
95-702 Transactions 1

95-702 Distributed Systems
Transactions and Concurrency

Control

Transaction Notes mainly from Coulouris
Distributed Transactions Notes adapted from Tanenbaum’s

“Distributed Systems Principles and Paradigms”

Transactions

•  A transaction is specified by a client as a set of
operations on objects to be performed as an
indivisible unit by the servers managing those
objects.

•  The servers must guarantee that either the entire
transaction is carried out and the results
recorded in permanent storage or, in the case
that one or more of them crashes, its effects are
completely erased.

95-702 Transactions 2

95-702 Transactions 3 95-702 Transactions 3 95-702 Transactions 3

Transactions (ACID)
•  Atomic: All or nothing. No intermediate states

are visible.
•  Consistent: system invariants preserved, e.g., if

there were n dollars in a bank before a transfer
transaction then there will be n dollars in the
bank after the transfer.

•  Isolated: Two transactions do not interfere with
each other. They appear as serial executions.

•  Durable: The commit causes a permanent
change.

Recall The Synchronized
Keyword

 private double balance;

 public synchronized void deposit(double amount) throws
 RemoteException {
 add amount to the balance
 }

 public synchronized void withdraw(double amount) throws
 RemoteException {
 subtract amount from the balance
 }

95-702 Transactions 4

If one thread invokes
a method it acquires a
lock. Another thread
will be blocked until
the lock is released.

These operations are
atomic.

This is all that is required for many applications.

Communicating Threads

Consider a shared queue and two
operations:

 synchronized first() { removes from front }
 synchronized append() { adds to rear }

Is this sufficient? No. If the queue is empty
the client of first() will have to poll on the
method. It is also potentially unfair. 95-702 Transactions 5

Communicating Threads

Consider again the shared queue and two
operations:
 synchronized first() {
 if queue is empty call wait()
 remove from front
 }
 synchronized append() {
 adds to rear
 call notify()
 }

95-702 Transactions 6

When threads can synchronize
their actions on an object by means
of wait and notify, the server holds
on to requests that cannot
immediately be satisfied and the
client waits for a reply until
another client has produced
whatever they need.

Note that both methods are
synchronized. Only one thread at
a time is allowed in.

This is general. It can get tricky fast.

Back to Transactions

•  A client may require that a sequence of
separate requests to a single server be
atomic.

 - Free from interference from other
 concurrent clients.
 - Either all of the operations complete
 successfully or they have no effect at all
 in the presence of server crashes.

95-702 Transactions 7

Assume Each Operation Is
Synchronized

Client 1 Transaction T;
a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

95-702 Transactions 8

Client 2 Transaction W;
total = a.getBalance();
total = total +
 b.getBalance();
total = total +
 c.getBalance(); Are we OK?

Assume Each Operation Is
Synchronized

Client 1 Transaction T;
a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

95-702 Transactions 9

Client 2 Transaction W;
total = a.getBalance();
total = total +
 b.getBalance();
total = total +
 c.getBalance(); Inconsistent retrieval!

Assume Each Operation Is
Synchronized

Client 1 Transaction T;
bal = b.getBalance();
b.setBalance(bal*1.1);

95-702 Transactions 10

Client 2 Transaction W;
bal = b.getBalance();
b.setBalance(bal*1.1);

Are we OK?

Assume Each Operation Is
Synchronized

Client 1 Transaction T;
bal = b.getBalance()
b.setBalance(bal*1.1);

95-702 Transactions 11

Client 2 Transaction W;
bal = b.getBalance();
b.setBalance(bal*1.1);

Lost Update!

Assume Each Operation Is
Synchronized

Transaction T;
a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

95-702 Transactions 12

The aim of any server that
supports transactions is to
maximize concurrency. So,
transactions are allowed to execute
concurrently if they would have
the same effect as serial execution.

Each transaction is created
and managed by a coordinator.

Example

Transaction T
tid = openTransaction();
 a.withdraw(tid,100);
 b.deposit(tid,100);
 c.withdraw(tid,200);
 b.deposit(tid,200);
closeTransaction(tid) or
abortTransaction(tid)

95-702 Transactions 13

Coordinator Interface:
 openTransaction() -> transID
 closeTransaction(transID) ->
 commit or abort
 abortTransaction(TransID)

Transaction Life Histories

95-702 Transactions 14

Successful Client Aborts Server Aborts
openTransaction openTransaction openTransaction
operation operation operation
operation operation operation
: : :
operation operation :
closeTransaction abortTransaction closeTransaction

returns an abort
from server

95-702 Transactions 15

Locks

•  A lock is a variable associated with a data item and
describes the status of that item with respect to
possible operations that can be applied to that item.

•  Generally, there is one lock for each item.
•  Locks provide a means of synchronizing the access

by concurrent transactions to the items.
•  The server sets a lock, labeled with the transaction

identifier, on each object just before it is accessed
and removes these locks when the transaction has
completed. Two types of locks are used: read locks
and write locks. Two transactions may share a read
lock.

This is
called
two
phase
locking.

95-702 Transactions 16

Example: Binary Lock (1)
Lock_Item(x)
B: if(Lock(x) == 0)
 Lock(x) = 1
 else {
 wait until Lock(x) == 0 and
 we are woken up.
 GOTO B
 }
Now, a transaction is free to use x.

Not interleaved with other
code until this terminates or
waits. In java, this would be a
synchronized method.

95-702 Transactions 17 Master of Information System
Management

Example: Binary Lock(2)
The transaction is done using x.

Unlock_Item(x)
 Lock(x) = 0
 if any transactions are waiting then
 wake up one of the waiting
 transactions. Not interleaved with other

code. If this were java, this
method would be synchronized.

95-702 Transactions 18 Master of Information System
Management

Locks Are Often Used To
Support Concurrent

Transactions
 Transaction T1 Transaction T2

 Lock_Item(x) Lock_Item(y)
 T1 uses x T2 uses y
 Unlock_Item(x) Unlock_Item(y)

If x differs from y these two transactions proceed concurrently.
If both want to use x, one waits until the other completes.

Think of these
as remote
procedure
calls being
executed
concurrently.

In reality, the
coordinator
would do the
locking.

Locks May Lead to Deadlock

95-702 Transactions 19

Four Requirements for deadlock:

 (1) Resources need mutual exclusion. They are not thread safe.
 (2) Resources may be reserved while a process is waiting for more.
 (3) Preemption is not allowed. You can't force a process to give
 up a resource.
 (4) Circular wait is possible. X wants what Y has and Y wants what Z
 has but Z wants what X has.

Solutions (short course):

 Prevention (disallow one of the four)
 Avoidance (study what is required by all before beginning)
 Detection and recovery (reboot if nothing is getting done)

95-702 Transactions 20

Deadlock

Source: G. Coulouris et al., Distributed Systems: Concepts and Design, Third Edition.

95-702 Transactions 21

Transactions May Be Needed on
More than One Server

Begin transaction BookTrip
 book a plane from Qantas
 book hotel from Hilton
 book rental car from Hertz
End transaction BookTrip

The Two Phase Commit Protocol is a classic solution.

95-702 Transactions 22

Client Talks to a Coordinator

BookTrip
Coordinator

BookPlane Participant

BookHotel Participant

BookRentalCar Participant

Different servers

BookTrip Client

openTrans Unique Transaction ID
TID

Recoverable objects needed
to book a plane

Recoverable objects needed
to book a hotel.

TID = openTransaction()

Recoverable objects needed
to rent a car.

Any server

95-702 Transactions 23

Client Uses Services

BookTrip
Coordinator

BookPlane Participant

BookHotel Participant

BookRentalCar Participant

Different servers

BookTrip Client

Recoverable objects needed
to book a plane

Recoverable objects needed
to book a hotel.

Call + TID

plane.bookFlight(111,”Seat32A”,TID)

Any server

Recoverable objects needed
to rent a car.

24

BookTrip
Coordinator

BookPlane Participant

BookHotel Participant

BookRentalCar Participant

Different servers

BookTrip Client

Recoverable objects needed
to book a plane

Recoverable objects needed
to book a hotel.

Participants Talk to Coordinator

The participant knows where the
coordinator is because that
information can be included in
the TID (eg. an IP address.)
The coordinator now has a pointer to the
participant.

The participant only
calls join if it has not
already done so.

join(TID,ref to participant)

95-702 Transactions 25

BookTrip
Coordinator

BookPlane Participant

BookHotel Participant

BookRentalCar Participant

Different servers

BookTrip Client

Recoverable objects needed
to book a plane

Recoverable objects needed
to book a hotel.

Suppose All Goes Well (1)

OK returned

OK returned

OK returned

Recoverable objects needed
to rent a car.

26

BookTrip
Coordinator

BookPlane Participant

BookHotel Participant

BookRentalCar Participant

Different servers

BookTrip Client

Recoverable objects needed
to book a plane

Recoverable objects needed
to book a hotel.

Suppose All Goes Well (2)

OK returned
OK returned

OK returned

CloseTransaction(TID) Called

Coordinator begins
2PC and this results in
a GLOBAL COMMIT
sent to each participant.

Recoverable objects needed
to rent a car.

27

BookTrip
Coordinator

BookPlane Participant

BookHotel Participant

BookRentalCar Participant

Different servers

BookTrip Client

Recoverable objects needed
to book a plane

Recoverable objects needed
to book a hotel.

This Time No Cars Available (1)

OK returned

OK returned

NO CARS AVAIL
abortTransaction(TID) called

Recoverable objects needed
to rent a car.

28

BookTrip
Coordinator

BookPlane Participant

BookHotel Participant

BookRentalCar Participant

Different servers

BookTrip Client

Recoverable objects needed
to book a plane

Recoverable objects needed
to book a hotel.

This Time No Cars Available (2)

OK returned

OK returned

NO CARS AVAIL
abortTransaction(TID) called

Coordinator sends a
GLOBAL_ABORT to all
particpants

Recoverable objects needed
to rent a car.

29

BookTrip
Coordinator

BookPlane Participant

BookHotel Participant

BookRentalCar Participant

Different servers

BookTrip Client

ROLLBACK CHANGES

ROLLBACK CHANGES

This Time No Cars Available (3)

OK returned

OK returned

NO CARS AVAIL
abortTransaction(TID)

abortTransaction

Each participant
Gets a GLOBAL_ABORT

ROLLBACK CHANGES

95-702 Transactions 30

BookTrip
Coordinator

BookPlane Participant

BookHotel Participant

BookRentalCar Participant

Different servers

BookTrip Client

Recoverable objects needed
to book a plane

Recoverable objects needed
to book a hotel.

BookPlane Server Crashes After
Returning ‘OK’ (1)

OK returned

OK returned

OK returned

Recoverable objects needed
to rent a car.

31

BookTrip
Coordinator

BookPlane Participant

BookHotel Participant

BookRentalCar Participant

Different servers

BookTrip Client

Recoverable objects needed
to book a plane

Recoverable objects needed
to book a hotel.

BookPlane Server Crashes After
Returning ‘OK’ (2)

OK returned
OK returned

OK returned

CloseTransaction(TID) Called

Coordinator excutes 2PC:
Ask everyone to vote.
No news from the BookPlane
Participant so multicast a
GLOBAL ABORT

Recoverable objects needed
to rent a car.

32

BookTrip
Coordinator

BookPlane Participant

BookHotel Participant

BookRentalCar Participant

Different servers

BookTrip Client

Recoverable objects needed
to book a plane

ROLLBACK

BookPlane Server Crashes after
returning ‘OK’ (3)

OK returned
OK returned

OK returned

CloseTransaction(TID) Called

ROLLBACK

GLOBAl ABORT

ROLLBACK

95-702 Transactions 33

Two-Phase Commit Protocol

BookTrip
Coordinator

BookPlane

BookHotel

BookRentalCar Phase 1 BookTrip coordinator
sends a Vote_Request to each
process. Each process returns
a Vote_Commit or Vote_Abort.

Vote_Request

Vote Request

Vote Request

Vote_Commit

Vote Commit

Vote Commit

34

Two-Phase Commit Protocol

BookTrip
Coordinator

BookPlane

BookHotel

BookRentalCar Phase 2 BookTrip coordinator
checks the votes. If every process
votes to commit then so will the coordinator.
In that case, it will send a Global_Commit to each process.
If any process votes to abort the coordinator sends a GLOBAL_ABORT.
Each process waits for a Global_Commit message before committing its part of the
transaction.

Global Commit

ACK

Global Commit
ACK

Global Commit

ACK

95-702 Transactions 35

2PC Finite State Machine from
Tanenbaum

Init

wait

Abort Commit

Commit

Vote-request

Vote-commit

Global-commit

Vote-abort

Global-abort

Init

Ready

Abort
Commit

Vote-request

Vote-commit

Vote-request

Vote-abort

Global-commit

ACK Global-abort

ACK

State has already been saved to permanent
storage.

BookTrip Coordinator Participant

95-702 Transactions 36

2PC Blocks in Three Places

Init

wait

Abort Commit

Commit

Vote-request

Vote-commit

Global-commit

Vote-abort

Global-abort

Init

Ready

Abort
Commit

Vote-request

Vote-commit

Vote-request

Vote-abort

Global-commit

ACK Global-abort

ACK

If waiting too long for a Vote-Request
send a Vote-Abort

95-702 Transactions 37

2PC Blocks in Three Places

Init

wait

Abort Commit

Commit

Vote-request

Vote-commit

Global-commit

Vote-abort

Global-abort

Init

Ready

Abort
Commit

Vote-request

Vote-commit

Vote-request

Vote-abort Global-commit

ACK Global-abort

ACK

If waiting too long
After Vote-request
Send a Global-Abort

95-702 Transactions 38

2PC Blocks in Three Places

Init

wait

Abort Commit

Commit

Vote-request

Vote-commit

Global-commit

Vote-abort

Global-abort

Init

Ready

Abort
Commit

Vote-request

Vote-commit

Vote-request

Vote-abort

Global-commit

ACK Global-abort

ACK

If waiting too long we can’t simply abort! We must wait
until the coordinator recovers. We might also make queries
on other participants.

95-702 Transactions 39

2PC Blocks in Three Places

Init

wait

Abort Commit

Commit

Vote-request

Vote-commit

Global-commit

Vote-abort

Global-abort

Init

Ready

Abort
Commit

Vote-request

Vote-commit

Vote-request

Vote-abort

Global-commit

ACK Global-abort

ACK

If this process learns that another has committed then this
process is free to commit. The coordinator must have sent out
a Global-commit that did not get to this process.

95-702 Transactions 40

2PC Blocks in Three Places

Init

wait

Abort Commit

Commit

Vote-request

Vote-commit

Global-commit

Vote-abort

Global-abort

Init

Ready

Abort
Commit

Vote-request

Vote-commit

Vote-request

Vote-abort

Global-commit

ACK Global-abort

ACK

If this process learns that another has aborted then it too
is free to abort.

95-702 Transactions 41

2PC Blocks in Three Places

Init

wait

Abort Commit

Commit

Vote-request

Vote-commit

Global-commit

Vote-abort

Global-abort

Init

Ready

Abort
Commit

Vote-request

Vote-commit

Vote-request

Vote-abort

Global-commit

ACK Global-abort

ACK

Suppose this process learns that another
process is still in its init state. The coordinator must have
crashed while multicasting the Vote-request. It’s safe for
this process (and the queried process) to abort.

95-702 Transactions 42

2PC Blocks in Three Places

Init

wait

Abort Commit

Commit

Vote-request

Vote-commit

Global-commit

Vote-abort

Global-abort

Init

Ready

Abort
Commit

Vote-request

Vote-commit

Vote-request

Vote-abort

Global-commit

ACK Global-abort

ACK

Tricky case: If the queried processes are all still in their ready
state what do we know? We have to block and wait until the
Coordinator recovers.

