Internet Technologies Carnegie Mellon University

Lab 3 Due Monday, November 28

In this lab you will write several Document Type Definitions (DTD’s). You will also write a servlet and a client that interact by exchanging XML. You must have completed Lab 1 and Lab 2 before beginning this lab. That is, it will be assumed that all of the necessary software has been installed and that the classpath variables have been set.

We will discuss the details of the program in Figure 3.1 in class. Please use it to validate your XML files against your DTD’s.

// Validate.java

import java.io.*;

import org.xml.sax.*;

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.parsers.SAXParser;

public class Validate extends HandlerBase

{

 public static boolean valid = true;

 public static void main (String argv [])

 {

 if (argv.length != 1) {

 System.err.println ("Usage: java Validate filename.xml");

 System.exit (1);

 }

 SAXParserFactory factory = SAXParserFactory.newInstance();

 factory.setValidating(true);

 try {

 SAXParser saxParser = factory.newSAXParser();

 saxParser.parse(new File(argv [0]), new Validate());

 }

 catch (Throwable t) {

 System.out.println("problem");

 t.printStackTrace ();

 System.out.println(t);

 }

 System.out.println("Valid document is " + valid);

 System.exit (0);

 }

 public void error(SAXParseException e) throws SAXException {

 valid = false;

 System.out.println(e.toString());

 }

} Figure 3.1
Lab 3 Activities Sheet

Directions: Complete the activities listed on this sheet and type or paste your answers directly in the space provided. The completed Activities Sheet (Lab3Submission.doc) must be printed and placed in a large envelope. Also, within the envelope, place a floppy disk containing the files and directories mentioned below. Aside from these files and directories, the floppy disk should be empty. Please use the exact same directory and file names as mentioned in each question. Each question is worth 20 points. The last question is the hardest.

Part I Document Type Definitions (DTD’s)

(1) Write a DTD that can be used to validate the books.xml file found in Lab 2 Figure 2.1. The DTD must be contained within the same file as the document body. That is, this will be an internal DTD.

(a) Paste the modified books.xml file here.

(b) Execute Validate.java (Figure 3.1) and paste a screen shot of a DOS window here showing that the document is valid.

(c) Place a copy of the new books.xml file on your floppy under a directory called Books.

(2) Create a new language called SylML that your instructor can use to validate the syllabus for this course. The syllabus is labeled as “Course Information” and is found at ~mm6/95-733/syllabus.htm.You will need to create at least two files (Syllabus.xml and SylML.dtd) and these files must be tested with Validate.java. The file SylML.dtd will contain the Document Type Definition for SylML conforming documents. Six points of this 20 point problem will be allocated for breaking up the DTD into several files using external parameter entities and external parameter entity references.

(a) Paste a copy of the Syllabus.xml file here.

(b) Paste a copy of SylML.dtd (and any other .dtd files) here.

(c) Execute Validate.java (Figure 3.1) and paste a screen shot of a DOS window here showing that the document is valid.

(d) Place all these files on you floppy under a directory called Syllabus.

(3) Write an XSLT program (called Syllabus.xsl) that converts the Syllabus.xml document to HTML format. Your HTML document should look reasonably close (when processed by a browser) to the current syllabus on the web site. However, the links can be broken links. That is, you don’t need to provide target documents (such as Schedule.html and Course_Description.html). You must, however, provide the link elements themselves. Test your program using the command line version of XT.

(a) Paste a copy of the Syllabus.xsl file here.

(b) Paste a copy of the output file, Syllabus.htm, here.

(c) Paste a copy of the browser screen here.

(d) Include a copy of Syllabus.xsl on your floppy under the directory called Syllabus.

(4) In this exercise you will experiment with using ID and IDREF attributes. Create a new language that can be used to represent instances of the Traveling SalesPerson Problem (TSP). The problem itself is to find the shortest distance that a traveling salesperson can travel and still visit each of several cities once. Documents conforming to your DTD must contain city names and distances to other cities that are also found in the document. The idea is to use ID and IDREF attributes to aid in document validation. A programmer should be able to read your document and compute a solution to the TSP. (That is, assuming the programmer has time to wait for such a solution). We are NOT writing such a program here. Please call your DTD file TSP.dtd and create a file that shows an instance of the problem containing at least four cities and name this file TSP.xml.

(a) Paste a copy of your TSP.dtd file her.

(b) Paste a copy of your TSP.xml file here.

(c) Paste a screen shot of a DOS screen showing Validate.java validating TSP.xml.

(d) Place both files on your floppy under a new directory called TSP.

Part II Working with the XML DOM and XML RPC

(5) In this exercise you will write a Java client (Client.java) that uses a Socket object to connect to a Java servlet (HandleXMLRPC.java) running under Jigsaw. Client.java will be interactive and will request two integers (possibly large) from the user. Client.java will also ask the user if he or she would like to add or multiply these two integers. Client.java will package these integers into an XML document that holds the two integers and the requested operation. Client.java will then establish a connection to HandleXMLRPC.java and pass the XML over HTTP. HandleXMLRPC.java will carry out the request and return an XML document that contains the result. This result will then be displayed for the user.

See below for a demonstration client (MiniClient.java) and a demonstration servlet (MiniHandleXMLRPC.java).

Your Client.java class must take the following approach to connect to and communicate with HandleXMLRPC.java:

1. Optional:Build a URL object representing localhost, the servlet HandleXMLRPC, and port 8001.

2. Use the URL to construct a Socket object (or, if you did not create a URL object, create the socket directly).

3. From the Socket, construct a BufferedReader and a PrintWriter.

4. Use the PrintWriter to send the HTTP headers.

5. After sending a blank line, send the XML request as a String.

6. Using the BufferedReader, read and ignore the HTTP headers coming back from the servlet.

7. When the BufferedReader is pointing at the XML response, construct an InputSource object from the BufferedReader.

8. Use the InputSource object to build a DOM tree. This DOM tree should contain the servlet’s response (a Biginteger as a String).

 Your HandleXMLRPC.java servlet must do the following:

1. Get an InputStream from the HttpServletRequest object.

2. Use the InputStream object to construct an InputSource object.

3. Use the InputSource object to build a DOM tree. This DOM tree will contain a document that describes the request as well as two BigIntegers (as Strings).

4. Find the type of request from within the DOM tree and perform either BigInteger multiplication or BigInteger addition.

5. Get a PrintWriter object from the HttpServletResponse object and write an XML document (as a String) that contains the response.

Part B. Submission

a) You will need to design the two documents yourself (you don’t need to write a DTD). Both documents should contain element names that describe their contents. Paste a sample XML document that requests an arithmetic service here.

b) Paste a sample XML document that might be returned by the servlet here.

c) Run your client within a DOS screen. Show the client working with addition and multiplication. Paste a screen shot that demonstrates your interactive client here.

d) Paste a copy of Client.java here.

e) Paste a copy of HandleXMLRPC.java here.

f) Save copies of Clinet.java and HandleXMLRPC.java on your floppy and in a directory called rpc.

MiniClient.java

// MiniClient.java makes a socket connection to an HTTP server and

// calls the MiniHandleXMLRPC servlet. It passes an XML docuement to the

// servlet. The document is <?xml version = "1.0" ?><a>Hello World.

import java.net.*;

import java.util.*;

import java.io.*;

import org.w3c.dom.*;

import javax.xml.parsers.*;

import org.xml.sax.*;

public class MiniClient {

 public static void main(String a[]) {

 try {

 // Build a URL

 String serviceURL =

 "http://localhost:8001/servlet/MiniHandleXMLRPC";

 URL url = new URL(serviceURL);

 int port = url.getPort();

 System.out.println("Trying to make a visit on " + url.getFile());

 // Establish a socket

 Socket soket = new Socket (url.getHost (), port);

 // Get readers and printers to the socket

 PrintWriter out = new PrintWriter (soket.getOutputStream ());

 BufferedReader in = new BufferedReader (

 new InputStreamReader (soket.getInputStream ()));

 // Build the xml document

 String x = "<?xml version = \"1.0\" ?><a>Hello World";

 // send http POST headers to server

 out.print ("POST" + " " + url.getFile() +

 " HTTP/" + "1.0" + "\r\n");

 out.print ("HOST" + ": " + url.getHost () + ':' +

 url.getPort () + "\r\n");

 out.print ("Content-Type" + ": " +

 "text/xml" + "\r\n");

 out.print ("Content-Length" + ":"+

 x.length() + "\r\n");

 out.print ("\r\n");

 out.print (x);

 out.print ("\r\n\r\n");

 out.flush ();

 }

 catch (MalformedURLException e) {

 System.out.println("err:not an understood URL");

 }

 catch(IOException e) {

 System.out.println(e);

 }

 }

}

MiniHandleXMLRPC

// This file is in Jigsaw's servlet directory.

// It reads an xml document from the client and builds a DOM tree.

// The input document (from MiniClient.java) is <?xml version="1.0"?><a>Hello World

// The output of the servlet is the name of the root element along with

// "Hello World" written to Jigsaw's console.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

import org.xml.sax.*;

import org.w3c.dom.*;

import javax.xml.parsers.*;

public class MiniHandleXMLRPC extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 try{

 InputSource is = new InputSource(req.getInputStream());

 DocumentBuilderFactory docBuilderFactory =

 DocumentBuilderFactory.newInstance();

 docBuilderFactory.setValidating(false);

 docBuilderFactory.setNamespaceAware(true);

 DocumentBuilder docBuilder =

 docBuilderFactory.newDocumentBuilder();

 Document doc = docBuilder.parse(is);

 Element root = doc.getDocumentElement();

 System.out.println("Root element:" + root.getTagName());

 NodeList nl = root.getChildNodes();

 Node cur;

 for(int i = 0; i < nl.getLength(); i++) {

 cur = nl.item(i);

 if(cur.getNodeType() == Node.TEXT_NODE)

 System.out.println(cur.getNodeValue());

 }

 }

 catch(ParserConfigurationException e) {}

 catch(SAXException e) {}

 }

}

PAGE
1

