| is the

average degree. Note that imin is assigned at most this many edges, so d(imin) ≤ deg(imin) ≤ 2α.
Thus dmax must be at most 2α, since dmax = maxi{d(imin)} over all iterations of the algorithm. 2

We have thus proved the following theorem.

Theorem 6 Greedy is a 2 approximation for the Densest Subgraph problem.



Now we want to turn this greedy algorithm into a distributed algorithm running in O(log n)
rounds. The greedy algorithm is simulated by the following. Use deg(i) to denote the degree of
vertex i.

Algorithm 2 Distributed Greedy for Densest Subgraph

Input: A graph G = (V,E), a parameter ε.
Output: A set S∗ ⊆ V such that f(S∗) ≥ 1

2(1+ε) maxS⊆V f(S)

1: Let S = V , S∗ = V .
2: while S 6= ∅ do
3: A(S) = {i ∈ S | deg(i) ≤ 2(1 + ε)f(S)}.
4: Remove A(S) from S.
5: if f(S) > f(S∗) then
6: Let S∗ = S.
7: end if
8: end while

First we show that the algorithm gives a 2(1 + ε) approximation. Then we discuss how to make
it distributed.

Lemma 7 Let α = f(S∗) be the maximum value of f(S) over all sets S seen by the distributed
algorithm. Then dmax ≤ 2(1 + ε)α.

Proof: The proof goes in the same way. Fix an iteration of the algorithm and let S be the current
set. Each edge assigns itself to first deleted endpoint, breaking ties arbitrarily. Suppose algorithm
deletes A(S) in this step. Each i ∈ A(S) has degree at most 2(1+ε)|E(S)|

|S| ≤ 2(1 + ε)α. Notice that

each vertex in A(S) is assigned at most so many edges. Thus dmax = maxi{imax} ≤ 2(1 + ε)α. 2

The next lemma gives an upper bound on the rounds needed by Distribute Greedy.

Lemma 8 Distributed Greedy can be implemented in O(log1+ε n) rounds.

Proof: We have three operations in each iteration of while loop: computing the average degree,
finding the minimum degree vertices and deleting low degree vertices. They are all easy to do in
O(1) rounds. So we only need to bound iterations of the while loop.

Consider any set S. We have the following:

2|E(S)| =
∑

i∈A(S)

degS(i) +
∑

i∈S\A(S)

degS(i)

= 2|S|f(S) [Definition of density]

> 2(1 + ε)(|S| − |A(S)|)f(S) [Nodes in S \A(S) have degree larger than 2(1 + ε)f(S)]

= 2(1 + ε)(|S| − |A(S)|) |E(S)|
|S|

Rearranging, we have that 1
1+ε |S| > |S| − |A(S)| or |A(S)| > ε

1+ε |S|.
Thus, the number of nodes decreases by at least a 1

1+ε factor each iteration. Thus, the overall
algorithm must run in O(log1+ε n) rounds. 2

Putting the results together, we have the following theorem, originally due to [1].

Theorem 9 There is a O(log1+ε n) round 2-approximate MPC algorithm for the densest subgraph
problem.



References

[1] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming and
mapreduce. PVLDB, 5(5):454–465, 2012.

[2] Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Klaus Jansen and Samir Khuller, editors, Approximation Algorithms for Combinatorial Op-
timization, Third International Workshop, APPROX 2000, Saarbrücken, Germany, Septem-
ber 5-8, 2000, Proceedings, volume 1913 of Lecture Notes in Computer Science, pages 84–95.
Springer, 2000.

[3] A. V. Goldberg. Finding a maximum density subgraph. Technical report, University of Cali-
fornia at Berkeley, Berkeley, CA, USA, 1984.


	Densest Subgraph
	LP Formulation
	Greedy Algorithm for Densest Subgraph

