Web Service Patterns

95-702 Distributed Systems

October 2013

Web Service Patterns

Based largely on the book “Service Design Patterns” by
Robert Daigneau

Ideas also taken from the Coulouris text on Distributed
Systems and “Restful Java with Jax-RS” by Burke

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

Introduction

Almost all enterprise applications need to be
integrated with other applications.

How is this done?

Primarily with Shared files, Shared Database,
RPC/RMI, Messaging, and sockets

Some of these approaches would use separate
components operating over a network and
communicating only by passing messages. These
would be considered distributed systems.

Why are distributed systems hard?

* Heterogeneous networks, operating systems, middleware,
languages, developers - all required to work together

* The heterogeneity may hinder interoperability
and performance

* Security becomes of greater concern. We need to consider the
behaviors of Eve and Mallory.

* Failures can be partial and the concurrency of components adds
complexity

* |ncreased latency

* Time differs on different systems

« Communicating parties will change

e Communicating parties may change location
* Moral? Don’t distribute unless you must

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

But, we must distribute!

Business capabilities are scattered across
organizational boundaries and so are the systems
that automate them

Several binary schemes are widely used. These
include CORBA, DCOM, Java RMI, .NET
Remoting, and Protocol Buffers. For raw speed
you are here.

This discussion focuses on Web Services

The web has been hugely successful and
interoperable. The web is based on three core
ideas: HTTP, XML (HTML), and URI's.

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison 5
Wesley

System Building Goal: Reduce Coupling

* Coupling is the degree to which one entity depends on another.
* Examples:
- if two systems are coupled in time, they must both

be ready to interact at a certain moment.
- if the client knows the location of the service handling its request

then the system is coupled in space.
- if a client must provide an ordered list of
typed parameters this is more tightly coupled than one

that does not.
- Web services can eliminate the client’s coupling to the

underlying technologies used by a service.
- The web service client, however, is still dependent on the correct

functioning of the service.

* Some coupling always exists.

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

System Building Goal: Separation of
Concerns

Separate systems into distinct sections
Separation of Concerns increases modularity

Separation of concerns is promoted by
encapsulation and Information hiding

Application tiers separates concerns, e.g., a
web site may be based on model view
controller design

Layered architectures separate concerns, e.g.,
the layers of HTTP/TCP/IP/Ethernet

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

Robustness Principle

Jon Postel’s Law:

Be liberal in what you accept.

Quiz: Are browsers liberal in what they
accept?

Be conservative in what you send.

This conflicts with how we usually think of
programming.

Design services to read only what is needed from
a request. Design clients to read only what is
needed in a reply. Build tolerant readers.

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

System building issue: Often at odds

Improved Adaptable

Productivity Systems

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

Categories of Patterns We Will Review

1) Web Service API Styles

2) Client-Server Interaction Styles

3) Request and Response Management
4) Web Service Implementation Styles

1) Web Service API Styles

* Recommendation: Pick one style
- RPC API
- Message API
- Resource API

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

11

RPC API Style (1)

* How can clients execute remote procedures
over HTTP?

* Define messages that identify the remote
procedures to execute and also include a fixed
set of elements that map directly into the
parameters of remote procedures. Have the
client send the message to a URI designated
for the procedure.

RPC API Style (2)

A service makes available a Service Descriptor.

The Service Descriptor is used to generate a
Service Connector (proxy) on the client.

The client calls operations on the Service
Connector as if it were the service.

The descriptor might be coded with WSDL,
XSDL or a non-XML approach (JSON-RPC)

Frameworks such as JAX-WS and WCF makes
all of this easy.

RPC API Style

Request Message Contains...

Procedure Name

AND

Procedure Arguments

Response Message Contains ...

Procedure results

e ——

‘\

Procedure
name is used

*~ « to select ...
-~

N
\

\

v

Service |

Returns results

From: http://www.servicedesignpatterns.com/WebServiceAPIStyles/RemoteProcedureCallAPI

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison

Wesley

14

RPC API Style Considerations (1)

 Methods or procedures may contain a list of
typed parameters.

- This is a tightly coupled system. If the
parameter list changes this approach breaks

clients.
- A Descriptor change forces the Connector to

be regenerated on the clients
- A less tightly coupled system would contain

a Single Message Argument

RPC API Style Considerations (2)

Request/Response is the default but it may be
replaced by Request/Acknowledge.

Request/Acknowledge is less tightly coupled in time.
(Separation of concerns) The request can be queued
for later processing. This may improve scalability.

The response may still be received with Request/
Acknowledge/Poll or Request/Acknowledge/Callback.

Clients may use an Asynchronous Response Handler if
they don’t want to block while waiting. (Think
Javascript’s XHR object)

Request/Acknowledge/Callback and the Asynchronous
Response Handler are quite different.

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison 16
Wesley

1) Web Service API Styles

« Recommendation: Pick one style
- RPC API
- Message API
- Resource API

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

17

Message API’s (1)

How can clients send commands, notifications, or
other information to remote systems over HTTP

while avoiding direct coupling to remote
procedures?

Define messages that are not derived from
signatures of remote procedures.

When the message is received, the server
examines its contents to determine the correct
procedure to execute.

The web service is used as a layer of indirection
by insulating the client from the actual handler.

Message API’s (2)

The web service serves as a dispatcher and is
usually built after the message is designed.

No procedure name or parameter list is in the
message.

The service descriptor is often WSDL and
XSDL.

The services descriptor is used to generate the
service connector (proxy).

SOAP, WS-Policy, WS-Security may all be used.

Message or Document API Style

Request Message Contains ...

Topic, Task, or Event
Identifier
Sends > T
Request , AND \
/ Structured \ Message Contentsare used
/ \' to select
! Message Content \ ~ | Proced
- ure
| S ! %
] —— v f
- - /
Client Service |- & - -) Procedure
A ' \
\ I’ ~ = Procedure
\ p— —
\ Response Message Contains ... / /
\ L | _ " Returnsresults
s Standardized or s
Proprietary Content

From http://www.servicedesignpatterns.com/WebServiceAPIStyles/MessageAPI

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

Message Style Considerations

Message API’s typically request/acknowledge
rather than request/response.

Responses may contain addresses of related
services using the linked services pattern.

It should be a sim
message types to
new message to t

nle matter to add additional
the service — simply dispatch

ne correct handler.

RPC API’s may have 1 or more parameters.
Message style API’s contain exactly one.

A standards body

may define the message first.

1) Web Service API Styles

* Recommendation: Pick one style
- RPC API
- Message API
- Resource API

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

22

Resource API’s

A client application consumes or manipulates text, images, documents, or
other media files managed by a remote system.

How can a client manipulate data managed by a remote system, avoid
direct coupling to remote procedures, and minimize the need for domain
specific APIl’s?

Assign all procedures, instances of domain data, and files a URI.

Leverage HTTP as a complete application protocol to define standard
service behaviors.

Exchange information by taking advantage of standardized media types
and status codes when possible.

The client’s intent is determined by a) the HTTP method used b) the URI
and c) the requested or submitted media type.

These services often adhere to the principles of Representational State
Transfer (REST).

Not every Resource APl would be considered RESTful.

Resource API’s

= S

Request Comprised Of ...

Standardized

Server Method
(i.e.Get, Put, Post, Delete)

AND

S— Are used to

—

Sends PR = 1 Standardized or iz - select .

Request ~ Proprietary N
/7 Media Type \

! AND \
URI

~— et

== =] I

\ : Response mayincludea... /

\ Standardized or p
\ Proprietary ’

R . Media Type _ ~ 7 Returnsresults
- --—C, <_ -

AND,OR

Standardized
Status Code

From: http://www.servicedesignpatterns.com/WebServiceAPIStyles/ResourceAPI

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison 24
Wesley

Review of REST

Notes from “Restful Java with JAX-RS, Bill
Burke, Orielly

25

Representational State Transfer

* Roy Fielding’s doctoral dissertation (2000)

* Fielding (along with Tim Berners-Lee)
designed HTTP and URI’s.

* The question he tried to answer in his thesis
was “Why is the web so viral”? What is its
architecture? What are its principles?

REST Architectural Principles

The web has addressable resources.
Each resource has a URI.

The web has a uniform and constrained interface.
HTTP, for example, has a small number of
methods. Use these to manipulate resources.

The web is representation oriented — providing diverse
formats.

The web may be used to communicate statelessly —
providing scalability

Hypermedia is used as the engine of application state.

Notes from “Restful Java with JAX-RS, Bill
Burke, Orielly 27

Understanding REST

REST is not protocol specific.

SOAP and WS-* use HTTP strictly as a transport
protocol.

HTTP may be used as a rich application protocol.

Browsers usually use only a small part of HTTP (GET
and POST).

HTTP is a synchronous request/response network
protocol used for distributed, collaborative, document
based systems.

Various message formats may be used — XML, JSON,..
Binary data may be included in the message body.

Principle: Addressability

Addressability (not restricted to HTTP)
Each HTTP request uses a URI.
The format of a URI is well defined:

scheme://host:port/path?queryString#ffragment

The scheme need not be HTTP. May be FTP or HTTPS.

The host field may be a DNS name or a IP address.

The port may be derived from the scheme. Using HTTP implies port 80.
The path is a set of text segments delimited by the “/”.

The queryString is a list of parameters represented as

name=value pairs. Each pair is delimited by an “&”.

The fragment is used to point to a particular place in a document.

A space is represented with the ‘+’ characters. Other characters use %
followed by two hex digits.

Notes from “Restful Java with JAX-RS, Bill
Burke, Orielly

29

Principle: Uniform Interface (1)

e A uniform constrained interface
- No action parameter in the URI

- HTTP GET
- read only operation
- idempotent (once same as many)
- safe (no important change to server’s
state)
- may include parameters in the URI
http://www.example.com/products?pid=123

Principle: Uniform Interface (2)

HTTP PUT
- store the message body
- insert or update
- idempotent
- not safe

Notes from “Restful Java with JAX-RS, Bill
Burke, Orielly

31

Principle: Uniform Interface (3)

HTTP POST

- Not idempotent

- Not safe

- Each method call may modify the
resource in a unique way

- The request may or may not contain
additional information

- The response may or may not contain
additional information

- The parameters are found within the request
body (not within the URI)

Principle: Uniform Interface (4)

HTTP DELETE

- remove the resource

- idempotent

- Not safe

- Each method call may modify the
resource in a unigue way

- The request may or may not contain
additional information

- The response may or may not contain
additional information

HTTP HEAD, OPTIONS, TRACE and CONNECT are less
important.

Notes from “Restful Java with JAX-RS, Bill
Burke, Orielly

33

Principle: Uniform Interface (5)

Does HTTP provide too few operations?

Note that SQL has only four operations:
SELECT, INSERT, UPDATE and DELETE

JMS and MOM have, essentially, two
operations: SEND and RECEIVE

A lot gets done with SQL and JMS

What does a uniform interface buy?

Familiarity
We do not need a general IDL that describes a
variety of method signatures.
We already know the methods and their semantics.
Interoperability
WS-* has been a moving target
HTTP is widely supported
Scalability
Since GET is idempotent and safe, results may be
cached by clients or proxy servers.
Since PUT and DELETE are both idempotent neither
the client or the server need worry about handling
duplicate message delivery

Notes from “Restful Java with JAX-RS, Bill
Burke, Orielly

35

Principle: Representation Oriented(1)

Representations of resources are exchanged.
GET returns a representation.

PUT and POST passes representations to the
server so that underlying resources may
change.

Representations may be in many formats:
XML, JSON, YAML, etc,, ...

Principle: Representation Oriented(2)

HTTP uses the CONTENT-TYPE header to specify
the message format the server is sending.

The value of the CONTENT-TYPE is a MIME typed
string. Versioning information may be included.

Examples:
text/plain
text/html
application/vnd+xml;version=1.1

“vnd” implies a vendor specific MIME type

Principle: Representation Oriented(3)

The ACCEPT header in content negotiation.

An AJAX request might include a request for
JSON.

A Java request might include a request for
XML.

Ruby might ask for YAML

Principle: Communicate Statelessly

* The application may have state but there is no
client session data stored on the server.

* |f there is any session-specific data it should
be held and maintained by the client and
transferred to the server with each request as
needed.

 The server is easier to scale. No replication of
session data concerns.

Principle: HATEOAS (1)

 Hypermedia is document centric but with the additional
feature of links.

* With each request returned from a server it tells you what
interactions you can do next as well as where you can go to

transition the state of your application.
e Example:
<orderid =“111">
<customer>http://.../customers/3214
<order-entries>
<order-entry>
<qty>5
<product>http://.../products/111

Principle: HATEOAS (2)

For another example, after calling on an order
creation service, the service would return URI’s
associated with Order Update, Order Cancel and

Order Status.

Consider the game of “Knock Knock”. How could
the protocol be controlled via HATEOS?

HATEOS exemplifies “Late Binding”. The methods
an application may invoke are not known until
runtime.

HATEOS is a Linked Services Pattern

Linked Services Pattern

Clhient

Invoke Service

Web Service 1 Web Service 2

b . — — o

Response with Addresses

> Parse Response

> Process Request

|
Invoke Service

e — — ———— —— —— —— — — — — — — —

Only publish the
addresses of a few
root web services.
Include the addresses
of related services in
each response. Let
clients parse responses
to discover subsequent
service URIs.

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

> Process Request

42

Resource Style Considerations (1)

Very appropriate for diverse clients - Browsers, feed readers,
syndication services, web aggregators, microblogs, mashups, AJAX,

and mobile applications

Some may consider direct resource addressability a security risk —
“hackable URI’s”.

Authentication and authorization logic is needed here.
Resource descriptors (and hence code generation tools) not used.

Use Request/Response or Request/Acknowledge (HTTP 202 is an
acknowledgement)

Clients may use Asynchronous Response Handler to avoid blocking

One logical resource may be represented at one URI. Clients choose
the type of representation with Media Type Negotiation.

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison 43
Wesley

Categories of Patterns We Will Review

1) Web Service API Styles

2) Client-Server Interaction Styles

3) Request and Response Management
4) Web Service Implementation Styles

Based on the book “Service Design
Pattd¥aseho R MR RO gheb CABESER 44
Patterns” by RgbsigyDaigneau, Addison 44

Regardless of which WS Style is chosen
(RPC, Messaging, or Representational)

 We must decide on the client service interaction style.
* Request/Response....simplest
* Request/Acknowledge...not coupled in time, easier to scale

* Request/Acknowledge/Polling... simple, use ID to get response, increase
use of network

* Request/Acknowledge/CallBack... harder, provide a service to handle the
response

* Request/Acknowledge/Relay...notify others of request processing,
foundation of publish/subscribe

* Media Type Negotiation...provide multiple representations
of one logical resource while minimizing the number
of distinct URI’s. (Use HTTP Accept Headers not a new URL)
Negotiation may be “server driven” or “client driven”

Linked Services... less coupling in space, client insulated from changing
locations, replaces need for registries or brokers (used in APP)

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison 45
Wesley

Categories of Patterns We Will Review

1) Web Service API Styles

2) Client-Server Interaction Styles

3) Request and Response Management
4) Web Service Implementation Styles

5) Web Service Infrastructures

6) Web Service Evolution

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison 46
Wesley 46

Request/Response Management

Decouple requests and responses from underlying system.
Useful patterns for all three web service API styles.

e Service Controller

Data Transfer Object
Request Mapper

Response Mapper

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

47

Service Controller

How can the correct web service be executed without
having to maintain complex parsing and routing logic?

Create a class (a Service Controller) that identifies a set
of related services. Annotate each class method with
routing expressions that can be interpreted by a Front
Controller.

The Front Controller selects the method in the Service
Controller based on annotations on Service Controller
methods (web methods) or in configuration files.

The types of Routing Expressions used in the Service
Controller depends on the service API style.

Service Controller

Request

NE o - -

Service Controller
Front [Routing Expression 1]
Controller | ~ | RequestHandler1
outing Expression
[Routing Ex ion 2]
RequestHandler 2

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

49

Request/Response Management

Decouple requests and responses from underlying system.
Useful patterns for all three web service API styles.

e Service Controller

Data Transfer Object
Request Mapper

Response Mapper

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

50

Data Transfer Object

 Web Services typically use XML or JSON

* How can one simplify manipulation of request and
response data, enable domain layer entities,
requests, and responses to vary independently, and
insulate services from wire-level message formats?

« DTO’s are created as separate entities whose sole
purpose is to define how data is received and
returned from a service.

Data Transfer Objects

Request L.

~
~
Yo 3 N

Data Transfer Object
Property 1
Property 2

Property 2

Response

17

Data Transfer Object

Property 4
Property 5

Property &6

bdsed On tne pooK Service vesign
Patterns” by Robert Daigneau, Addison
Wesley

Domain Layer
Entities

52

Request/Response Management

Decouple requests and responses from underlying system.
Useful patterns for all three web service API styles.

e Service Controller

Data Transfer Object
Request Mapper

Response Mapper

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

53

Request Mapper

e A web service receives XML. The service owner has
little to no control over the design of request
structures.

* How can a service process data from requests that are
structurally different yet semantically equivalent?

* Create specialized classes that leverage structure-
specific APIs to target and move select portions of
requests directly to domain layer entities or to a
common set of intermediate objects that can be used
as input arguments to such entities. Load a particular
mapper based on key content found in the request.

Request Mapper

4

Request

F=———— - Service el
' |
| |
' |
v |
- v
Domain - .
s eques
Layer Entities |€ — — 9 — =)
(e.e. Domain objects, Mapper
Table Modules, etc.)

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

55

Request/Response Management

Decouple requests and responses from underlying system.
Useful patterns for all three web service API styles.

e Service Controller

Data Transfer Object
Request Mapper

Response Mapper

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

56

Response Mapper

* A web service returns a text based response

* How can the logic required to construct a
response be reused by multiple services?

* Once a mapper has been instantiated, the
service calls methods on the mapper to pass
domain objects, record sets, structs or
primitive data. At some point, the service calls

the mapper to acquire a final response that is
returned to the client.

Response Mapper

Domain

Layer Entities

(e.g. objects,
Record Sets, etc.)

(-—-—n

Response
Mapper

4

Response

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison

Wesley

58

Categories of Patterns We Will Review

1) Web Service API Styles

2) Client-Server Interaction Styles

3) Request and Response Management
4) Web Service Implementation Styles

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison 59
Wesley 59

(4) Web Service Implementation Styles

Transaction Script
Datasource Adapter
Operation Script
Command Invoker
Workflow Connector

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

60

Transaction Script

* How can developers quickly implement web
service logic?
* Write custom logic for database access, file

manipulation, or other purposes directly
within the web service method.

Transaction Script

7| Database
”
”
7’

Web Service
Method

- —— > Files

Sa Other Data
Sources

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

62

Transaction Script Considerations

* Simplicity

* Good if yourin a hurry

* Tightly coupled to the underlying resources

* When the underlying resource changes, so too
may the service have to change.

* Hard to maintain overtime.

(4) Web Service Implementation Styles

Transaction Script
Datasource Adapter
Operation Script
Command Invoker
Workflow Connector

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

64

64

Datasource Adapter

Clients would like to use internal system resources, but
access to these entities must be controlled.

How can a web service provide access to internal resources
like database tables, stored procedures, domain objects, or
files with a minimum amount of custom code?

Service frameworks that support this pattern intercept and
translate requests into one or more actions against a
specialized Datasource Provider that encapsulates the logic
required to interact with a specific datasource type (e.g.
Object-Relational Mapper, database, file, etc.).

Vendor SOA Suites provide many adapters

A WSDL document may be generated or the Datasource
may return the URL of an APP Service Document

Datasource Adapter Considerations

* Simple to use.

* Less code needs written.

* Some tools impose an API style. Others allow
you to choose (RPC, Message, or Resource)

* Tight coupling to backend data sources. Change
the data source and the client may need to be
regenerated.

(4) Web Service Implementation Styles

Transaction Script
Datasource Adapter
Operation Script
Command Invoker
Workflow Connector

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

67

67

Operation Script

How can web services reuse common domain logic
without duplicating code?

Common domain logic must be made available to a
number of web services that may have different API
styles or client/service interaction styles

Encapsulate common business logic in domain layer
entities that exist outside of the web service. Limit the
logic within web services to algorithms that direct the
activities of these entities.

Often function as the top-most transaction manager
for the entities that are used to fulfill the client's

request.

Operation Script Considerations

Usually manage local transactions
Distributed transactions add complexity

May use an Inversion of Control container that
instantiates required objects by consulting
configuration files.

Business logic duplication is reduced.

Still, duplication of validation, control flow, and
exception handling code may continue.

Use Command Invoker for less duplication

(4) Web Service Implementation Styles

Transaction Script
Datasource Adapter
Operation Script
Command Invoker
Workflow Connector

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

70

70

Command Invoker

How can web services with different APIs reuse common
domain logic while enabling both synchronous and
asynchronous request processing?

All domain logic is extracted from the web service and
moved to Command Objects.

The code that is left over in the web service does very little.
In its simplest form, the service selects, instantiates, and

populates a command object with request data, then calls
a method on the command to initiate request processing.

The service might also instantiate a command and forward
it to a background request processor for deferred
processing.

Command Invoker Considerations

* The service may invoke immediately or may
forward to a background process using
request/acknowledge

* Request mappers may be used to translate
the request data

e Commands may be implemented as
transaction scripts or as operation scripts

(4) Web Service Implementation Styles

Transaction Script
Datasource Adapter
Operation Script
Command Invoker
Workflow Connector

Based on the book “Service Design
Patterns” by Robert Daigneau, Addison
Wesley

73

73

Workflow Connector

How can web services be used to support complex and
long running business processes?

 These processes may run for minutes or hours or days.

Use a workflow engine to manage the life cycle and
execution of tasks within complex or long-running
business processes. ldentify a web service that will
trigger each logical business process. Use callback
services to receive additional data for these long-
running processes, and forward messages from these
callback services to the workflow engine.

Workflow Connector

Workflow Engine

Client

Trigger
Service

Logical BusinessProcess

Callback
Services

|
\"4

Business
Partners

Based on the book “Service Design

Patterns” by Robert Daigneau, Addison

Wesley

75

Workflow Connector Considerations

Rather than distributed transactions, use
compensation handling.

BPEL may be used to orchestrate business
process.

Overkill for many short running processes

Some are lightweight while are others are
heavy duty and expensive

Business Activity Monitoring is often provided

