95-771 Data Structures and Algorithms

Midterm Exam

Fall 2001

Stacks (11 points)

Name ______________________________

1. Consider the following implementation of a stack. (11 Points)

public class Stack

{

 private int size;

 private char data[];

 private int n;

 public String toString() {

 String t = "";

 t = t + size + " ";

 t = t + n + " ";

 for(int i = 0; i < size; i++) t = t + " " + data[i];

 return t;

 }

 public Stack(int s)

 {

 size = s;

 data = new char[size];

 n = 0;

 }

 public void push(char ch)

 {

 for(int k = n - 1; k >= 0; k--) data[k+1] = data[k];

 data[0] = ch;

 n++;

 }

 public char pop() {

 char ch = data[0];

 for(int k = 0; k < n-1; k++) data[k] = data[k+1];

 n--;

 return ch;

 }

 public boolean isEmpty() {

 return (n == 0);

 }

 public static void main(String args[]) {

 Stack s = new Stack(3);

 char ch = 'A';

 for(int m = 1; m <= 3; m++) {

 s.push(ch);

 ch++;

 }

 System.out.println(s);

 while(!s.isEmpty()) System.out.println(s.pop());

 }

 }

(a) What is the exact output of this program? Note the call on the toString() method.(2 Points)

(b) With respect to run time performance, why is this implementation inefficient? Please be precise and describe a better implementation. (3 Points)

(c) Complete the following method so that it may be added to the stack class. (3 Points)

boolean isFull() {

}

(d) Which of the following would serve best as a precondition for the pop routine? Circle only one answer. (3 Points)

Pre: n >= 0

Pre: n > 0

Pre: k <= n – 1

Pre: k < n - 1

Queues: (11 points)

2. Consider the following implementation of a queue:

public class Queue {

 int front;

 int length;

 int infos[];

 int n;

 public Queue(int size) {

 infos = new int[size];

 front = 0;

 length = 0;

 n = size;

 }

 public boolean isEmpty() {

 return length == 0;

 }

 public int dequeue() {

 int x = infos[front];

 front = (front + 1) % n;

 length = length - 1;

 return x;

 }

 public void enqueue(int x) {

 length = length + 1;

 infos[(front + length - 1) % n] = x;

 }

 public int getFront() {

 return infos[front];

 }

 public String toString() {

 String temp = "Front -->";

 int p = front;

 for(int j = 0; j < length; j++) {

 temp += "" + infos[p] + "--";

 p = (p + 1) % n;

 }

 return temp + "|";

 }

 public static void main(String a[]) {

 Queue q = new Queue(6);

 for(int j = 1; j <= 313; j++) {

 q.enqueue(j);

 q.dequeue();

 }

 q.enqueue(45);

 q.enqueue(50);

 q.enqueue(60);

 System.out.println(q);

 System.out.println(q.dequeue());

 }

}

a. Carefully show the exact output of the program above. Details count. (5 Points)

b. Which of the following would serve best as a precondition for the enqueue routine? Circle only one answer. (3 Points)

Pre: length < n

Pre: length <= n

Pre: x > 0

Pre: x < 0

c. Which of the following would serve best as a precondition for the dequeue routine? Circle only one answer. (3 Points)

Pre: front > n

Pre: front < 0

Pre: length > 0

Pre: length >= 0

Trees (11 points)

3. Consider the binary tree given below:

 37

 / \

40 90

 \
 \

 42 76

 / \ / \

 5 88 62 27

a) List the data that would be accessed by a pre-order traversal on the given tree by writing out the values in the nodes as they would be accessed, separated by commas. (2 points)

b) List the data that would be accessed by a in-order traversal on the given tree by writing out the values in the nodes as they would be accessed, separated by commas. (2 points)

c) List the data that would be accessed by a post-order traversal on the given tree by writing out the values in the nodes as they would be accessed, separated by commas. (2 points)

d) Write an algorithm that performs a level-order traversal on the given tree. (5 points)

Heaps (12 points)

4. Consider the heap given below:

 90

 / \

 67
 73

 / \
 / \

 50 48 62 58

 / \ / \

 20 4 6 2

a) Show the series of steps that would take place in adding a node containing 700 to the heap given above. In your answer, you should show what the heap looks like after each step in the addition process or reheapification process, and explain what changes were made. (4 points)

b) Describe why it makes sense to use an array to implement a heap but why it would not make sense to use an array to implement a binary search tree. (2 points)

c) Show the series of steps that would take place in deleting the node containing 90 from the heap given on the previous page. In your answer, you should show what the heap looks like after each step in the deletion process or reheapification process, and explain what changes were made. In performing the deletion, you should start with the original heap specified in the question, not the heap that resulted from the addition requested in part a. (6 points)

B-Trees (11 points)

5. Consider the following B-Tree with a minimum of one and a maximum of two. (This is also called a 2-3 tree.)

 50

 / \

30 70, 90

 / \ / | \

 10,20 40 60 80 100

(a) Redraw the tree after inserting 39. (3 points)

(b) Redraw the tree after inserting 15. (Begin work from the initial tree in question (5), do not work from the tree that you drew in question 5 (a).) (3 points)

(c)
Redraw the tree after deleting 100. (Begin work from the initial tree in question(5), do not work from the tree that you drew in questions 5(a) or 5(b). (3 points).

d. The B-Tree discussed above is called a 2-3 tree. Its minimum is 1 and its maximum is 2. Now, consider a B-Tree with a minimum of 6. Draw this tree after the following keys are inserted. You need not show each step. Simply show the resulting B-Tree with minimum equal to 6. The keys are 1,2,3,4,5,6,7,8,9,10,11,12,13. (2 Points)

 Graph Algorithms(11 points)

6. Graphs

a) Consider the following graph (S is the start vertex):

 5

 A D

 7

 1 2 2

 S B 1 E This graph is also used in 7 A

 5 2 8

 C F

Dijkstra’s algorithm first initializes the distance array in such a way that the start vertex has distance 0 and all of the others have an infinite distance (?). It then continues to make selections from and updates to the distance array. Show the values that Dijkstra’s algorithm would compute for the third and fourth array below. (4 points)

Distance Array

 S A B C D E F

	0
	?
	?
	?
	?
	?
	?

	0
	7
	1
	5
	?
	?
	?

	
	
	
	
	
	
	

	
	
	
	
	
	
	

b) Dijkstra’s algorithm can be modified to keep track of not only the distance but also the shortest path from the start vertex to every other vertex in the graph. The following code displays the shortest path from the start vertex to the vertex v but does so in reverse order. Using a stack, write an algorithm that displays the path in the order from start to v. (4 Points)

// Printing the vertices on the shortest path

// from start to v.

// Print in reverse order from v to start.

vertexOnPath = v;

System.out.println(vertexOnPath);

while (vertexOnPath != start) {

 vertexOnPath = predecessor[vertexOnPath];

 System.out.println(vertexOnPath);

}

 c) Consider the following graph (the root vertex will be A):

 8 7

 B C D

 4 2 9

A 1 I 4 14 E This graph also used in 7 B

 8 7 6 10

 H G F

 1 2

Prim’s algorithm first initializes the key and parent arrays in such a way that the root vertex has key 0 and a nil parent and all of the other vertices have an infinite key (?). It then continues to make selections and make updates to the key and parent arrays. Show the values that Prim’s algorithm would compute for the third pair of arrays below. (3 points)

A B C D E F G H I

	0
	?
	?
	?
	?
	?
	?
	?
	?

	nil
	
	
	
	
	
	
	
	

	0
	4
	?
	?
	?
	?
	?
	8
	?

	nil
	A
	
	
	
	
	
	A
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Graph Representation (11 points)

7. We discussed two methods for implementing edge lists in a Graph ADT:

1. adjacency matrix

2. array + linked lists (adjacency lists)

a) Represent the graph pictured in 6 (a) using adjacency lists. Draw a picture that shows how that particular graph is represented. (4 points)

b) Represent the graph pictured in 6 (c) using an adjacency matrix. Draw a picture that shows how that

 particular graph is represented. (4 points)

c) Suppose we wish to implement the code below on an undirected graph. Suppose too that the visit() method is O(1) and we know that the graph has a large number of vertices with very few edges. State which implementation (adjacency lists or adjacency matrix) you would use for this algorithm and explain why. (3 points)

void someMethod(Vertex v) {

foreach neighbor w of v do visit(w)

}

PostFix Calculation (12 points)

8) Suppose we run our RPN calculator (homework 2) with the following input. Draw a picture of the binary tree that would result after all the data below is entered. User input is in bold.

Y 3 =

3

M 4 3 + =

7

Z Y =

3

PAGE
12

