
XML and RDF are the current

standards for establishing

semantic interoperability on the

Web, but XML addresses only

document structure. RDF better

facilitates interoperation

because it provides a data

model that can be extended to

address sophisticated ontology

representation techniques.

T he World Wide Web is possible because a set of widely established
standards guarantees interoperability at various levels. Until now,
the Web has been designed for direct human processing, but the

next-generation Web, which Tim Berners-Lee and others call the “Seman-
tic Web,” aims at machine-processible information.1 The Semantic Web
will enable intelligent services—such as information brokers, search agents,
and information filters—which offer greater functionality and interoper-
ability than current stand-alone services.

The Semantic Web will only be possible once further levels of interop-
erability have been established. Standards must be defined not only for the
syntactic form of documents, but also for their semantic content. Notable
among recent W3C standardization efforts are XML/XML schema and
RDF/RDF schema, which facilitate semantic interoperability.

In this article, we explain the role of ontologies in the architecture of
the Semantic Web. We then briefly summarize key elements of XML and
RDF, showing why using XML as a tool for semantic interoperability will
be ineffective in the long run. We argue that a further representation and
inference layer is needed on top of the Web’s current layers, and to estab-
lish such a layer, we propose a general method for encoding ontology rep-
resentation languages into RDF/RDF schema. We illustrate the extension
method by applying it to Ontology Interchange Language (OIL), an ontol-
ogy representation and inference language.2

ONTOLOGIES: DOMAIN CONCEPTUALIZATION
Ontologies can play a crucial role in enabling Web-based knowledge pro-
cessing, sharing, and reuse between applications. Generally defined as
shared formal conceptualizations of particular domains, ontologies pro-
vide a common understanding of topics that can be communicated
between people and application systems.

Ontologies are used in e-commerce to enable machine-based commu-
nication between buyers and sellers; vertical integration of markets (such
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as VerticalNet [http://www.verticalnet.com]); and
description reuse between different marketplaces.
Search engines also use ontologies to find pages
with words that are syntactically different but
semantically similar.

An ontology typically contains a hierarchy of
concepts within a domain and describes each con-
cept’s crucial properties through an attribute-value
mechanism. Further relations between concepts
might be described through additional logical sen-
tences. Finally, constants (such as “January”) are
assigned to one or more concepts (such as
“Month”) in order to assign them their proper type.

The OIL ontology consists of slot definitions
(slot-def) and class definitions (class-def). Figure 1
is an example ontology (though it omits slot defi-
nitions due to space constraints). A slot-def describes
a binary relation between two entities. A class-def
associates a class name with a class description and
consists of the following components (any of which
can be omitted):

� definition type can be either “defined” or “prim-
itive.” For defined types, a class is completely
specified in the class definition. For primitive
types, the conditions in the class definition are
necessary, but insufficient for determining class
membership.

� slot constraint restricts the possible values a slot
can have when applied to an instance of the class.

� subclass-of relates the defined class to a list of
one or more class expressions—class names, slot
constraints, or an arbitrarily complex Boolean
combination of these. Hence, the class being
defined is a subclass of those defined by each
class expression.

The main components of a slot constraint are:

� name—a string that delineates the slot being
constrained.

� value-type—a list of one or more class expres-
sions that are range constraints for the slot with

class-def animal % animals are a class
class-def plant % plants are a class
        subclass-of NOT animal % that is disjoint from animals
class-def tree
        subclass-of plant % trees are a type of plants
class-def branch
         slot-constraint is-part-of % branches are parts of trees
               has-value tree
class-def leaf
          slot-constraint is-part-of % leaves are parts of branches
               has-value branch
class-def defined carnivore % carnivores are animals
          subclass-of animal
          slot-constraint eats % that eat only other animals
               value-type animal
class-def defined herbivore % herbivores are animals, but not carnivores
          subclass-of animal,
          slot-constraint eats % that eat only plants or parts of plants
               value-type plant 

OR (slot-constraint is-part-of has-value plant)
class-def giraffe % giraffes are herbivores
          subclass-of herbivore
          slot-constraint eats % and they eat leaves
               value-type leaf
class-def lion
           subclass-of animal % lions are also animals
           slot-constraint eats % but they eat herbivores
                value-type herbivore
class-def tasty-plant % tasty plants are plants that are eaten by
           subclass-of plant % both herbivores and carnivores
           slot-constraint eaten-by
                 has-value herbivore, carnivore

NOT carnivore

Figure 1. Example ontology defining African wildlife. The hierarchy of concepts is formulated using the
Ontology Interchange Language.
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respect to the class defined. All instances are
related by the slot to an instance of the class
defined by it and must be instances of all the
class expressions in the list. For example, if a
class has a slot eats with the slot constraint
value-type animals, then instances of the class
only eat animals.

� has-value—a list of one or more class expressions
in which all instances of the class defined by the
slot must be related via the slot to at least one
instance of each class expression in the list. For
example, if a class has a slot eats with the slot con-
straint has-value zebra, wildebeest, then each
instance of the class eats at least one instance of
class zebra and one of class wildebeest. (It might
also eat instances of other classes, such as gazelle.)

XML and RDF each have their merits as a foun-
dation for the Semantic Web, but RDF provides
more suitable mechanisms for applying ontology
representation languages like OIL to the task of
interoperability. To argue this point, we will first
briefly describe XML and RDF and then discuss
their respective merits for knowledge representa-
tion on the Web.

XML GRAMMARS
XML is already widely known in the Internet com-
munity and is the basis for a rapidly growing number
of software development activities.3 It is designed for
markup in documents of arbitrary structure, as
opposed to HTML, which was designed for hyper-
text documents with fixed structures.

A well-formed XML document creates a balanced
tree of nested sets of open and close tags, each of
which can include several attribute-value pairs. There
is no fixed tag vocabulary or set of allowable combi-
nations, so these can be defined for each application.
In XML 1.0, this is done using a document type def-
inition to enforce constraints on which tags to use
and how they should be nested within a document.
A DTD defines a grammar to specify allowable com-
binations and nestings of tag names, attribute names,
and so on. Developments are well under way at
W3C to replace DTDs with XML-schema defini-
tions.4,5 Although XML schema offer several advan-
tages over DTDs, their role is essentially the same:
to define a grammar for XML documents.

Figure 2 shows an example serialization of part
of the ontology from Figure 1. The basic XML data
model is a labeled tree, where each tag corresponds
to a labeled node in the model, and each nested
subtag is a child in the tree. Of course, this example

shows just one possible XML-based syntax for the
ontology. XML is foremost a means for defining
grammars, and because different grammars can be
used to describe the same content, XML allows
multiple serializations. The information in the final
class definition in Figure 2, for example, could be
expressed in an entirely different form as:

<class-def>
<name>branch</name>
<slot-constraint>

<name>is-part-of</name>
<has-value>tree</has-value>

</slot-constraint>
</class-def>

XML is used to serve a range of purposes:

� Serialization syntax for other markup languages.
For example, the Synchronized Multimedia
Integration Language (SMIL)6 is syntactically
just a particular XML DTD; it defines the
structure of a SMIL document. The DTD is
useful because it facilitates a common under-
standing of the meaning of the DTD elements
and the structure of the DTD.

� Semantic markup of Web pages. An XML serial-
ization (such as the example above) can be used

<class-def>
     <class name="plant"/>
     <subclass-of>
           <NOT><class name="animal"/></NOT>
     </subclass-of>
</class-def>
<class-def>
<class name="tree"/>
     <subclass-of>
           <class name="plant"/>
      </subclass-of>
</class-def>
<class-def>
       <class name="branch"/>
       <slot-constraint>
               <slot name="is-part-of"/>
               <has-value>
                   <class name="tree"/>
               </has-value>
       </slot-constraint>
</class def>

Figure 2. Partial XML serialization of the example
ontology in Figure 1. This XML document contains
one possible serialization. It introduces a tag for
each part of the grammar.
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in a Web page with an XSL style sheet to ren-
der the different elements appropriately.7

� Uniform data-exchange format. An XML serial-
ization can also be transferred as a data object
between two applications.

It is important to note that a DTD specifies only
syntactic conventions; any intended semantics are
outside the realm of the XML specification.

RDF: RESOURCE METADATA
The Resource Description Framework is a recent
W3C recommendation designed to standardize the
definition and use of metadata—descriptions of
Web-based resources.8 However, RDF is equally
well suited to representing data.

RDF Foundations
The basic building block in RDF is an object-
attribute-value triple, commonly written as A(O,V).
That is, an object O has an attribute A with value
V. Another way to think of this relationship is as a
labeled edge A between two nodes, O and V:
[O]–A→[V]. This notation is useful because RDF
allows objects and values to be interchanged. Thus,
any object can play the role of a value, which
amounts to chaining two labeled edges in a graph-
ic representation. The graph in Figure 3, for exam-
ple, expresses the following three relationships in
A(O,V) format:

hasName
(‘http://www.w3.org/employee/id1321’,
”Jim Lerners”)

authorOf
(‘http://www.w3.org/employee/id1321’,
’http://www.books.org/ISBN0012515866’)

hasPrice
(‘http://www.books.org/ISBN0012515866’,
“$62”).

RDF also allows a form of reification in which
any RDF statement can be the object or value of a
triple, which means graphs can be nested as well as
chained. On the Web this allows us, for example,
to express doubt or support of statements created
by other people. Finally, it is possible to indicate
that a given object is of a certain type, such as stat-
ing that “ISBN0012515866” is of the rdf:type book,
by creating a type arc referring to the book defini-
tion in an RDF schema:

<rdf:Description about=“www.books.org/
ISBN0012515866”>

<rdf:type rdf:resource=“http://description.org/
schema/#book”>

</rdf:Description>

It is important to note that RDF is designed to
provide a basic object-attribute-value data model
for metadata. Other than this intentional seman-
tics—described only informally in the standard—
RDF makes no data-modeling commitments. In
particular, no reserved terms are defined for further
data modeling. As with XML, the RDF data model
provides no mechanisms for declaring property
names that are to be used.

RDF Schema
Just as XML schema provides a vocabulary-definition
facility, RDF schema lets developers define a partic-
ular vocabulary for RDF data (such as authorOf) and
specify the kinds of object to which these attributes
can be applied.9 In other words, the RDF schema
mechanism provides a basic type system for RDF
models. This type system uses some predefined terms,
such as Class, subPropertyOf, and subClassOf, for appli-
cation-specific schema. RDF schema expressions are
also valid RDF expressions (just as XML schema
expressions are valid XML).

RDF objects can be defined as instances of one

Jim Lerners

$62http://www.w3.org/
employee/id132

s:hasName

s:authorOf www.books.org/
ISBN0012515866

s:hasPrice

Figure 3. RDF graph. RDF is defined as syntax independent; the RDF data model defines objects and
relationships between them.
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or more classes using the type property. The sub-
ClassOf property allows the developer to specify the
hierarchical organization of such classes, and sub-
PropertyOf does the same for properties. Constraints
on properties can also be specified using domain
and range constructs, which can be used to extend
both the vocabulary and the intended interpreta-
tion of RDF expressions. This is the mechanism we
used to translate an ontology representation lan-
guage to RDF.

KNOWLEDGE REPRESENTATION
The Web is the first widely exploited many-to-
many data-interchange medium, and it poses new
requirements for any exchange format:

� Universal expressive power. Because it is not pos-
sible to anticipate all potential uses, a Web-
based exchange format must be able to express
any form of data.

� Syntactic interoperability. Applications must be
able to read the data and get a representation
that can be exploited. Software components
like parsers or query APIs, for instance, should
be as reusable as possible among different appli-

cations. Syntactic interoperability is high when
the parsers and APIs needed to manipulate data
are readily available.

� Semantic interoperability. One of the most
important requirements for an exchange format
is that data be understandable. Whereas syn-
tactic interoperability is about parsing data,
semantic interoperability is about defining
mappings between terms within the data,
which requires content analysis.

Using XML
XML fulfills the universal expressive power require-
ment because anything for which a grammar can be
defined can be encoded in XML. It also fulfills the
syntactic interoperability requirement because an
XML parser can parse any XML data, and is usually
a reusable component. When it comes to semantic
interoperability, however, XML has disadvantages.

XML’s major limitation is that it just describes
grammars. There is no way to recognize a semantic
unit from a particular domain because XML aims at
document structure and imposes no common inter-
pretation of the data contained in the document.
Although this limitation is at the heart of the “schema

XML-based 
communication
using DTD A

Translation

<xsd:schema xmlns:xsd="http://...">
     <xsd:annotation>
    </xsd:...
</xsd:schema>

Conceptual
domain model

DTD or XML schema

Deployment

Sender Recipient

Parse
 tree

Application 2Application 1 XML parser

Figure 4. DTD development and point-to-point communication with XML. Using XML  to establish com-
munication between applications requires that the domain model be encoded in XML. Both parties must
agree on a translation schema before any communication can take place.
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wars” currently raging at forums such as Biztalk.com
and RosettaNet.org, it is not yet widely recognized.

Fixed vs. flexible communication. Figure 4 (previous
page) shows two applications trying to communicate
with each other. Both agree on the use and intended
meaning of the document structure given by DTD
A, but a model of the domain of interest must be
built to clarify the kind of data being sent before the
data can be exchanged. (This model is usually
described in terms of objects and relations, as it is in
Unified Modeling Language10 or entity-relationship
modeling.11) A DTD or an XML schema is then con-

structed from the domain
model—usually in an ad-hoc way.

Figure 5a shows a simple bina-
ry relationship, principal (owner),
between two concepts, purchase
order and company. Figure 5b
shows several possibilities for
encoding the relationship in
XML. A DTD just describes a
grammar, and there are multiple
ways to encode any given domain
model into a DTD, so no direct
connection remains between
them. It is impossible to deter-
mine from the DTDs the con-
cepts and relation between them,
and significantly more encoding
options exist when there are, for
example, multiple ordered rela-
tionships. It is thus difficult to
reengineer the domain model
from the DTDs. (Note, however,
that the relationship depicted in
Figure 5a represents a valid RDF
model.)

The advantage of using XML
in this case is limited to the
reusability of the parsing software
components. This is certainly
useful, but this scenario deals
with a one-on-one communica-
tion between parties with an
advance agreement. It neglects
the reality of the Web, which
requires communicating with
multiple partners that change
frequently.

Not the silver bullet. XML is use-
ful for data interchange between

applications that both know what the data is, but
not for situations where new communication part-
ners are frequently added. On the Web, new infor-
mation sources continually become available and
new business partners join existing relationships.
It is thus important to reduce the costs of adding
communication partners as much as possible. As
the steps in Figure 6 show, however, using XML
and DTDs (or schema) for this operation requires
much more effort than necessary.

One domain model cannot be mapped easily to
another because they are both encoded in DTDs. A
direct mapping based on the different DTDs is not

Encoding DTD Example XML Instance Data

<!ELEMENT PurchaseOrder (principal)>
<!ATTLIST PurchaseOrder
            id ID #REQUIRED>
<!ELEMENT principal (Company)>
<!ATTLIST Company
            id ID #IMPLIED>

<PurchaseOrder id="X">
  <principal>
    <Company id="Y"/>
  </principal>
<PurchaseOrder>

<!ELEMENT principal (PurchaseOrder,
Company)>
<!ELEMENT PurchaseOrder (#CDATA)>
<!ELEMENT Company (#CDATA)>

<principal>
  <PurchaseOrder>X</PurchaseOrder>
  <Company>Y</Company>
</principal>

<!ELEMENT PurchaseOrder (id, principal)>
<!ELEMENT id (#CDATA)>
<!ELEMENT principal (Company)>
<!ELEMENT Company (id)>

<PurchaseOrder>
  <id>X</id>
  <principal>
    <Company>
      <id>Y</id>
    </Company>
  </principal>

</PurchaseOrder>

<!ELEMENT rel EMPTY>
<!ATTLIST rel
            src CDATA #REQUIRED
            type CDATA #REQUIRED
            dest CDATA #REQUIRED>

<rel
   src="X"
   type="principal"
   dest="Y"/>

<!ELEMENT PurchaseOrderInfo (Company)>
<!ATTLIST PurchaseOrderInfo
            orderID ID #REQUIRED>
<!ELEMENT Company (#CDATA)>

<PurchaseOrderInfo orderID="X">
   <Company>Y</Company>
</PurchaseOrderInfo>

Principal

(a)

(b)

Purchase
order Company

Figure 5. Binary relationship (a) and XML encoding possibilities (b). The same informa-
tion can be represented in many ways in XML. Communication between parties can be
difficult because they must first establish a common understanding of the information.
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possible as the task is not to map grammars to each
other, but to map objects and relations between
domains of interest. Therefore, we must reengineer
the original domain models and define the mappings
between the concepts and relationships. (Techniques
developed in knowledge engineering and database
research are often helpful for this task.12,13) After-
ward, the additional step of defining the mapping
between DTDs must be performed.

To exchange XML documents, the domain map-
pings must be translated using mapping procedures
such as XSL Transformations (XSLT) for grammars.
This is again a high-effort task and depends on the
encoding used to construct the initial DTDs. Addi-
tional effort is required in translating the reengi-
neered domain model into an XML DTD and gen-
erating mapping procedures for XML documents
based on established domain mappings. Using a
more suitable formalism than pure XML for data
transfer can save much of this additional effort.

Using RDF
RDF’s nested object-attribute-value structure sat-
isfies our universal expressive power requirement
for an exchange format, although this is not easy to
see. Application-independent RDF parsers are also
available, so RDF fulfills our syntactic interoper-
ability requirement as well.

When it comes to semantic interoperability,
RDF has significant advantages over XML: The
object-attribute structure provides natural seman-
tic units because all objects are independent enti-
ties. A domain model—defining objects and rela-
tionships—can be represented naturally in RDF, so
translation steps are not necessary as they are with
XML. To find mappings between two RDF descrip-
tions, techniques from research in knowledge rep-
resentation are directly applicable. Of course, this
does not solve the general interoperability problem
of finding semantics-preserving mappings between
objects, but using RDF for data interchange raises
the level of potential reuse of software components
much beyond parser reuse, which is all XML offers.
Furthermore, the RDF model (and software using
the RDF model) can still be used even if the current
XML syntax changes or disappears because RDF
describes a layer independent of XML.

Ideally, we would like a universal shared knowl-
edge-representation language to support the
Semantic Web, but for a variety of pragmatic and
technological reasons, this is unachievable in prac-
tice. Instead, we will have to live with a multitude
of metadata representations. RDF contains as
much knowledge-representation technology as can
be shared between widely varying metadata lan-
guages. Furthermore, the RDF schema language is

<xsd:schema xmlns:xsd="http://...">
    <xsd:annotation>A-Schema
   </xsd:...
</xsd:schema>

<xsd:schema xmlns:xsd="http://...">
    <xsd:annotation>B-Schema
   </xsd:...
</xsd:schema>

<xsl:stylesheet version="1.0”
   xmlns:xsl="http://....Transform"
  <xsl:template match="/">
     ....
   </xsl:template>
</xsl:stylesheet>

<xsl:stylesheet version="1.0”
  xmlns:xsl="http://....Transform"
 <xsl:template match="/">
    ....
  </xsl:template>
</xsl:stylesheet>

Matching

Step 1:
Reengineer
conceptual model

Step 2:
Match
domain model rules 
to XML document
translation rules

DTD A DTD B

Step 3:
Translate 
XSLT document from
DTD A to DTD B
(and B to A)

Figure 6. Alignment of conceptual models. Several additional steps are necessary in XML to add new communication part-
ners to an existing communication, including the reengineering of the conceptual model used to construct the DTDs.
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powerful enough to define richer languages on top
of RDF’s limited primitives.

ENRICHING RDF
Before showing how RDF can be enriched to
define sophisticated data models, we recall Brach-
man’s distinction of the three layers in a knowledge
representation system14:

� the implementation level consists of data struc-
tures for a particular implementation;

� the logic level defines, in an abstract way, the
inferences that are performed by the system; and

� the epistemological level defines adequate repre-
sentation primitives for expressing knowledge
in a convenient way—usually those used by a
knowledge engineer.

The epistemological level is usually defined by a
grammar that defines the language of interest, but the
representation primitives can also be regarded as an
ontology—as objects of a particular domain. Using
this view, domain-modeling techniques are again suit-
able for defining a knowledge representation lan-
guage. Thus, the epistemological level is itself an
ontology that defines the terms of the representation

language. Defining an ontology in RDF means defin-
ing an RDF schema, which specifies all the concepts
and relationships of the particular language. (One
example of a language definition as an ontology is the
RDF schema, which is defined in terms of itself.9)

Defining a More Expressive
Ontology Language
Figure 7 shows how the RDF schema mechanism can
be used to define elements of OIL. The shaded
ellipses are elements that must be added to the exist-
ing schema definition to obtain a schema for OIL.

We illustrate this principle with an example
from the ontology in Figure 1. The definition of
herbivore uses the subClassOf modeling primitive,
which is a relation that identifies the two argu-
ments as objects: the class (herbivore) and a sophis-
ticated class expression (animal AND NOT carni-
vore). The class expression can justifiably be
viewed as an object because the expression animal
AND NOT carnivore indeed defines a new
(unnamed) class.

Defining the language primitives as an ontology
results in the RDF graph depicted in Figure 7, which
defines several properties and classes. The class
oil:ClassExpression is a placeholder class that groups

Modeling Semantics

There are two main approaches to modeling semantics in
computer science: declarative and procedural semantics.

With declarative semantics, an expression E is given
meaning by mapping it to another well-understood for-
malism, or by stating the conclusions or properties that fol-
low from E. The expression can be understood without ref-
erence to any specific computational procedure, which is
why this approach is dubbed “declarative.”

Using procedural semantics, expression E is given mean-
ing by referring to the behavior that some real or virtual
procedure (or program, or machine) will exhibit on E. Often
the only way to obtain the expression’s meaning using pro-
cedural semantics is to simply execute the procedure and
observe the outcome.

This difference between declarative and procedural
semantics loosely coincides with the difference between the
XML and RDF approaches to Web-page semantics. As we’ve
argued, an XML expression has no inherent semantics, and its
meaning is only determined by the actions that one or more
programs undertake on it (whether tag-nesting is interpreted
as part-of or as a subtype-of, for instance). An RDF expres-
sion, on the other hand, has a specific declarative semantics

(such as the intended meaning of subClassOf), and this is
specified independently of any RDF processor; that is, all RDF
processors must conform to the intended semantics.

Together with the W3C, we stand in a long tradition in
computer science and AI, which argues that the declarative
approach to semantics leads to more sharable and exten-
sible information and knowledge sources. The arguments
about XML versus RDF do not change substantially when
XML schema is used instead of XML DTDs for specifying
XML document structure. 

Readers might be tempted to compare XML schema’s
“type-extension” mechanism with the subclassOf mecha-
nism in RDF schema, but the similarity between them is only
superficial. In fact, the type-extension mechanism cannot
be used to model ontological subtypes at all: in XML
schema, if type T′ is derived from type T, then elements of
the derived type T′ are not necessarily members of the orig-
inal type T. In the subClassOf relationship in RDF schema,
on the other hand, a member of a subclass is also a mem-
ber of the original superclass. As a result, subClassOf can
be used to model ontological subtyping, whereas XML
schema’s type extension cannot.
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various types of class expressions for definitional pur-
poses. oil:AND and oil:NOT are two particular types
of class expressions. The property oil:hasOperand is
an auxiliary property needed to connect an opera-
tor-type class expression with another class expres-
sion. The existing description of the primitive
rdfs:subClassOf is extended so that the range now
includes oil:ClassExpression (instead of just rdfs:Class).
Also, the existing description of rdfs:Class is extend-
ed: It is also a subclass of oil:ClassExpression (because
it is considered a particular type of class expression).

Using the graph in Figure 7, the expression:

class-def defined herbivore subclass-of animal,
NOT carnivore 

can be described in RDF as depicted in Figure 8.
Because every ontology (RDF schema) uses its

own namespace (we chose the prefix oil), terms
from different ontologies can be mixed in one RDF
document without confusion.3 RDF defines a clear
object structure, so it is possible to make assertions
with one language about an object defined in terms
of another language. For example, we could mix
the ontology with behavior statements about dif-
ferent animal classes using a finite-state automaton
language.15 This is not possible in XML because a
tag’s meaning (object, attribute, value, and so on)
is not defined, and nothing can be assumed about
the object structure.

Using OIL
The domain ontology defines a vocabulary—prop-
erties and classes—that can be used to write instance

information in RDF. We propose a mechanism for
extending the RDF data model with modeling prim-
itives from any ontology language. Our approach for
using the primitives from ontology language L to
describe a particular domain has three steps:

� Step 1. Describe language L’s modeling primi-
tives using RDF schema (effectively writing the
meta-ontology of L in RDF schema).

� Step 2. Describe a specific ontology in L using
the resulting RDF schema document.

� Step 3. Use the RDF schema documents to
describe instances of the specific L ontology
modeled in step 2.

Table 1 (next page) lists the expression types for
each step, along with specific examples of what
each produces and the RDF vocabulary used for
encoding. This three-step approach suggests an
additional requirement for an ontology language
L: Because RDF schema is already an ontology def-
inition language, L must be compatible with it.
Thus, existing RDF schema processors can make
maximum use of ontologies defined in L. The same
tools are applicable for all possible Ls, which leads
to flexibility in designing customized languages.

MERGING AN ONTOLOGY
LANGUAGE WITH RDF SCHEMA
Defining an ontology language as an extension of
RDF schema means every RDF-schema ontology
is valid in the new language (for example, an OIL
processor will also understand RDF schema).
However, by defining the new language as closely

rdf:Property

rdf:type

rdf:type

rdf:type
rdf:type

rdf:type
oil:ClassExpressionoil:hasOperand

rdf:subClassOf

rdf:subClassOf

rdf:subClassOf

rdfs:Class 

oil:NOToil:AND

rdfs:domain

rdfs:domain

rdfs:range

rdfs:range

Figure 7. RDF graph. The relationships between RDF schema primitives and OIL modeling primitives are
described using RDF schema. 
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as possible to RDF schema, we also maximize reuse
of existing RDF-schema-based applications and
tools. Because the ontology language usually con-
tains vocabulary the RDF schema processor does
not know, however, 100-percent compatibility is
not possible.

In OIL, a class can be a subclass of a Boolean
class expression, but the original RDF subclass
statement only allows primitive classes as values.
We thus had to extend the OIL subclass statement
definition. We also introduced oil:SlotConstraint to
allow restrictions on slots in class definitions—
another aspect of OIL that is unavailable in RDF
schema.  To maintain maximum compatibility with
existing applications, however, it is recommended
to use the RDF schema vocabulary wherever pos-

sible (for a case study on how to do this with OIL,
see Broekstra et al.16).

RDF follows an object-attribute-value model,
so we made a basic design decision that every
OIL expression would be an object. To allow
subexpressions, we introduced auxiliary attributes
that do not correspond to any original OIL
vocabulary  (oil:hasOperand, oil:hasClass, and
oil:hasProperty).

The major integration points between RDF/RDF
schema and OIL are defined by the abstract OIL class
ClassExpression. Furthermore, OIL slots are realized
as instances of rdf:Property or as subproperties of the
original rdf:Property. The subslot relationship is also
expressed by original RDF means—namely, the
rdfs:subPropertyOf relationship. rdf:Property is enriched

rdf:Class

rdf:type rdf:type

rdf:type

herbivore
rdf:subClassOf

oil:hasOperand

oil:hasOperand

oil:hasOperand
oil:AND

carnivore

oil:NOT 

animal

Figure 8. RDF graph for the RDF-OIL definition of herbivore. The figure shows the subclass definition of
herbivore (Figure 1) expressed as an RDF graph. Blank ovals indicate anonymous resources, which are
necessary as intermediate nodes.

Table 1. Steps in the OIL approach to using an ontology language to extend RDF.

Step Expression Type Example Encoding

1 Modeling primitives oil:AND, oil:NOT, … RDF: Meta-ontology in RDF schema
of ontology language L

2 Specific ontology Class-def giraffe RDF: Ontology (using meta-ontology
expressed in L Subclass of herbivore and RDF schema)

Slot-constraint eats
Value-type leaf

3 Instances of the specific animal12-eats-leaf34… RDF (RDF schema, meta-ontology,
ontology and ontology)
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by several properties that specify inverse and transi-
tive roles and cardinality constraints, which were not
originally possible in RDF/RDF schema (for details,
see Horrocks et al.2).

Class definitions are inherited from the original
rdfs:Resource from the RDF schema specification.
Classes can be related with arbitrary class expres-
sions via subclass or equivalence relationships. By
doing this, existing classes from RDFS vocabularies
can be accessed and refined in OIL descriptions.
Table 2 contains some of the OIL mappings.

We have implemented an inference engine for
OIL based on the description logic inference engine,
FaCT (http://www.cs.man.ac.uk/~horrocks/FaCT/).
We have also performed several case studies, includ-
ing modeling an ontology for the CIA World Fact-
book (see http://www.ontoknowledge.org/oil/), to
test the overall framework’s flexibility. Furthermore,
the DARPA Agent Markup Language (http://www.
daml.org) uses the principles of OIL as well.

CHALLENGES
The Web community currently regards XML as the
most important step toward semantic integration,
but we argue that this is not true in the long run.
Semantic interoperability will be a sine qua non for
the Semantic Web, but it must be achieved by
exploiting the current RDF proposals, rather than
XML labeling. The RDF data model is sound, and
approaches from artificial intelligence and knowl-
edge engineering for establishing semantic inter-
operability are directly applicable to extending it.

Our experience with OIL shows that this propos-
al is feasible, and a similar strategy should apply to
any knowledge-modeling language. The challenge is
now for the Web and AI communities to expand this
generic method for creating Web-enabled, special-
purpose knowledge representation languages. �
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