
95-702 Distributed Systems Coulouris 5’th Ed.	

 95-702 Distributed Systems

Distributed File Systems

•  Generic Distributed File System	

•  NFS Network File System Developed at Sun (1984)	

•  AFS Andrew File System Developed at CMU (1980’s)	

•  Google File System (GFS) (2004)	

•  HDFS Open Source Hadoop Distributed File System(2008) 	

1

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.2
File system modules

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

2

A typical non-distributed file system’s layered organization. Each layer	

depends only on the layer below it.	

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.3
File attribute record structure

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

3

Files contain	

both data and 	

attributes.	

	

The shaded 	

attributes are	

managed by the	

file system and	

not normally	

directly modified	

by user programs.	

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.4
UNIX file system operations

filedes = open(name, mode)	

filedes = creat(name, mode)	

Opens an existing file with the given name.	

 	

Creates a new file with the given name.	

 	

Both operations deliver a file descriptor referencing the open	

file. The mode is read, write or both.	

status = close(filedes)	

 Closes the open file filedes.	

count = read(filedes, buffer, n)	

count = write(filedes, buffer, n)	

Transfers n bytes from the file referenced by filedes to buffer.	

 	

Transfers n bytes to the file referenced by filedes from buffer.	

Both operations deliver the number of bytes actually transferred	

and advance the read-write pointer.	

pos = lseek(filedes, offset,	

 	

whence)	

 	

 	

Moves the read-write pointer to offset (relative or absolute,	

depending on whence).	

status = unlink(name)	

 Removes the file name from the directory structure. If the file	

has no other names, it is deleted.	

status = link(name1, name2)	

 Adds a new name (name2) for a file (name1).	

 	

status = stat(name, buffer)	

 Gets the file attributes for file name into buffer.	

4

These operations are implemented in the Unix kernel. These are 	

operations available in the non-distributed case. Programs cannot 	

observer any discrepancies between cached copies and stored data after 	

an update. This is called strict one copy semantics. 	

	

Suppose we want the files to be be located on another machine…	

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.5
File service architecture Generic Distributed File System

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

5

Flat file service and dir. service	

both provide an RPC interface	

used by clients.	

The client module provides	

a single interface used by	

apps – emulates traditional fs.	

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.6
Flat file service operations

Read(FileId, i, n) -> Data	

 	

— 	

 throws	

 BadPosition	

If 1 ≤ i ≤ Length(File): Reads a sequence of up to n items	

from a file starting at item i and returns it in Data.	

Write(FileId, i, Data)	

 	

— 	

 throws	

 BadPosition	

If 1 ≤ i ≤ Length(File)+1: Writes a sequence of Data to a	

file, starting at item i, extending the file if necessary.	

Create() -> FileId	

 Creates a new file of length 0 and delivers a UFID for it.	

 	

Delete(FileId)	

 	

 	

 Removes the file from the file store.	

GetAttributes(FileId) -> Attr	

 	

 	

 Returns the file attributes for the file.	

 	

SetAttributes(FileId, Attr)	

 	

 	

 Sets the file attributes (only those attributes that are not	

shaded in Figure 12.3).	

6

The client module will make calls on these operations and so will the 	

directory service act as a client of the flat file service. Unique File	

Identifiers (UFID’s) are passed in on all operations except create().	

7 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.5
File service architecture Generic Distributed File System

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

7

read(FileID,..	

write(FileID,…	

fileID create(

delete(FileID,…	

getAttributes(FileID	

setAttribues(FileID	

	

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.7
Directory service operations

Lookup(Dir, Name) -> FileId	

—	

 	

throws	

 NotFound	

 	

Locates the text name in the directory and returns the	

relevant UFID. If Name is not in the directory, throws an	

exception.	

 	

AddName(Dir, Name, FileId)	

 	

— 	

throws	

 NameDuplicate	

 	

If Name is not in the directory, adds (Name, File) to the	

directory and updates the file’s attribute record.	

If Name is already in the directory: throws an exception.	

 	

UnName(Dir, Name)	

 	

— 	

throws	

 NotFound	

 	

If Name is in the directory: the entry containing Name is	

removed from the directory.	

 	

If Name is not in the directory: throws an exception.	

 	

GetNames(Dir, Pattern) -> NameSeq	

 	

 	

 Returns all the text names in the directory that match the	

regular expression Pattern.	

8

Primary purpose: translate text names to UFID’s. Each directory	

is stored as a conventional file and so this is a client of the flat file	

service.	

Once a flat file service and directory service is in place, it	

is simple matter to build client modules that look like unix.	

9 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.5
File service architecture Generic Distributed File System

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

fileID lookUp(dir,name)	

addName(dir,name,fileID)	

unNameID(dir,name)	

getNames(dir, pattern)	

	

	

Directory service

9

We have seen this pattern before. 	

10 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.5
File service architecture Generic Distributed File System

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

fileID	

10

name	

operation fileID	

data or status	

NFS

Goal: Be unsurprising and look like a UNIX FS.
Goal: Implement full POSIX API. The Portable Operating
 System Interface is an IEEE family of standards
 that describe how Unix like Operating Systems should
 behave.
Goal: Your files are available from any machine.
Goal: Distribute the files and we will not have to implement new
 protocols.
NFS has been a major success.
NFS was originally based on UDP and was stateless.
TCP added later.
NFS defines a virtual file system. The NFS client pretends to be

a real file system but is making RPC calls instead. 11

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.8
NFS architecture

UNIX kernel

protocol

Client computer Server computer

system calls

Local Remote

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

NFS

UNIX

UNIX kernel

Virtual file system Virtual file system

O
th

er

 fi
le

 s
ys

te
m

12

NFS uses RPC over TCP or UDP.	

External requests are translated into	

RPC calls on the server. The virtual 	

file system module provides access transparency. 	

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.9
NFS server operations (simplified) – 1

lookup(dirfh, name) -> fh, attr	

 Returns file handle and attributes for the file name in the directory 	

dirfh.	

 	

create(dirfh, name, attr) ->	

 	

 	

newfh, attr	

Creates a new file name in directory dirfh with attributes attr and	

returns the new file handle and attributes.	

remove(dirfh, name) status	

 Removes file name from directory dirfh.	

getattr(fh) -> attr	

 Returns file attributes of file fh. (Similar to the UNIX stat system 	

call.)	

setattr(fh, attr) -> attr	

 Sets the attributes (mode, user id, group id, size, access time and	

modify time of a file). Setting the size to 0 truncates the file.	

read(fh, offset, count) -> attr, data	

 Returns up to count bytes of data from a file starting at offset.	

Also returns the latest attributes of the file.	

write(fh, offset, count, data) -> attr	

 Writes count bytes of data to a file starting at offset. Returns the	

attributes of the file after the write has taken place.	

rename(dirfh, name, todirfh, toname)	

-> status	

Changes the name of file name in directory dirfh to toname in	

directory to todirfh	

.	

link(newdirfh, newname, dirfh, name)	

 	

-> status	

Creates an entry newname in the directory newdirfh which refers to	

file name in the directory dirfh.	

Continues on next slide ...

13

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.9
NFS server operations (simplified) – 2

symlink(newdirfh, newname, string)	

	

-> status	

Creates an entry newname in the directory newdirfh of type	

symbolic link with the value string. The server does not interpret	

the string but makes a symbolic link file to hold it.	

readlink(fh) -> string	

 Returns the string that is associated with the symbolic link file	

identified by fh.	

mkdir(dirfh, name, attr) -> ���
	

newfh, attr	

Creates a new directory name with attributes attr and returns the	

new file handle and attributes.	

rmdir(dirfh, name) -> status	

 Removes the empty directory name from the parent directory dirfh.	

Fails if the directory is not empty.	

readdir(dirfh, cookie, count) -> ���
	

entries	

Returns up to count bytes of directory entries from the directory	

dirfh. Each entry contains a file name, a file handle, and an opaque	

pointer to the next directory entry, called a cookie. The cookie is	

used in subsequent readdir calls to start reading from the following	

entry. If the value of cookie is 0, reads from the first entry in the	

directory.	

statfs(fh) -> fsstats	

 Returns file system information (such as block size, number of	

free blocks and so on) for the file system containing a file fh.	

14

The directory and file operations are integrated into a single service.	

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.10
Local and remote file systems accessible on an NFS client

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at	

 /export/people in Server 1; the file system mounted at /usr/staff in the client is actually the sub-
tree located at /nfs/users in Server 2.	

15

Andrew File System

Unlike NFS, the most important design goal is
scalability.

To achieve scalability, whole files are cached in client
nodes. Why does this help with scalability?

We reduce client server interactions.
A client cache would typically hold several hundreds

of files most recently used on that computer.
The cache is permanent, surviving reboots.
When the client opens a file, the cache is examined

and used if the file is available there.

16

Andrew File System - Typical Scenario – Modified from Coulouris

If the client code tries to open a file the client cache is tried first.
If not there, a server is located and the server is called for the
file.

The copy is stored on the client side and is opened.
Subsequent reads and writes hit the copy on the client.
When the client closes the file - if the files has changed it is

sent back to the server. The client side copy is retained for
possible more use.

Consider UNIX commands and libraries copied to the client.
Consider files only used by a single user.
These last two cases represent the vast majority of cases.
Gain: Your files are available from any workstation.
Principle: Make the common case fast. See Amdahl’s Law.

 17

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.11
Distribution of processes in the Andrew File System

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

18

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.12
File name space seen by clients of AFS

/ (root)

tmp bin cmuvmunix. . .

bin

SharedLocal

Symbolic
links

19

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.13
System call interception in AFS

UNIX file
system calls

Non-local file
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX file system

Venus

20

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.14
Implementation of file system calls in AFS

User process UNIX kernel Venus Net Vice
open(FileName,

mode)
If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding callback
promises on the file.

21

In the event	

that two	

clients both	

write and 	

then close,	

The last	

writer wins. 	

A callback 	

promise is a 	

token stored 	

with the 	

cached copy –	

either valid 	

or cancelled	

If a client	

closes and the	

file is changed	

then vice makes	

RPC calls on all	

other clients to	

cancel the	

callback 	

promise. 	

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 12.15
The main components of the Vice service interface

Fetch(fid) -> attr, data	

 Returns the attributes (status) and, optionally, the contents of file	

identified by the fid and records a callback promise on it.	

Store(fid, attr, data)	

 Updates the attributes and (optionally) the contents of a specified	

file.	

Create() -> fid	

 Creates a new file and records a callback promise on it.	

Remove(fid)	

 Deletes the specified file.	

SetLock(fid, mode)	

 Sets a lock on the specified file or directory. The mode of the	

lock may be shared or exclusive. Locks that are not removed 	

expire after 30 minutes.	

ReleaseLock(fid)	

 Unlocks the specified file or directory.	

RemoveCallback(fid)	

 Informs server that a Venus process has flushed a file from its	

cache. 	

BreakCallback(fid)	

 This call is made by a Vice server to a Venus process. It cancels	

the callback promise on the relevant file.	

22

Google File System (GFS)
Hadoop (HDFS)

•  What is Hadoop?
•  Sort of the opposite of virtual machines where one

machine may act like many. Instead, with Hadoop,
many machines act as one.

•  Hadoop is an open source implementation of GFS.
•  Microsoft has Dryad with similar goals.
•  At its core, an operating system (like Hadoop) is

all about:
 (a) storing files
 (b) running applications on top of files

23

From “Introducing Apache Hadoop: The Modern 	

Data Operating System”, Amr Awadallah	

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 21.3
Organization of the Google physical infrastructure

(To avoid clutter the Ethernet connections are shown from only one of the clusters to the external
links)

24

Commodity 	

PC’s which	

are assumed	

to fail. 	

40-80 PC’s	

per rack.	

Racks are 	

organized 	

into clusters.	

Each cluster	

>30 racks.	

Each PC has	

>2 terabytes.	

30 racks is	

about 4.8	

petabytes.	

All of 	

Google >	

1 exabyte	

(10^18 bytes).	

	

	

Requirements of Google File System (GFS)
Run reliably with component failures.
Solve problems that Google needs solved – not a

massive number of files but massively large files
are common.

Access is dominated by long sequential streaming
reads and sequential appends. No need for caching
on the client.

Throughput more important than latency.
Think of very large files each holding a very large

number of HTML documents scanned from the web.
These need read and analyzed.

This is not your everyday use of a distributed file
system (NFS and AFS). Not POSIX.

25

GFS

Each file is mapped to a set of fixed size chunks.
Each chunk is 64Mb in size.
Each cluster has a single master and multiple

(usually hundreds) of chunk servers.
Each chunk is replicated on three different chunk

servers.
The master knows the locations of chunk replicas.
The chunk servers know what replicas they have and

are polled by the master on startup.

26

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 21.9
Overall architecture of GFS

27

Hundreds of chunkservers	

Each GFS cluster has a single	

master.	

Manage
metadata	

Data is replicated on three independent chunkservers.	

Locations known by master.	

With log files, the master is restorable after failure. 	

GFS – Reading a file sequentially
Suppose a client wants to perform a sequential read,

processing a very large file from a particular byte
offset.

1)  The client can compute the chunk index from the
byte offset.

2)  Client calls master with file name and chunk
index.

3)  Master returns chunk identifier and the locations
of replicas.

4)  Client makes call on a chunk server for the chunk
and it is processed sequentially with no caching. It
may ask for and receive several chunks.

28

GFS – Mutation operations

Suppose a client wants to perform sequential writes
to the end of a file.

1)  The client can compute the chunk index from the
byte offset. This is the chunk holding End Of File.

2)  Client calls master with file name and chunk
index.

3)  Master returns chunk identifier and the locations
of replicas. One is designated as the primary.

4)  The client sends all data to all replicas. The
primary coordinates with replicas to update files

 consistently across replicas.
29

MapReduce Runs on Hadoop

•  Provide a clean abstraction on top of parallelization and fault
tolerance.

•  Easy to program. The parallelization and fault tolerance is
automatic.

•  Programmer implements two interfaces: one for mappers
and one for reducers.

•  Map takes records from source in the form of key value
pairs.

•  Map produces one or more intermediate values along with
an output key from the input.

•  When Map is complete, all of the intermediate values for a
given output key are combined into a list. The combiners run
on the mapper machines.

30

MapReduce

Reduce combines the intermediate values into one or
more final values for the same output key (usually
one final value per key)

The master tries to place the mapper on the same
machines as the data or nearby.

31

MapReduce – From the Google Paper

Map, written by the user, takes an input pair and
produces a set of output key/value pairs.

The MapReduce library groups together all
intermediate values associated with the key I and
passes them to the reduce function.

The Reduce function, also written by the user,
accepts an intermediate key I and a set of values
for that key. It merges together these values to form
a possibly smaller set of values. Typically, just zero
or one output value is produced per Reduce
invocation.

32

MapReduce – From the Google Paper

Map (k1,v1) --> list(k2,v2)

Reduce (k2, list(v2)) --> list(v2)

33

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 21.18
Some examples of the use of MapReduce

34

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Figure 21.19
The overall execution of a MapReduce program

35

Overall Execution of MapReduce

Mappers run on the input data scattered over n machines:
Data on Disk 1 =>(key,value) => map1
Data on Disk 2 => (key,value) => map2

:
Data on Disk n => (key,value) => mapn

The map tasks produce (key, value) pairs:
map1 => (key 1, value)

 (key 2, value)
map2 => (key 1, value)

 (key 2, value)
 (key 3, value)
 (key 1, value)
The output of each map task is collected and sorted on the key. These key, value pairs
are passed to the reducers:
 (key 1, value list) => reducer1 => list(value)

 (key 2, value list) => reducer2 => list(value)
 (key 3, value list) => reducer3 => list(value)

36

Maps run in parallel.	

Reducers run in parallel.	

Map phase must be completely	

finished before the reduce 	

phase can begin.	

The combiner phase is run on 	

mapper nodes after map phase. 	

This is a mini-reduce	

on local map output.	

	

For complex activities, best to	

pipe the output of a reducer	

to another mapper.	

MapReduce to Count Word Occurrences in Many Documents

Disk 1 => (Document name,Document) => map1 On machine near disk 1
Disk 2 => (Document name,Document) => map2 On machine near disk 2
Disk n => (Document name, Document) => mapn

map1 => (ball, 1)

 (game, 1)
map2 => (ball, 1)

 (team, 1)
 (ball, 1)
Gather map output and sort by key. Send these pairs to reducers.

 (ball, 1,1,1) => reducer => (ball, 3)
 (game, 1) => reducer => (game, 1)
 (team, 1) => reducer => (team, 1)

37

Some MapReduce Examples

1)  Count the number of occurrences of each word in
a large collection of documents.

2)  Distributed GREP: Count the number of lines with
a particular pattern.

3)  From a web server log, determine URL access
frequency.

4)  Reverse a web link graph. For a given URL, find
URL’s of pages pointing to it.

5)  For each word, create list of documents
containing it. (Same as 4.)

6)  Distributed sort of a lot of records with keys.
38

MapReduce Example (1)

Count the number of occurrences of each word in a
large collection of documents.
 // (K1,V1) à List(K2,V2)

 map(String key, String value)
 // key: document name
 // value: document contents
 for each word w in value
 emitIntermediate(w,”1”)
 ==
 // (K2, List(V2)) à List(V2) (bell,[1]), (car,[1,1])
 reduce(String key, Iterator values)
 // key: a word
 // values: a list of counts
 result = 0
 for each v in values result += v;
 emit(key, result) (bell,1),(car,2)

39

Doc1	

 car	

 bell	

Doc2	

 car	

(car,1),(bell,1),(car,1)	

MapReduce Example (2)

Distributed GREP: Count the number of lines with a
particular pattern. Suppose searchString is “th”.
 // (K1,V1) à List(K2,V2)
 map(fileOffset, lineFromFile)
 if searchString in lineFromFile
 emitIntermediate(lineFromFile,1)

 // (K2, List(V2)) à List(V2)
 reduce (K2, iterator values)
 s = sum up values

 emit (sum,k2)

40

(0, the line) (8, a line) (14, the store)	

(22, the line)	

(the line, 1), (the store, 1), (the line,1) 	

(the line, [1,1]), (the store,[1])	

(2 the line),(1 the store)	

MapReduce Example (3)

From a web server log, determine URL access
frequency.
Web page request log:
URL1 was visited
URL1 was visted
URL2 was visted
URL1 was visted

// (K1,V1) à List(K2,V2)
map(offset, url)
 emitIntermediate(url,1)

// (K2, List(V2)) à List(V2)
reduce(url, values)
 sum values into total
 emit(url,total)
 41

(0,URL1),(45,URL1),(90,URL2),(135,URL1)	

(URL1,1),(URL1,1),(URL2,1),(URL1,1)	

(URL1, [1,1,1]), (URL2, [1])	

	

(URL1, 3),(URL2,1)	

MapReduce Example (4)

4) Reverse a web link graph. For a given URL, find
 URL’s of pages pointing to it.

// (K1,V1) à List(K2,V2)

map(String SourceDocURL, sourceDoc)
 for each target in the document
 emitIntermediate(target, SourceDocURL)

// (K2, List(V2)) à List(V2)

reduce(target, listOfSourceURL’s)
 emit(target, listOfSourceURL’s)

42

(URL1, {P1,P2,P3}) (URL2, {P1,P3})	

	

(P1, URL1), (P2,URL1), (P3, URL1)	

 (P1, URL2), (P3, URL2)	

	

 	

	

(P1, (URL1, URL2)), (P2, (URL1)), 	

(P3,(URL1,URL2))	

	

5. Same as 4.	

MapReduce Example (6)

6) Distributed sort of a lot of records with keys.

 // (K1,V1) à List(K2,V2) (0, k2, data), (20, k1, data), (30, k3, data)

 map(offset, record)

 sk = find sort key in record
 emitIntermediate(sk, record) (k2,data),(k1,data),(k3,data)

 // (K2, List(V2)) à List(V2)

 (k1,data),(k2,data),(k3,data)
reduce emits records unchanged

43

44

Recall Example 1 Word Count

Count the number of occurrences of each word in a
large collection of documents.
 // (K1,V1) à List(K2,V2)

 map(String key, String value)
 // key: document name
 // value: document contents
 for each word w in value
 emitIntermediate(w,”1”)
 ==
 // (K2, List(V2)) à List(V2) (bell,[1]), (car,[1,1])
 reduce(String key, Iterator values)
 // key: a word
 // values: a list of counts
 result = 0
 for each v in values result += v;
 emit(key, result) (bell,1),(car,2)

44

Doc1	

 car	

 bell	

Doc2	

 car	

(car,1),(bell,1),(car,1)	

45 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Word Counting in Java - Mapper – Using offset into file not document
name

45

 public static class MapClass extends MapReduceBase	

 implements Mapper<LongWritable, Text, Text, IntWritable> {	

 	

 private final static IntWritable one = new IntWritable(1);	

 private Text word = new Text();	

 	

 public void map(LongWritable key, Text value, 	

 OutputCollector<Text, IntWritable> output, 	

 Reporter reporter) throws IOException {	

 String line = value.toString();	

 StringTokenizer itr = new StringTokenizer(line);	

 while (itr.hasMoreTokens()) {	

 word.set(itr.nextToken());	

 output.collect(word, one);	

 }	

 }	

 }	

46 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 ���
© Pearson Education 2012 	

Word Counting in Java - Reducer

46

 	

public static class Reduce extends MapReduceBase	

 implements Reducer<Text, IntWritable, Text, IntWritable> {	

 	

 public void reduce(Text key, Iterator<IntWritable> values,	

 OutputCollector<Text, IntWritable> output, 	

 Reporter reporter) throws IOException {	

 int sum = 0;	

 while (values.hasNext()) {	

 sum += values.next().get();	

 }	

 output.collect(key, new IntWritable(sum));	

 }	

 }	

Computing π

Can you think of an embarrassingly parallel approach
to approximating the value of π ?

Ask 100 monkeys to each throw one thousand darts
at 100 square 1 X 1 boards, all with inscribed
circles.

Count the number of darts landing inside the circles
and those landing outside. Compute the area A =
(landing inside)/(landing inside + landing outside).
We know that A = π r 2 = π (1/2) 2 = ¼ π.

So, π = 4A.

47

