95-712 OOP/Java Carnegie Mellon University

95-712 OOP/Java Homework 5 Due: Thursday July 31, 2008

Genetic Algorithm Project

1. The next step in the genetic programming project is to evolve a new generation of trees. Starting code is available on Blackboard. Under Course Documents see the zip file called CrossoverForStudents.zip. This code includes a new class (NodePairPlus) and a number of methods that perform the crossover operation. These methods are GPTree.randomParentAndChild(), traceTree() in Const, Variable and Binop, and duplicate() in all the Node subclasses. Finally, there is a crossover() method included in the test class.

Your first job is to analyze the crossover process and make sure you understand it! The next, crucial, step is to write a method chooseTreeProportionalToFitness() for the Generation class. As we discussed in class, trees that are more fit should have a higher probability of being chosen to be parents. To do this, the evalAll() method in Generation needs to be modified slightly, so that better trees have a larger fitness. The easiest way to do this is to just replace the current fitness value with 1/fitness. Then a tree that better matches the data will have a higher fitness.

The method chooseTreeProportionalToFitness() should randomly choose a tree in Generation so that more fit trees are more likely to be chosen. Here is a simple example. Suppose we have just four trees, with the following fitness values:

Tree# sum of squares (old fitness) 1/sum of squares (new fitness)

1 4 1/4

2 6 1/6

3 2 1/2

4 3 1/3

 15/12

We can visualize the tree fitnesses like this:

 #1 #2 #3 #4

0 3/12 5/12 11/12 15/12

If we now choose a number at random between 0 and 15/12 (=1.25), the tree that is chosen is the one in whose interval the random number lies. So if 0.349 is the random number, tree #2 is selected, since 0.349 is between 3/12 = 0.25 and 5/12 = 0.417. If the random number is 1.012, tree #4 is chosen, and so forth. You can see that tree #3 is the most likely tree to be chosen, although all the trees have some chance to be chosen.

Now create an Evolver class. This class’s constructor should take a Generation, a DataSet, and a Random object as arguments.

Write a method makeNewGeneration() that creates a new generation of trees, and replaces the old generation with this new one. The new generation should be the same size as the original. To make the new generation, choose pairs of trees, proportional to their fitness, and cross them over to make a new pair of children. Store these children in a new Generation object, and repeat this process until the new generation is complete.

Write a new class TestEvolver that includes code that creates a new Generation and DataSet, and then creates from them an Evolver. Print the fitness of the best tree in the first generation, then evolve 5 successive generations, printing the fitness of the best tree of each generation.

2. Document your new classes(only) with javadoc, and submit the directory containing all the .html files for this project. Also, submit a zip file of all of the source code for this project.

3. Use Genetic Programming to find the exact equation that generated the data in the file Data2.dat.

PAGE
1

