
95-702 Distributed Systems
1!Master of Information System

Management

95-702 Distributed Systems

An Introduction To
Cryptographic Protocols

95-702 Distributed Systems
2!Master of Information System

Management

Computer Security
•  Needed because of the desire to share

resources.
•  Security policies are enforced by

security mechanisms.
•  Cryptography provides the basis for

most security mechanisms but is a
distinct subject.

•  Two great books are Schneier’s
“Applied Cyptography” and “The Code
Book” by Singh.

95-702 Distributed Systems
3!Master of Information System

Management

Threat Categories

• Leakage is any unauthorized
acquisition of information

• Tampering is unauthorized
alteration of information

• Vandalism is interference with
proper operation with no gain to
the perpetrator

95-702 Distributed Systems
4!Master of Information System

Management

Some Attacks

• Eavesdropping
• Masquerading
• Tampering, e.g., “the man in the

middle attack”
• Replaying
• Denial of service
• Today’s big assumption: “I’m OK,

you’re OK, the network is the
problem!”.

95-702 Distributed Systems
5!Master of Information System

Management

Assumptions & Guidelines
•  Interfaces are exposed.
•  Networks are insecure.
•  Algorithms are available to attackers.

We assume they understand RSA, DES,
etc.

•  Attackers may have have large
resources.

•  Limit the lifetime and scope of secrets.
•  Minimize the trusted base.

95-702 Distributed Systems
Secure Voting Example from Schneier’s

“Applied Cryptography”.

6

An Interesting Example:
E-Voting

Two types of E-Voting (From Wikipedia):

(1)  e-voting which is physically supervised by electoral authorities

(2) remote e-Voting where voting is performed within the voter's
 sole influence, and is not physically supervised by authorities
 (e.g. voting from one's personal computer, mobile phone,
 television via the internet (i-voting).

 (1) is controversial due to the problem of trusting software.
 (2) would be wonderful if we could do it securely.

95-702 Distributed Systems
7

Goals Of Secure Voting
•  Only Authorized Voters Can Vote
•  No one can vote more than once
•  No one can determine for whom anyone

else voted
•  No one can duplicate anyone else’s

vote
•  No one can change anyone else’s vote

without being discovered
•  Every voter can make sure that his vote

has been taken into account in the final
tabulation.

Secure Voting Example from Schneier’s “Applied Cryptography”.

95-702 Distributed Systems
8

First Attempt
•  Each voter encrypts his vote with the

public key of a Central Tabulating
Facility (CTF)

•  Each voter send his vote in to the CTF
•  The CTF decrypts the votes, tabulates

them, and makes the results public
•  What are some problems with this

protocol?

Secure Voting Example from Schneier’s “Applied Cryptography”.

95-702 Distributed Systems
9

Second Attempt
•  Each voter signs his vote with his

private key
•  Each voter encrypts his signed vote

with the CTF’s public key
•  Each voter send his vote to the CTF
•  The CTF decrypts the votes, checks the

signature, tabulates the votes and
makes the results public

•  What are some problems with this
protocol?

Secure Voting Example from Schneier’s “Applied Cryptography”.

95-702 Distributed Systems
10!Master of Information System

Management

Cast of Characters

Alice	
 First participant	

Bob	
 Second participant	

Carol	
 Participant in three- and four-party protocols	

Dave	
 Participant in four-party protocols	

Eve	
 Eavesdropper	

Mallory	
 Malicious attacker	

Sara	
 A server	

95-702 Distributed Systems
11!Master of Information System

Management

Cryptography Notation

KA	
 Alice’s key that she keeps secret.	

KB	
 Bob’s key that he keeps secret.	

KAB	
 Secret key shared between Alice and Bob	

KApriv	
 Alice’s private key (known only to Alice in asymmetric key crypto)	

KApub	
 Alice’s public key (published by Alice for all to read)	

{	
M	
}	
K	
 Message	
 M	
 encrypted with key 	
K	

[
M	
]K	
 Message 	
M	
 signed with key	
 K	

95-702 Distributed Systems
12!Master of Information System

Management

Categories of Encryption
Algorithms

Symmetric key encryption. Also called secret key crypto.

 Alice sends {M}Kab and Bob can read it.
 Bob knows Kab.

Asymmetric key encryption. Also called public key crypto.

 Alice sends {M}KBpub and Bob can read it.
 Bob knows KBpriv.

Public key encryption is typically 100 to 1000
times slower than secret key encryption.

95-702 Distributed Systems
13!Master of Information System

Management

Scenario 1 (WWII)
Communication with a shared secret key.

Alice and Bob share KAB.
Alice computes E(KAB,Mi) for each message i.
She sends these to Bob.
Bob uses D(KAB, {Mi} KAB) and reads each Mi.

 Problems?
 How do Bob and Alice communicate the key KAB?
 How does Bob know that {Mi} KAB isn’t a replay of an old
 message?

95-702 Distributed Systems
14!Master of Information System

Management

Scenario 2(Baby Kerberos)
Alice wishes to access files held by Bob.

Alice asks Sarah for a ticket to talk to Bob.
Sarah knows Alice’s password so she can compute KA.
Sarah send to Alice {{Ticket}KB,KAB}KA. A challenge!
Alice knows her password and is able to compute KA.
Note that the password is never placed on the network.
Alice is able to compute {Ticket}KB and KAB. How?
Alice sends a read request to Bob. She sends
{Ticket}KB,Alice,Read. Another challenge!
Bob uses KB to read the content of the Ticket.
The Ticket is KAB,Alice. Bob and Alice then use this session
key to communicate.

Problems?
 Old tickets may be replayed by Mallory. Suppose she has
 an old session key.
 Does not scale well : Sarah must know KA, KB ….

95-702 Distributed Systems
15!Master of Information System

Management
15!Master of Information System

Management

Scenario 3 (Non-
repudiation)

Alice wishes to sign a digital message M.

She computes a digest of M, Digest(M).
If the Digest method is a good one, it is very difficult to find another
message M’ so that Digest(M) == Digest(M’).
Alice makes the following available to the intended users:
M,{Digest(M)}KApriv.
Bob obtains the signed document, extracts M and computes
Digest(M).
Bob decrypts {Digest(M)}KApriv using KApub and compares the
result with his calculated Digest(M). If they match, the signature
is valid.

Problem: Can Alice claim that she did not sign the message? What
if she claims she released her KApriv ? Still useful if Bob and Alice trust
each other.

95-702 Distributed Systems
16!Master of Information System

Management

Scenario 4 (Baby SSL)
Bob and Alice wish to establish a shared secret KAB.

Alice uses a key distribution service to get Bob’s public key.
This key comes in a certificate. So, Bob’s public key has been
signed by a trusted third party, Trent.
Alice verifies that Trent signed the public key KBpub.
Alice generates KAB and encrypts it with KBpub.
Bob has many public keys and so Alice sends a key name along
as well.
Alice sends key name, {KAB}KBpub.
Bob uses the key name to select the correct private key and
computes {{KAB}KBpub} KBpriv == KAB.

Problem:
 The man in the middle attack may be used when Alice first
 contacts the key distribution service. Mallory may return his
 own public key (also signed by Trent).

95-702 Distributed Systems
17!Master of Information System

Management

Alice’s Bank Account
Certificate

1. 	
Certificate type	
:	
 Account number	

2. 	
Name	
:	
 Alice	

3. 	
Account	
:	
 6262626	

4. 	
Certifying authority	
:	
 Bob’s Bank	

5. 	
Signature	
:	
 {Digest(field 2 + field 3)}	
KBpriv	

95-702 Distributed Systems
18!Master of Information System

Management

Public-Key Certificate for
Bob’s Bank

1. 	
Certificate type	
:	
 Public key	

2. 	
Name	
:	
 Bob’s Bank	

3. 	
Public key	
:	
 KBpub	

4. 	
Certifying authority	
:	
 Fred – The Bankers Federation	

5. 	
Signature	
:	
 {Digest(field 2 + field 3)}	
KFpriv	

95-702 Distributed Systems
19!Master of Information System

Management

Digital Signatures With
Public Keys

{h}Kpri

M

Signing

Verifying

E(Kpri, h)

128 bits

H(M) h

M

hH(doc)

D(Kpub,{h}) {h}Kpri h'

h = h'?

M

signed doc

95-702 Distributed Systems
20!Master of Information System

Management

Low-Cost Signatures with
a Shared Secret Key

M

Signing

Verifying

H(M+K) h

h'H(M+K)

h

h = h'?

K

M

signed doc

M

K

95-702 Distributed Systems
21!Master of Information System

Management

X509 Certificate Format

S	
u	
b	
jec	
t	
 D	
i	
s	
t	
i	
n	
g	
u	
is	
he	
d N	
a	
m	
e, 	
Pu	
b	
l	
ic 	
K	
e	
y	

Iss	
ue	
r	
 D	
i	
s	
t	
i	
n	
g	
u	
is	
he	
d N	
a	
m	
e, 	
Si	
g	
n	
at	
u	
r	
e	

Pe	
ri	
o	
d 	
o	
f 	
v	
a	
li	
d	
i	
t	
y	
 N	
o	
t 	
Be	
f	
o	
r	
e	
 	
Da	
t	
e, 	
No	
t 	
A	
f	
t	
e	
r	
 	
D	
ate	

A	
d	
m	
i	
ni	
str	
a	
t	
ive	
 	
i	
n	
fo	
rma	
ti	
o	
n	
 V	
er	
si	
o	
n	
, 	
S	
e	
r	
i	
a	
l	
 	
N	
u	
mb	
e	
r	

Ex	
t	
en	
d	
e	
d	
 I	
n	
f	
or	
m	
a	
t	
i	
o	
n	

95-702 Distributed Systems
22!Master of Information System

Management

The Needham–Schroeder Secret-
Key Authentication Protocol

Header	
 Message	
 Notes	

1. A->S:	
 A, B, NA	
 A requests S to supply a key for communication	

with B.	

2. S->A:	
 {NA , B, KAB, 	

{KAB, A}KB}KA	

S returns a message encrypted in A’s secret key,	

containing a newly generated key KAB and a	

‘ticket’ encrypted in B’s secret key. The nonce NA 	

demonstrates that the message was sent in response	

to the preceding one. A believes that S sent the	

message because only S knows A’s secret key.	
 	

3. A->B:	
 A sends the ‘ticket’ to B.	

4. B->A:	
 B decrypts the ticket and uses the new key KAB to	

encrypt another nonce NB.	

5. A->B:	
 A demonstrates to B that it was the sender of the	

previous message by returning an agreed	

transformation of NB.	

{KAB, A}KB	

{NB}KAB	

{NB - 1}KAB	

95-702 Distributed Systems
23!Master of Information System

Management

System Architecture of
Kerberos

Server	
Client	

DoOperation	

Authentication	

database	

Login	

session setup	

Ticket-
granting

 service T

Kerberos Key Distribution Centre	

Server	

session setup	

Authen-	

tication	

service A	

1. Request for	

TGS ticket	

2. TGS	

ticket	

3. Request for	

server ticket	

4. Server ticket	

5.	
 	
Service	

 	
 request	

Request encrypted with session key	

Reply encrypted with session key 	

Service	

function	

Step B	

Step A	

Step C	

C	
 S	

95-702 Distributed Systems
24!Master of Information System

Management
24!Master of Information System

Management

SSL Overview

•  Developed by Netscape Communications
•  Authenticates servers (and optionally clients)
•  Performs secret key exchange like Diffie-Hellman
•  Data is encrypted with the exchanged key
•  Clients do not need to provide a certificate but may be required
 to by the server
•  Client authentication is typically done in the application layer
•  Servers must provide a certificate
•  Normally uses RSA
•  Data integrity provided by Message Authentication Codes

95-702 Distributed Systems
25!Master of Information System

Management

SSL Protocol Stack

SSL	

Handshake	

protocol	

SSL Change	

Cipher Spec	

SSL Alert	

Protocol	

Transport layer (usually TCP)	

Network layer (usually IP)	

SSL Record Protocol	

HTTP	
 Telnet	

SSL protocols:	
 Other protocols:	

95-702 Distributed Systems
26!Master of Information System

Management

TLS Handshake Protocol

Client Server

ClientHello
ServerHello

Certificate

Certificate Request

ServerHelloDone

Certificate

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Establish protocol version, session ID,
cipher suite, compression method,
exchange random values

Optionally send server certificate and
request client certificate

Send client certificate response if
requested

Change cipher suite and finish
handshake

95-702 Distributed Systems
27!Master of Information System

Management

TLS Handshake
Configuration Options

Component	
 Description	
 Example	

Key exchange	

method	

the method to be used for	

exchange of a session key	

RSA with public-key	

certificates	

Cipher for data	

transfer	

the block or stream cipher to be	

used for data	

IDEA	

Message digest	

function	

for creating message	

authentication codes (MACs)	

SHA	

95-702 Distributed Systems
28!Master of Information System

Management

Writing a simple SSL
Client

•  All SSL clients must have a truststore

•  If a client is to be verified by the server then the client needs
 a keystore as well as a truststore

•  The truststore

- holds trusted certificates (signed public keys of CA’s)
- is in the same format as a keystore
- is an instance of Java’s KeyStore class
- is used by the client to verify the certificate sent by the
 server
-  may be shared with others

95-702 Distributed Systems
29!Master of Information System

Management

Creating a Truststore

(1) Use keytool –genkey to create an RSA key pair

(2) Use keytool –export to generate a self-signed RSA
 certificate (holding no private key)

(3) Use keytool –import to place the certificate into a truststore

95-702 Distributed Systems
30!Master of Information System

Management

(1) Use keytool - genkey to create an RSA key
pair

D:\McCarthy\www\95-804\examples\keystoreexamples>
keytool -genkey -alias mjm -keyalg RSA -keystore mjmkeystore

Enter keystore password: sesame

What is your first and last name?
 [Unknown]: Michael McCarthy

What is the name of your organizational unit?
 [Unknown]: Heinz School

What is the name of your organization?
 [Unknown]: CMU

95-702 Distributed Systems
31!Master of Information System

Management

What is the name of your City or Locality?
 [Unknown]: Pittsburgh

What is the name of your State or Province?
 [Unknown]: PA

What is the two-letter country code for this unit?
 [Unknown]: US

Is CN=Michael McCarthy, OU=Heinz School, O=CMU,
L=Pittsburgh, ST=PA, C=US correct?
 [no]: yes

Enter key password for <mjm>
 (RETURN if same as keystore password): <RT>

95-702 Distributed Systems
32!Master of Information System

Management

D:\McCarthy\www\95-804\examples\keystoreexamples>dir /w
 Volume in drive D has no label.
 Volume Serial Number is 486D-D392

 Directory of D:\McCarthy\www\95-804\examples\keystoreexamples

[.] [..] mjmkeystore

95-702 Distributed Systems
33!Master of Information System

Management

(2) Use keytool –export to generate a self-
signed RSA certificate (holding no private key)

D:\McCarthy\www\95-804\examples\keystoreexamples>
keytool -export -alias mjm -keystore mjmkeystore -file mjm.cer
Enter keystore password: sesame
Certificate stored in file <mjm.cer>

D:\McCarthy\www\95-804\examples\keystoreexamples>dir /w
 Volume in drive D has no label.
 Volume Serial Number is 486D-D392

 Directory of D:\McCarthy\www\95-804\examples\keystoreexamples

[.] [..] mjm.cer mjmkeystore

95-702 Distributed Systems
34!Master of Information System

Management

(3) Use keytool –import to place the certificate
into a truststore

D:\McCarthy\www\95-804\examples\keystoreexamples>
keytool -import -alias mjm -keystore mjm.truststore -file mjm.cer

Enter keystore password: sesame
Owner:
CN=Michael McCarthy, OU=Heinz School, O=CMU, L=Pittsburgh,
ST=PA, C=US

Issuer:
CN=Michael McCarthy, OU=Heinz School, O=CMU, L=Pittsburgh,
ST=PA, C=US

95-702 Distributed Systems
35!Master of Information System

Management

Serial number: 3e60f3ce
Valid from:
Sat Mar 01 12:54:22 EST 2003 until: Fri May 30 13:54:22 EDT 2003
Certificate fingerprints:

MD5:
80:F4:73:23:4C:B4:32:4C:5F:E0:8A:B1:4D:1E:A3:0D

SHA1:
19:06:31:54:72:ED:B8:D5:B3:CF:38:07:66:B5:78:1A:34:16:56:07
Trust this certificate? [no]: yes
Certificate was added to keystore

95-702 Distributed Systems
36!Master of Information System

Management

D:\McCarthy\www\95-804\examples\keystoreexamples>dir /w
 Volume in drive D has no label.
 Volume Serial Number is 486D-D392

 Directory of D:\McCarthy\www\95-804\examples\keystoreexamples

[.] [..] mjm.cer mjm.truststore mjmkeystore
 5 File(s) 2,615 bytes

 mjmkeystore will be placed in the server’s directory
SSL will send the associated certificate to the client

mjm.truststore will be placed in the client’s directory

95-702 Distributed Systems
37!Master of Information System

Management

File Organization

D:\McCarthy\www\95-804\examples\keystoreexamples>tree /f
Directory PATH listing
Volume serial number is 0012FC94 486D:D392
D:.
├───clientcode
│ mjm.truststore
 | Client.java
│
└───servercode
 mjmkeystore
 Server.java

95-702 Distributed Systems
38!Master of Information System

Management

Client.java
import java.io.*;
import javax.net.ssl.*;
import java.net.*;
import javax.net.*;

public class Client {

 public static void main(String args[]) {

 int port = 6502;
 try {
 // tell the system who we trust
 System.setProperty("javax.net.ssl.trustStore","mjm.truststore");

95-702 Distributed Systems
39!Master of Information System

Management

// get an SSLSocketFactory
SocketFactory sf = SSLSocketFactory.getDefault();

// an SSLSocket "is a" Socket
Socket s = sf.createSocket("localhost",6502);

PrintWriter out = new PrintWriter(s.getOutputStream());
BufferedReader in = new
 BufferedReader(
 new InputStreamReader(
 s.getInputStream()));
out.write("Hello server\n");
out.flush();
String answer = in.readLine();
System.out.println(answer);

95-702 Distributed Systems
40!Master of Information System

Management

 out.close();
 in.close();
 }
 catch(Exception e) {
 System.out.println("Exception thrown " + e);
 }
 }
}

95-702 Distributed Systems
41!Master of Information System

Management

Server.java
// Server side SSL
import java.io.*;
import java.net.*;
import javax.net.*;
import javax.net.ssl.*;
import java.security.*;

public class Server {

 // hold the name of the keystore containing public and private keys
 static String keyStore = "mjmkeystore";

 // password of the keystore (same as the alias)
 static char keyStorePass[] = "sesame".toCharArray();

95-702 Distributed Systems
42!Master of Information System

Management

 public static void main(String args[]) {

 int port = 6502;
 SSLServerSocket server;

 try {
 // get the keystore into memory
 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(keyStore), keyStorePass);

 // initialize the key manager factory with the keystore data
 KeyManagerFactory kmf =
 KeyManagerFactory.getInstance("SunX509");
 kmf.init(ks,keyStorePass);

95-702 Distributed Systems
43!Master of Information System

Management

// initialize the SSLContext engine
// may throw NoSuchProvider or NoSuchAlgorithm exception
// TLS - Transport Layer Security most generic

SSLContext sslContext = SSLContext.getInstance("TLS");

// Inititialize context with given KeyManagers, TrustManagers,
// SecureRandom defaults taken if null

sslContext.init(kmf.getKeyManagers(), null, null);

// Get ServerSocketFactory from the context object
ServerSocketFactory ssf = sslContext.getServerSocketFactory();

95-702 Distributed Systems
44!Master of Information System

Management

// Now like programming with normal server sockets
ServerSocket serverSocket = ssf.createServerSocket(port);

System.out.println("Accepting secure connections");

Socket client = serverSocket.accept();
System.out.println("Got connection");

BufferedWriter out = new BufferedWriter(
 new OutputStreamWriter(
 client.getOutputStream()));
BufferedReader in = new BufferedReader(
 new InputStreamReader(
 client.getInputStream()));

95-702 Distributed Systems
45!Master of Information System

Management

 String msg = in.readLine();
 System.out.println("Got message " + msg);
 out.write("Hello client\n");
 out.flush();
 in.close();
 out.close();

 }
 catch(Exception e) {
 System.out.println("Exception thrown " + e);
 }
 }
}

95-702 Distributed Systems
46!Master of Information System

Management

On the server

D:\McCarthy\www\95-804\examples\keystoreexamples\servercode>
java Server
Accepting secure connections
Got connection
Got message Hello server

95-702 Distributed Systems
47!Master of Information System

Management

On the client

D:\McCarthy\www\95-804\examples\keystoreexamples\clientcode>
java Client
Hello client

95-702 Distributed Systems
48!Master of Information System

Management

Configuring a Web
Application to Use SSL

The web server needs a certificate so that the client
can identify the server.

The certificate may be signed by a Certificate Authority
or it may be self-signed.

The web server needs a private key as well.

95-702 Distributed Systems
49!Master of Information System

Management

D:\McCarthy\www\95-804\examples\SSLAndTomcat>
keytool -genkey -keyalg RSA -alias tomcat -keystore .keystore

Enter keystore password: sesame

What is your first and last name?
 [Unknown]: localhost
What is the name of your organizational unit?
 [Unknown]: Heinz School
What is the name of your organization?
 [Unknown]: CMU
What is the name of your City or Locality?
 [Unknown]: Pgh.
What is the name of your State or Province?
 [Unknown]: PA

Generate public and
private keys for
Tomcat

The keystore file is
called .keystore

95-702 Distributed Systems
50!Master of Information System

Management

What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=localhost, OU=Heinz School, O=CMU, L=Pgh.,
ST=PA, C=US correct?
 [no]: yes

Enter key password for <tomcat>
 (RETURN if same as keystore password):<RT>

D:\McCarthy\www\95-804\examples\SSLAndTomcat>

95-702 Distributed Systems
51!Master of Information System

Management

Use admin tool to tell
Tomcat about SSL

(1)  Startup Tomcat
(2) Run the admin server with http://localhost:8080/admin
(3)  Log in with your user name and password
(4)  Select Service (Java Web Service Developer Pack)
(5)  Select Create New Connector from the drop down list
 in the right pane
(6) In the type field enter HTTPS
(7) In the port field enter 8443
(8) Enter complete path to your .keystore file
(9) Enter keystore password
(10) Select SAVE and then Commit Changes

Tell Tomcat
about .keystore

95-702 Distributed Systems
52!Master of Information System

Management

Testing

Shutdown Tomcat.

Visit Tomcat from a browser.

Use https://localhost:8443/

You can also visit your other installed web apps through
https.

95-702 Distributed Systems
53!Master of Information System

Management

95-702 Distributed Systems
54!Master of Information System

Management

95-702 Distributed Systems
55!Master of Information System

Management

