95-733 Internet Technologies

Carnegie Mellon University

Homework 5
Due by 9 P.M. Thursday May 1 2003

In this lab you will work with JAXM, JDBC, servlets and JavaMail. The idea is to complete the web application described in the figure below. This application and the figure below is adapted from the text “XML and Java” by Maruyama, Tamura, and Uramoto, Addison-Wesley.

Since this is the week prior to finals week, no late submissions will be accepted. Please turn in any incomplete work by the deadline for partial credit.

[image: image1.emf]SOAP

Homework 5

PowerWarning

application

SOAP Server (JAXM)

Email notifications (JavaMail)

Registrations

RDBMS

MS Access

JDBC

SOAP Client

(JAXM)

HTML

For this project, it would probably be a good idea to uninstall the older version of the JWSDP and download and install the new version (JWSDP1.1). I’ll provide help with either version but I’ll provide you with a build.xml file whose classpath is set to the newer version’s jar files.

Below is a display of my directory structure for this assignment. Please use these names when completing your solution. In that way the TA’s will be able to grade the assignment and I will be able to answer your questions quickly.

With respect to the assignment’s submission, I would like for you to turn in paper copies of the documented Java files below. I would also like you to turn in an otherwise blank floppy with the directory structure and files shown. Please delete your password from the build.properties file. Also, include a comment on paper that states if the program is working or not. And if it is not working please describe what is wrong. The TA should be able to load the application into Tomcat from the floppy.
You will need to build a small database in Microsoft Access and make it available to JDBC. The database will hold city name and current temperature pairs. The database will have the following data.
 MS Access file weather.mdb

 The table is named CityTempPairs

Pittsburgh
76

San Diego
74

Chicago

55

New York
80

London

78

Vancouver
68

Notes:

Do not have your JAXMServlet implement SingleThreadedModel. In this exercise, you may ignore issues concerning concurrent access. Just assume that we will have one visitor at a time.
You may use code that has been presented on the slides. There is material there that shows you how to work with JavaMail, JDBC and JAXM.
My build.xml file appears below. With this file you should be able to run your JWSDP1.1 application without the use of a classpath variable set.

When you download the new JWSDP you may be asked to copy some files into a particular directory. Please do so. The new JWSDP has support for JavaMail.
You should test your code with two email addresses. If you don’t have a friend who is willing to receive a little unwanted email you can use mine: mm6@andrew.cmu.edu.
The required directory structure for Homework 5 appears below. The comments are meant to help you layout and understand the project. My root directory for this project is

 D:\McCarthy\www\95-733\examples\WeatherAppUsingJAXM

D:.

├───HTMLWeatherRegistration a web application that allows user to register

│ │ build.properties holds the path of this web app and username and password

│ │ build.xml is an ant program that includes jwsdp1.1 jar files

│ │

│ ├───build this directory is built by ant

│ │ │ JAXMPowerWarningForm.html

│ │ │

│ │ │

│ │ └───WEB-INF

│ │ │ web.xml this file is a deployment descriptor that assigns a URL pattern

│ │ │ to the JAXMPowerWarn servlet

│ │ ├───classes Constructed by ant compile

│ │ │ JAXMPowerWarn.class

│ │ │ JAXMScheduler.class

│ │ │ JAXMWatcher.class

│ │ │ Mailer.class

│ │ │

│ │ └───lib files copied here by ant
│ │ are.jar

│ │ xml4j.jar

│ │ xss4j.jar

│ │

│ ├───src

│ │ JAXMPowerWarn.java an HTTP servlet pointed to by JAXMPowerWarningForm.html
│ │ JAXMScheduler.java tells JAXMWatcher objects when to run
│ │ JAXMWatcher.java makes synchronous JAXM SOAP calls to the weather web service

│ │ Mailer.java handles email when the temperature is high
│ │

│ └───web

│ │ JAXMPowerWarningForm.html holds the html for user registrations
│ │

│ └───WEB-INF

│ web.xml holds the deployment descriptor (see above)
│

└───XMLWeatherService a web application that returns a temperature given a city in its
 │ build.properties database
 │ build.xml

 │ weather.ldb the Microsoft Access weather database
 │ weather.mdb the one table in this RDBMS is called CityTempPairs
 │ it has two fields, city and temperature
 ├───build

 │ └───WEB-INF

 │ │ web.xml the deployment descriptor for this second web application
 │ │

 │ ├───classes

 │ │
 │ │ GetWeatherJAXMServlet.class takes and returns a SOAPMessage
 │ │

 │ └───lib

 │ are.jar

 │ xml4j.jar

 │ xss4j.jar

 │

 ├───src
 │ GetWeatherJAXMServlet.java This is a JAXM Servlet
 │

 └───web

 └───WEB-INF

 web.xml

Below is a copy of my build.xml ant program. I used this for both web applications without using a classpath. Please note that it is setting the classpath to JWSD1.1 directories. If you have stored these files elsewhere or if you are still using an older version of JWSDP then you will need to make modifications to these directories.
<!--

 General purpose build script for web applications and web services,

 including enhanced support for deploying directly to a Tomcat 4

 based server.

 This build script assumes that the source code of your web application

 is organized into the following subdirectories underneath the source

 code directory from which you execute the build script:

 docs Static documentation files to be copied to

 the "docs" subdirectory of your distribution.

 src Java source code (and associated resource files)

 to be compiled to the "WEB-INF/classes"

 subdirectory of your web applicaiton.

 web Static HTML, JSP, and other content (such as

 image files), including the WEB-INF subdirectory

 and its configuration file contents.

 $Id: build.xml.txt,v 1.6 2002/03/09 22:39:19 craigmcc Exp $

-->

<!-- A "project" describes a set of targets that may be requested

 when Ant is executed. The "default" attribute defines the

 target which is executed if no specific target is requested,

 and the "basedir" attribute defines the current working directory

 from which Ant executes the requested task. This is normally

 set to the current working directory.

-->

<project name="My Project" default="compile" basedir=".">

<!-- ===================== Property Definitions =========================== -->

<!--

 Each of the following properties are used in the build script.

 Values for these properties are set by the first place they are

 defined, from the following list:

 * Definitions on the "ant" command line (ant -Dfoo=bar compile).

 * Definitions from a "build.properties" file in the top level

 source directory of this application.

 * Definitions from a "build.properties" file in the developer's

 home directory.

 * Default definitions in this build.xml file.

 You will note below that property values can be composed based on the

 contents of previously defined properties. This is a powerful technique

 that helps you minimize the number of changes required when your development

 environment is modified. Note that property composition is allowed within

 "build.properties" files as well as in the "build.xml" script.

-->

 <property file="build.properties"/>

 <property file="${user.home}/build.properties"/>

<!-- ==================== File and Directory Names ======================== -->

<!--

 These properties generally define file and directory names (or paths) that

 affect where the build process stores its outputs.

 app.name Base name of this application, used to

 construct filenames and directories.

 Defaults to "myapp".

 app.path Context path to which this application should be

 deployed (defaults to "/" plus the value of the

 "app.name" property).

 app.version Version number of this iteration of the application.

 build.home The directory into which the "prepare" and

 "compile" targets will generate their output.

 Defaults to "build".

 catalina.home The directory in which you have installed

 a binary distribution of Tomcat 4. This will

 be used by the "deploy" target.

 dist.home The name of the base directory in which

 distribution files are created.

 Defaults to "dist".

 manager.password The login password of a user that is assigned the

 "manager" role (so that he or she can execute

 commands via the "/manager" web application)

 manager.url The URL of the "/manager" web application on the

 Tomcat installation to which we will deploy web

 applications and web services.

 manager.username The login username of a user that is assigned the

 "manager" role (so that he or she can execute

 commands via the "/manager" web application)

-->

 <property name="app.name" value="myapp"/>

 <property name="app.path" value="/${app.name}"/>

 <property name="app.version" value="0.1-dev"/>

 <property name="build.home" value="${basedir}/build"/>

 <property name="catalina.home" value="d:/jwsdp-1.1"/><!-- UPDATE THIS! -->

 <property name="dist.home" value="${basedir}/dist"/>

 <property name="docs.home" value="${basedir}/docs"/>

 <property name="manager.url" value="http://localhost:8080/manager"/>

 <property name="src.home" value="${basedir}/src"/>

 <property name="web.home" value="${basedir}/web"/>

<!-- ================== Custom Ant Task Definitions ======================= -->

<!--

 These properties define custom tasks for the Ant build tool that interact

 with the "/manager" web application installed with Tomcat 4. Before they

 can be successfully utilized, you must perform the following steps:

 - Copy the file "server/lib/catalina-ant.jar" from your Tomcat 4

 installation into the "lib" directory of your Ant installation.

 - Create a "build.properties" file in your application's top-level

 source directory (or your user login home directory) that defines

 appropriate values for the "manager.password", "manager.url", and

 "manager.username" properties described above.

 For more information about the Manager web application, and the functionality

 of these tasks, see <http://localhost:8080/tomcat-docs/manager-howto.html>.

-->

 <taskdef name="install" classname="org.apache.catalina.ant.InstallTask"/>

 <taskdef name="list" classname="org.apache.catalina.ant.ListTask"/>

 <taskdef name="reload" classname="org.apache.catalina.ant.ReloadTask"/>

 <taskdef name="remove" classname="org.apache.catalina.ant.RemoveTask"/>

<!-- ==================== Compilation Control Options ==================== -->

<!--

 These properties control option settings on the Javac compiler when it

 is invoked using the <javac> task.

 compile.debug Should compilation include the debug option?

 compile.deprecation Should compilation include the deprecation option?

 compile.optimize Should compilation include the optimize option?

-->

 <property name="compile.debug" value="true"/>

 <property name="compile.deprecation" value="false"/>

 <property name="compile.optimize" value="true"/>

<!-- ==================== External Dependencies =========================== -->

<!--

 Use property values to define the locations of external JAR files on which

 your application will depend. In general, these values will be used for

 two purposes:

 * Inclusion on the classpath that is passed to the Javac compiler

 * Being copied into the "/WEB-INF/lib" directory during execution

 of the "deploy" target.

 Because we will automatically include all of the Java classes that Tomcat 4

 exposes to web applications, we will not need to explicitly list any of those

 dependencies. You only need to worry about external dependencies for JAR

 files that you are going to include inside your "/WEB-INF/lib" directory.

-->

<!-- Dummy external dependency -->

 <property name="are.jar"

 value="d:/xss4j/are.jar"/>

 <property name="xml4j.jar"

 value="d:/xss4j/xml4j.jar"/>

 <property name="xss4j.jar"

 value="d:/xss4j/xss4j.jar"/>

<!-- ==================== Compilation Classpath =========================== -->

<!--

 Rather than relying on the CLASSPATH environment variable, Ant includes

 features that makes it easy to dynamically construct the classpath you

 need for each compilation. The example below constructs the compile

 classpath to include the servlet.jar file, as well as the other components

 that Tomcat makes available to web applications automatically, plus anything

 that you explicitly added.

-->

 <path id="compile.classpath">

 <!-- Include all JAR files that will be included in /WEB-INF/lib -->

 <!-- *** CUSTOMIZE HERE AS REQUIRED BY YOUR APPLICATION *** -->

 <fileset dir="D:/jwsdp-1.1/saaj-1.1.1/lib" includes="*.jar"/>

 <fileset dir="d:/jwsdp-1.1/common/lib" includes="*.jar"/>

 <fileset dir="D:/jwsdp-1.1/jaxm-1.1.1/lib" includes="*.jar"/>

 <fileset dir="D:/jwsdp-1.1/bin" includes="*.jar" />

 <fileset dir="D:/jwsdp-1.1/jaxp-1.2.2/lib" includes="*.jar"/>

 <fileset dir="D:/jwsdp-1.1/jwsdp-shared/lib" includes="*.jar"/>

 <fileset dir="d:/xss4j" includes="*.jar"/>

 <fileset dir="d:/xerces" includes="*.jar"/>

 <fileset dir="D:/jwsdp-1.1/jaxr-1.0_03/lib" includes="*.jar"/>

 <fileset dir="D:/jwsdp-1.1/jakarta-ant-1.5.1/lib" includes="*.jar"/>

 <fileset dir="D:/j2sdk1.4.1_01/lib" includes="*.jar"/>

 <fileset dir="d:/jwsdp-1.1/common/lib" includes="*.jar"/>

 <fileset dir="d:/xss4j" includes="*.jar"/>

 <fileset dir="d:/xerces" includes="*.jar"/>

 <pathelement location="."/>

 <!-- Include all elements that Tomcat exposes to applications -->

 <pathelement location="${catalina.home}/common/classes"/>

 <fileset dir="${catalina.home}/common/endorsed">

 <include name="*.jar"/>

 </fileset>

 <fileset dir="${catalina.home}/common/lib">

 <include name="*.jar"/>

 </fileset>

 <pathelement location="${catalina.home}/shared/classes"/>

 <fileset dir="${catalina.home}/shared/lib">

 <include name="*.jar"/>

 </fileset>

 <fileset dir="d:/jwsdp-1.1/common/lib" includes="*.jar"/>

 <fileset dir="d:/xss4j" includes="*.jar"/>

 </path>

<!-- ==================== All Target ====================================== -->

<!--

 The "all" target is a shortcut for running the "clean" target followed

 by the "compile" target, to force a complete recompile.

-->

 <target name="all" depends="clean,compile"

 description="Clean build and dist directories, then compile"/>

<!-- ==================== Clean Target ==================================== -->

<!--

 The "clean" target deletes any previous "build" and "dist" directory,

 so that you can be ensured the application can be built from scratch.

-->

 <target name="clean"

 description="Delete old build and dist directories">

 <delete dir="${build.home}"/>

 <delete dir="${dist.home}"/>

 </target>

<!-- ==================== Compile Target ================================== -->

<!--

 The "compile" target transforms source files (from your "src" directory)

 into object files in the appropriate location in the build directory.

 This example assumes that you will be including your classes in an

 unpacked directory hierarchy under "/WEB-INF/classes".

-->

 <target name="compile" depends="prepare"

 description="Compile Java sources">

 <!-- Compile Java classes as necessary -->

 <mkdir dir="${build.home}/WEB-INF/classes"/>

 <javac srcdir="${src.home}"

 destdir="${build.home}/WEB-INF/classes"

 debug="${compile.debug}"

 deprecation="${compile.deprecation}"

 optimize="${compile.optimize}">

 <classpath refid="compile.classpath"/>

 </javac>

 <!-- Copy application resources -->

 <copy todir="${build.home}/WEB-INF/classes">

 <fileset dir="${src.home}" excludes="**/*.java"/>

 </copy>

 </target>

<!-- ==================== Dist Target ===================================== -->

<!--

 The "dist" target creates a binary distribution of your application

 in a directory structure ready to be archived in a tar.gz or zip file.

 Note that this target depends on two others:

 * "compile" so that the entire web application (including external

 dependencies) will have been assembled

 * "javadoc" so that the application Javadocs will have been created

-->

 <target name="dist" depends="compile,javadoc"

 description="Create binary distribution">

 <!-- Copy documentation subdirectories -->

 <mkdir todir="${dist.home}/docs"/>

 <copy todir="${dist.home}/docs">

 <fileset dir="${docs.home}"/>

 </copy>

 <!-- Create application JAR file -->

 <jar jarfile="${dist.home}/${app.name}-${app.version}.war"

 basedir="${build.home}"/>

 <!-- Copy additional files to ${dist.home} as necessary -->

 </target>

<!-- ==================== Install Target ================================== -->

<!--

 The "install" target tells the specified Tomcat 4 installation to dynamically

 install this web application and make it available for execution. It does

 not cause the existence of this web application to be remembered across

 Tomcat restarts; if you restart the server, you will need to re-install all

 this web application.

 If you have already installed this application, and simply want Tomcat to

 recognize that you have updated Java classes (or the web.xml file), use the

 "reload" target instead.

 NOTE: This target will only succeed if it is run from the same server that

 Tomcat is running on.

 NOTE: This is the logical opposite of the "remove" target.

-->

 <target name="install" depends="compile"

 description="Install application to servlet container">

 <install url="${manager.url}"

 username="${manager.username}"

 password="${manager.password}"

 path="${app.path}"

 war="file://${build.home}"/>

 </target>

<!-- ==================== Javadoc Target ================================== -->

<!--

 The "javadoc" target creates Javadoc API documentation for the Java

 classes included in your application. Normally, this is only required

 when preparing a distribution release, but is available as a separate

 target in case the developer wants to create Javadocs independently.

-->

 <target name="javadoc" depends="compile"

 description="Create Javadoc API documentation">

 <mkdir dir="${dist.home}/docs/api"/>

 <javadoc sourcepath="${src.home}"

 destdir="${dist.home}/docs/api"

 packagenames="*">

 <classpath refid="compile.classpath"/>

 </javadoc>

 </target>

<!-- ====================== List Target =================================== -->

<!--

 The "list" target asks the specified Tomcat 4 installation to list the

 currently running web applications, either loaded at startup time or

 installed dynamically. It is useful to determine whether or not the

 application you are currently developing has been installed.

-->

 <target name="list"

 description="List installed applications on servlet container">

 <list url="${manager.url}"

 username="${manager.username}"

 password="${manager.password}"/>

 </target>

<!-- ==================== Prepare Target ================================== -->

<!--

 The "prepare" target is used to create the "build" destination directory,

 and copy the static contents of your web application to it. If you need

 to copy static files from external dependencies, you can customize the

 contents of this task.

 Normally, this task is executed indirectly when needed.

-->

 <target name="prepare">

 <!-- Create build directories as needed -->

 <mkdir dir="${build.home}"/>

 <mkdir dir="${build.home}/WEB-INF"/>

 <mkdir dir="${build.home}/WEB-INF/classes"/>

 <!-- Copy static content of this web application -->

 <copy todir="${build.home}">

 <fileset dir="${web.home}"/>

 </copy>

 <!-- Copy external dependencies as required -->

 <!-- *** CUSTOMIZE HERE AS REQUIRED BY YOUR APPLICATION *** -->

 <mkdir dir="${build.home}/WEB-INF/lib"/>

 <!-- from IBM's XML Security Suite -->

 <copy todir="${build.home}/WEB-INF/lib" file="${are.jar}"/>

 <copy todir="${build.home}/WEB-INF/lib" file="${xml4j.jar}"/>

 <copy todir="${build.home}/WEB-INF/lib" file="${xss4j.jar}"/>

 <!-- Copy static files from external dependencies as needed -->

 <!-- *** CUSTOMIZE HERE AS REQUIRED BY YOUR APPLICATION *** -->

 </target>

<!-- ==================== Reload Target =================================== -->

<!--

 The "reload" target tells the specified Tomcat 4 installation to dynamically

 reload this web application, to reflect changes in the underlying classes or

 the "web.xml" deployment descriptor.

-->

 <target name="reload" depends="compile"

 description="Reload application on servlet container">

 <reload url="${manager.url}"

 username="${manager.username}"

 password="${manager.password}"

 path="${app.path}"/>

 </target>

<!-- ==================== Remove Target =================================== -->

<!--

 The "remove" target tells the specified Tomcat 4 installation to dynamically

 remove this web application from service.

 NOTE: This is the logical opposite of the "install" target.

-->

 <target name="remove"

 description="Remove application on servlet container">

 <remove url="${manager.url}"

 username="${manager.username}"

 password="${manager.password}"

 path="${app.path}"/>

 </target>

</project>

PAGE
7

