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 95-702 Distributed Systems  
 
Distributed File Systems 

•  Generic Distributed File System	


•  NFS Network File System Developed at Sun (1984)	


•  AFS Andrew File System Developed at CMU (1980’s)	


•  Google File System (GFS) (2004)	


•  HDFS Open Source Hadoop Distributed File System(2008) 	
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Figure 12.2 
File system modules 

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering
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A typical non-distributed file system’s layered organization. Each layer	


depends only on the layer below it.	
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Figure 12.3 
File attribute record structure 
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Files contain	


both data and 	


attributes.	


	


The shaded 	


attributes are	


managed by the	


file system and	


not normally	


directly modified	


by user programs.	
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Figure 12.4 
UNIX file system operations 

filedes = open(name, mode)	


filedes = creat(name, mode)	



Opens an existing file with the given name.	

  	


Creates a new file with the given name.	

  	


Both operations deliver a file descriptor referencing the open	


file. The mode is read, write or both.	



status = close(filedes)	

 Closes the open file filedes.	


count = read(filedes, buffer, n)	


count = write(filedes, buffer, n)	



Transfers n bytes from the file referenced by filedes to buffer.	

  	


Transfers n bytes to the file referenced by filedes from buffer.	


Both operations deliver the number of bytes actually transferred	


and advance the read-write pointer.	



pos = lseek(filedes, offset,	

  	


whence)	

 	

 	



Moves the read-write pointer to offset (relative or absolute,	


depending on whence).	



status = unlink(name)	

 Removes the file name from the directory structure. If the file	


has no other names, it is deleted.	



status = link(name1, name2)	

 Adds a new name (name2) for a file (name1).	

  	


status = stat(name, buffer)	

 Gets the file attributes for file name into buffer.	
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These operations are implemented in the Unix kernel. These are 	


operations available in the non-distributed case. Programs cannot 	


observer any discrepancies between cached copies and stored data after 	


an update. This is called strict one copy semantics.  	


	


Suppose we want the files to be be located on another machine…	
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Figure 12.5 
File service architecture                        Generic Distributed File System  

Client computer Server computer 

Application 
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Application 
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Flat file service and dir. service	


both provide an RPC interface	


used by clients.	



The client module provides	


a single interface used by	


apps – emulates traditional fs.	
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Figure 12.6 
Flat file service operations 

Read(FileId, i, n) -> Data	

  	


— 	

 throws	

  BadPosition	



If 1 ≤ i ≤ Length(File): Reads a sequence of up to n items	


from a file starting at item i and returns it in Data.	



Write(FileId, i, Data)	

   	


— 	

 throws	

  BadPosition	



If 1 ≤ i ≤ Length(File)+1: Writes a sequence of Data to a	


file, starting at item i, extending the file if necessary.	



Create() -> FileId	

 Creates a new file of length 0 and delivers a UFID for it.	

   	



Delete(FileId)	

  	

 	

 Removes the file from the file store.	



GetAttributes(FileId) -> Attr	

  	

 	

 Returns the file attributes for the file.	

   	



SetAttributes(FileId, Attr)	

  	

 	

 Sets the file attributes (only those attributes that are not	


shaded in Figure 12.3).	
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The client module will make calls on these operations and so will the 	


directory service act as a client of the flat file service. Unique File	


Identifiers (UFID’s) are passed in on all operations except create().	
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Figure 12.5 
File service architecture                        Generic Distributed File System  
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read(FileID,..	


write(FileID,…	


fileID create(	


delete(FileID,…	


getAttributes(FileID	


setAttribues(FileID	
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Figure 12.7 
Directory service operations 

Lookup(Dir, Name) -> FileId	


—	

 	

throws	

 NotFound	

  	



Locates the text name in the directory and returns the	


relevant UFID. If Name is not in the directory, throws an	


exception.	

  	



AddName(Dir, Name, FileId)	

  	


— 	

throws	

 NameDuplicate	

  	



If Name is not in the directory, adds (Name, File) to the	


directory and updates the file’s attribute record.	


If Name is already in the directory: throws an exception.	

  	



UnName(Dir, Name)	

  	


— 	

throws	

 NotFound	

  	



If Name is in the directory: the entry containing Name is	


removed from the directory.	

  	


If Name is not in the directory: throws an exception.	

  	



GetNames(Dir, Pattern) -> NameSeq	

 	

 	

 Returns all the text names in the directory that match the	


regular expression Pattern.	
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Primary purpose: translate text names to UFID’s. Each directory	


is stored as a conventional file and so this is a client of the flat file	


service.	


Once a flat file service and directory service is in place, it	


is simple matter to build client modules that look like unix.	
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Figure 12.5 
File service architecture                        Generic Distributed File System  

Client computer Server computer 

Application 
program 

Application 
program 

Client module 

Flat file service 

fileID lookUp(dir,name)	


addName(dir,name,fileID)	


unNameID(dir,name)	


getNames(dir, pattern)	


	


	



Directory service 
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We have seen this pattern before.  	
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Figure 12.5 
File service architecture                        Generic Distributed File System  
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name	



operation fileID	



data or status	





NFS 

Goal: Be unsurprising and look like a UNIX FS. 
Goal: Implement full POSIX API. The Portable Operating  
          System Interface is an IEEE family of standards  
          that describe how Unix like Operating Systems should  
          behave.  
Goal: Your files are available from any machine. 
Goal: Distribute the files and we will not have to implement new    
          protocols.  
NFS has been a major success. 
NFS was originally based on UDP and was stateless.  
TCP added later. 
NFS defines a virtual file system. The NFS client pretends to be 

a real file system but is making RPC calls instead. 11 
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Figure 12.8 
NFS architecture 
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NFS uses RPC over TCP or UDP.	


External requests are translated into	


RPC calls on the server. The virtual 	


file system module provides access transparency. 	
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Figure 12.9 
NFS server operations (simplified) – 1 

lookup(dirfh, name) -> fh, attr	

 Returns file handle and attributes for the file name in the directory 	


dirfh.	

  	



create(dirfh, name, attr) ->	

 	

 	


newfh, attr	



Creates a new file name in directory dirfh with attributes attr and	


returns the new file handle and attributes.	



remove(dirfh, name)  status	

 Removes file name from directory dirfh.	



getattr(fh) -> attr	

 Returns file attributes of file fh. (Similar to the UNIX stat system 	


call.)	



setattr(fh, attr) -> attr	

 Sets the attributes (mode, user id, group id, size, access time and	


modify time of a file). Setting the size to 0 truncates the file.	



read(fh, offset, count) -> attr, data	

 Returns up to count bytes of data from a file starting at offset.	


Also returns the latest attributes of the file.	



write(fh, offset, count, data) -> attr	

 Writes count bytes of data to a file starting at offset. Returns the	


attributes of the file after the write has taken place.	



rename(dirfh, name, todirfh, toname)	


-> status	



Changes the name of file name in directory dirfh to toname in	


directory to todirfh	

.	



link(newdirfh, newname, dirfh, name)	

   	


-> status	



Creates an entry newname in the directory newdirfh which refers to	


file name in the directory dirfh.	



Continues on next slide ... 

13 
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Figure 12.9 
NFS server operations (simplified) – 2 

symlink(newdirfh, newname, string)	


	

-> status	



Creates an entry newname in the directory newdirfh of type	


symbolic link with the value string. The server does not interpret	


the string but makes a symbolic link file to hold it.	



readlink(fh) -> string	

 Returns the string that is associated with the symbolic link file	


identified by fh.	



mkdir(dirfh, name, attr) -> ���
	

newfh, attr	



Creates a new directory name with attributes attr and returns the	


new file handle and attributes.	



rmdir(dirfh, name) -> status	

 Removes the empty directory name from the parent directory dirfh.	


Fails if the directory is not empty.	



readdir(dirfh, cookie, count) -> ���
	

entries	



Returns up to count bytes of directory entries from the directory	


dirfh. Each entry contains a file name, a file handle, and an opaque	


pointer to the next directory entry, called a cookie. The cookie is	


used in subsequent readdir calls to start reading from the following	


entry. If the value of cookie is 0, reads from the first entry in the	


directory.	



statfs(fh) -> fsstats	

 Returns file system information (such as block size, number of	


free blocks and so on) for the file system containing a file fh.	
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The directory and file operations are integrated into a single service.	
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Figure 12.10 
Local and remote file systems accessible on an NFS client 
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Note: The file system mounted at /usr/students in the client is actually the sub-tree located at	


 /export/people in Server 1; the file system mounted at /usr/staff in the client is actually the sub-
tree located at /nfs/users in Server 2.	
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Andrew File System 

Unlike NFS, the most important design goal is 
scalability. 

To achieve scalability, whole files are cached in client 
nodes. Why does this help with scalability? 

We reduce client server interactions. 
A client cache would typically hold several hundreds 

of files most recently used on that computer. 
The cache is permanent, surviving reboots. 
When the client opens a file, the cache is examined 

and used if the file is available there. 
 

16 



Andrew File System - Typical Scenario – Modified from Coulouris 

If the client code tries to open a file the client cache is tried first. 
If not there, a server is located and the server is called for the 
file. 

The copy is stored on the client side and is opened. 
Subsequent reads and writes hit the copy on the client. 
When the client closes the file - if the files has changed it is 

sent back to the server. The client side copy is retained for 
possible more use. 

Consider UNIX commands and libraries copied to the client. 
Consider files only used by a single user. 
These last two cases represent the vast majority of cases. 
Gain: Your files are available from any workstation. 
Principle: Make the common case fast. See Amdahl’s Law. 

 17 
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Figure 12.11 
Distribution of processes in the Andrew File System 
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Figure 12.12 
File name space seen by clients of AFS 
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Figure 12.13 
System call interception in AFS 
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Figure 12.14 
Implementation of file system calls in AFS 

User process UNIX kernel Venus Net Vice
open(FileName,

mode)
If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding callback
promises on the file.
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In the event	


that two	


clients both	


write and 	


then close,	


The last	


writer wins.  	



A callback 	


promise is a 	


token stored 	


with the 	


cached copy –	


either valid 	


or cancelled	



If a client	


closes and the	


file is changed	


then vice makes	


RPC calls on all	


other clients to	


cancel the	


callback 	


promise. 	
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Figure 12.15 
The main components of the Vice service interface 

Fetch(fid) -> attr, data	

 Returns the attributes (status) and, optionally, the contents of file	


identified by the fid and records a callback promise on it.	



Store(fid, attr, data)	

 Updates the attributes and (optionally) the contents of a specified	


file.	



Create() -> fid	

 Creates a new file and records a callback promise on it.	


Remove(fid)	

 Deletes the specified file.	


SetLock(fid, mode)	

 Sets a lock on the specified file or directory. The mode of the	



lock may be shared or exclusive. Locks that are not removed 	


expire after 30 minutes.	



ReleaseLock(fid)	

 Unlocks the specified file or directory.	


RemoveCallback(fid)	

 Informs server that a Venus process has flushed a file from its	



cache.   	


BreakCallback(fid)	

 This call is made by a Vice server to a Venus process. It cancels	



the callback promise on the relevant file.	
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Google File System (GFS) 
Hadoop (HDFS) 

•  What is Hadoop? 
•  Sort of the opposite of virtual machines where one 

machine may act like many. Instead, with Hadoop, 
many machines act as one. 

•  Hadoop is an open source implementation of GFS. 
•  Microsoft has Dryad with similar goals. 
•  At its core, an operating system (like Hadoop)  is 

all about:  
    (a) storing files 
    (b) running applications on top of files 
 
 
 
 

23 

From “Introducing Apache Hadoop: The Modern 	


Data Operating System”, Amr Awadallah	
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Figure 21.3 
Organization of the Google physical infrastructure 

(To avoid clutter the Ethernet connections are shown from only one of the clusters to the external 
links) 

24 

Commodity 	


PC’s which	


are assumed	


to fail. 	


40-80 PC’s	


per rack.	


Racks are 	


organized 	


into clusters.	


Each cluster	


>30 racks.	


Each PC has	


>2 terabytes.	


30 racks is	


about 4.8	


petabytes.	


All of 	


Google >	


1 exabyte	


(10^18 bytes).	


	


	





Requirements of Google File System (GFS) 
Run reliably with component failures. 
Solve problems that Google needs solved – not a 

massive number of files but massively large files 
are common. 

Access is dominated by long sequential streaming  
reads and sequential appends. No need for caching 
on the client. 

Throughput more important than latency. 
Think of very large files each holding a very large 

number of HTML documents scanned from the web. 
These need read and analyzed. 

This is not your everyday use of a distributed file 
system (NFS and AFS). Not POSIX. 
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GFS 

Each file is mapped to a set of fixed size chunks. 
Each chunk is 64Mb in size. 
Each cluster has a single master and multiple 

(usually hundreds) of chunk servers. 
Each chunk is replicated on three different chunk 

servers. 
The master knows the locations of chunk replicas. 
The chunk servers know what replicas they have and 

are polled by the master on startup. 

26 



Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5   ���
©  Pearson Education 2012 	



Figure 21.9 
Overall architecture of GFS 

27 

Hundreds of chunkservers	



Each GFS cluster has a single	


master.	



Manage 
metadata	



Data is replicated on three independent chunkservers.	


Locations known by master.	


With log files, the master is restorable after failure. 	





GFS – Reading a file sequentially 
Suppose a client wants to perform a sequential read, 

processing a very large file from a particular byte 
offset. 

1)  The client can compute the chunk index from the 
byte offset. 

2)  Client calls master with file name and chunk 
index. 

3)  Master returns chunk identifier and the locations 
of replicas. 

4)  Client makes call on a chunk server for the chunk 
and it is processed sequentially with no caching. It 
may ask for and receive several chunks. 

28 



GFS – Mutation operations 

Suppose a client wants to perform sequential writes 
to the end of a file. 

1)  The client can compute the chunk index from the 
byte offset. This is the chunk holding End Of File.  

2)  Client calls master with file name and chunk 
index. 

3)  Master returns chunk identifier and the locations 
of replicas. One is designated as the primary. 

4)  The client sends all data to all replicas. The 
primary coordinates with replicas to update files 

      consistently across replicas. 
29 



MapReduce Runs on Hadoop 

•  Provide a clean abstraction on top of parallelization and fault 
tolerance. 

•  Easy to program. The parallelization and fault tolerance is 
automatic. 

•  Programmer implements two interfaces: one for mappers 
and one for reducers. 

•  Map takes records from source in the form of key value 
pairs. 

•  Map produces one or more intermediate values along with 
an output key from the input. 

•  When Map is complete, all of the intermediate values for a 
given output key are combined into a list. The combiners run 
on the mapper machines. 
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MapReduce 

Reduce combines the intermediate values into one or 
more final values for the same output key (usually 
one final value per key) 

The master tries to place the mapper on the same 
machines as the data or nearby. 
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MapReduce – From the Google Paper 

Map, written by the user, takes an input pair and 
produces a set of output key/value pairs. 

The MapReduce library groups together all 
intermediate values associated with the key I and 
passes them to the reduce function. 

The Reduce function, also written by the user, 
accepts an intermediate key I and a set of values 
for that key. It merges together these values to form 
a possibly smaller set of values. Typically, just zero 
or one output value is produced per Reduce 
invocation. 

32 



MapReduce – From the Google Paper 

 
Map            (k1,v1)  -->  list(k2,v2) 
 
Reduce       (k2, list(v2))  -->  list(v2) 

33 
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Figure 21.18 
Some examples of the use of MapReduce 

34 
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Figure 21.19 
The overall execution of a MapReduce program 
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Overall Execution of MapReduce 

Mappers run on the input data scattered over n machines: 
Data on Disk 1   =>( key,value)  => map1  
Data on Disk 2   => (key,value)  => map2 

: 
Data on Disk n   => (key,value)  => mapn 

The map tasks produce (key, value) pairs: 
map1 => (key 1, value)                       

                      (key 2, value)                       
map2 => (key 1, value)                       

                      (key 2, value) 
               (key 3, value) 
               (key 1, value) 
The output of each map task is collected and sorted on the key. These key, value pairs 
are  passed to the reducers: 
 (key 1, value list) => reducer1  => list(value) 

  (key 2, value list) => reducer2  => list(value) 
 (key 3, value list) => reducer3  => list(value) 

36 

Maps run in parallel.	


Reducers run in parallel.	


Map phase must be completely	


finished before the reduce 	


phase can begin.	


The combiner phase is run on 	


mapper nodes after map phase. 	


This is a mini-reduce	


on local map output.	


	



For complex activities, best to	


pipe the output of a reducer	


to another mapper.	





MapReduce to Count Word Occurrences in Many Documents 

Disk 1   => (Document name,Document) => map1 On machine near disk 1 
Disk 2   => (Document name,Document) => map2  On machine near disk 2 
Disk n   => (Document name, Document) => mapn 

 
map1 => (ball, 1)                   

                      (game, 1)               
map2 => (ball, 1)         

                      (team, 1) 
               (ball, 1) 
Gather map output and sort by key. Send these pairs to reducers. 
 
 (ball, 1,1,1) => reducer      =>  (ball, 3) 
 (game, 1)  => reducer   => (game, 1) 
 (team, 1)  => reducer   => (team, 1) 
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Some MapReduce Examples 

1)  Count the number of occurrences of each word in 
a large collection of documents. 

2)  Distributed GREP: Count the number of lines with 
a particular pattern. 

3)  From a web server log, determine URL access 
frequency. 

4)  Reverse a web link graph. For a given URL, find 
URL’s of pages pointing to it. 

5)  For each word, create list of documents 
containing it. (Same as 4.) 

6)  Distributed sort of a lot of records with keys. 
38 



MapReduce Example (1) 

Count the number of occurrences of each word in a 
large collection of documents. 
      // (K1,V1) à List(K2,V2) 

         map(String key, String value) 
         // key: document name 
         // value: document contents 
         for each word w in value  
             emitIntermediate(w,”1”) 
         ==================================================== 
          // (K2, List(V2)) à List(V2)                                                     (bell,[1]), (car,[1,1]) 
          reduce(String key, Iterator values) 
          // key: a word 
          // values: a list of counts 
          result = 0 
          for each v in values result += v; 
          emit(key, result)                                                                        (bell,1),(car,2) 
 
       

39 

Doc1	


   car	


   bell	


Doc2	


   car	



(car,1),(bell,1),(car,1)	





MapReduce Example (2) 

Distributed GREP: Count the number of lines with a 
particular pattern. Suppose searchString is “th”. 
 // (K1,V1) à List(K2,V2)                          
  map(fileOffset, lineFromFile) 
           if searchString in lineFromFile  
               emitIntermediate(lineFromFile,1) 
         
  // (K2, List(V2)) à List(V2)   
  reduce (K2, iterator values) 
        s = sum up values 

        emit (sum,k2)       
  

40 

(0, the line) (8, a line) (14, the store)	


(22, the line)	



(the line, 1), (the store, 1), (the line,1) 	



(the line, [1,1]), (the store,[1])	



(2 the line),(1 the store)	





MapReduce Example (3) 

From a web server log, determine URL access 
frequency. 
Web page request log: 
URL1 was visited 
URL1 was visted 
URL2 was visted 
URL1 was visted 
         
// (K1,V1) à List(K2,V2)          
map( offset, url)                        
      emitIntermediate(url,1)         
                                                       
// (K2, List(V2)) à List(V2)                                  
reduce(url, values)  
      sum values into total 
      emit(url,total) 
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(0,URL1),(45,URL1),(90,URL2),(135,URL1)	



(URL1,1),(URL1,1),(URL2,1),(URL1,1)	



(URL1, [1,1,1]), (URL2, [1])	


	



(URL1, 3),(URL2,1)	





MapReduce Example (4) 

4) Reverse a web link graph. For a given URL, find  
    URL’s of pages pointing to it. 
 
// (K1,V1) à List(K2,V2)  

map(String SourceDocURL, sourceDoc) 
         for each target in the document 
              emitIntermediate(target, SourceDocURL) 
 
// (K2, List(V2)) à List(V2)  

reduce(target, listOfSourceURL’s)  
       emit(target, listOfSourceURL’s) 
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(URL1, {P1,P2,P3})   (URL2, {P1,P3})	


	


(P1, URL1), (P2,URL1), (P3, URL1)	


            (P1, URL2), (P3, URL2)	


	

        	


	

(P1, (URL1, URL2)), (P2, (URL1)), 	



(P3,(URL1,URL2))	


	



5. Same as 4.	





MapReduce Example (6) 

6) Distributed sort of a lot of records with keys. 
 
 // (K1,V1) à List(K2,V2)                               (0, k2, data), (20, k1, data), (30, k3, data)    

 map(offset, record) 

         sk = find sort key in record 
         emitIntermediate(sk, record)    (k2,data),(k1,data),(k3,data) 

 // (K2, List(V2)) à List(V2)                          

                                                           (k1,data),(k2,data),(k3,data)  
reduce emits records unchanged 

 
 

43 



44 

Recall Example 1 Word Count 

Count the number of occurrences of each word in a 
large collection of documents. 
      // (K1,V1) à List(K2,V2) 

         map(String key, String value) 
         // key: document name 
         // value: document contents 
         for each word w in value  
             emitIntermediate(w,”1”) 
         ==================================================== 
          // (K2, List(V2)) à List(V2)                                                     (bell,[1]), (car,[1,1]) 
          reduce(String key, Iterator values) 
          // key: a word 
          // values: a list of counts 
          result = 0 
          for each v in values result += v; 
          emit(key, result)                                                                        (bell,1),(car,2) 
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Doc1	


   car	


   bell	


Doc2	


   car	



(car,1),(bell,1),(car,1)	
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Word Counting in Java - Mapper – Using offset into file not document 
name 
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 public static class MapClass extends MapReduceBase	


    implements Mapper<LongWritable, Text, Text, IntWritable> {	


 	


    private final static IntWritable one = new IntWritable(1);	


    private Text word = new Text();	


 	


    public void map(LongWritable key, Text value, 	


                    OutputCollector<Text, IntWritable> output, 	


                    Reporter reporter) throws IOException {	


      String line = value.toString();	


      StringTokenizer itr = new StringTokenizer(line);	


      while (itr.hasMoreTokens()) {	


        word.set(itr.nextToken());	


        output.collect(word, one);	


      }	


    }	


  }	
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Word Counting in Java - Reducer 

46 

 	


public static class Reduce extends MapReduceBase	


    implements Reducer<Text, IntWritable, Text, IntWritable> {	


 	


    public void reduce(Text key, Iterator<IntWritable> values,	


                       OutputCollector<Text, IntWritable> output, 	


                       Reporter reporter) throws IOException {	


      int sum = 0;	


      while (values.hasNext()) {	


        sum += values.next().get();	


      }	


      output.collect(key, new IntWritable(sum));	


    }	


  }	





Computing π 

Can you think of an embarrassingly parallel approach 
to approximating the value of π ? 

Ask 100 monkeys to each throw one thousand darts 
at  100 square 1 X 1 boards, all with inscribed 
circles. 

Count the number of darts landing inside the circles 
and those landing outside. Compute the area A = 
(landing inside)/(landing inside + landing outside). 
We know that A = π r 2  = π (1/2) 2 = ¼ π.  

So, π = 4A.  
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