702 Distributed Systems

ributed File Systems

eneric Distributed File System

FS Network File System Developed at Sun (1984)

FS Andrew File System Developed at CMU (1980°s)
oogle File System (GFS) (2004)

DFES Open Source Hadoop Distributed File System(2008)

YSLCITI TTIOUUICS

irectory module: relates file names to file IDs

le module: relates file IDs to particular files

ccess control module: checks permission for operation requested

le access module: reads or writes file data or attributes
lock module: accesses and allocates disk blocks
evice module: disk I/0 and buffering

rpical non-distributed file system’s layered organization. Each
ends only on the layer below it.

ALtLripute reCcord sutruciure

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

Files cont
both data
attributes

The shadce

attributes
managed
file syster
not normz
directly n
by user pi

e SysielT OpeldlOls

filedes = open(name, mode)
filedes = creat(name, mode)

status = close(filedes)
count = read(filedes, buffer, n)
count = write(filedes, buffer, n)

pos = Ilseek(filedes, offset,
whence)

status = unlink(name)

status = link(namel, name?2)

status = stat(name, buffer)

Opens an existing file with the given name.

Creates a new file with the given name.

Both operations deliver a file descriptor referencing the open
file. The mode 1s read, write or both.

Closes the open file filedes.

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

Removes the file name from the directory structure. If the file
has no other names, it 1s deleted.

Adds a new name (name?2) for a file (namel).

Gets the file attributes for file name into buffer.

se operations are implemented in the Unix kernel. These are

rations available in the non-distributed case. Programs cannot

erver any discrepancies between cached copies and stored data after
ipdate. This 1s called strict one copy semantics.

elIVICe alClliteClure ScelielhiC VistuiDuled rie oysle

Client computer Server computer

\pplication ~ Application Directory service

program program

Flat file service

Client module

= = =

he client module provides Flat file service and dir.
single interface used by both provide an RPC in

S 2N PR PRSI BV [A

He sSelviCe operauoris

(Fileld, i, n) -> Data If I <i< Length(File): Reads a sequence of up to n items
irows BadPosition from a file starting at item i and returns it in Data.
(Fileld, i, Data) If I <i< Length(File)+1: Writes a sequence of Data to a
irows BadPosition file, starting at item 7, extending the file if necessary.

te() -> Fileld Creates a new file of length O and delivers a UFID for it.
te(Fileld) Removes the file from the file store.

ttributes(Fileld) -> Attr Returns the file attributes for the file.

itributes(Fileld, Attr) Sets the file attributes (only those attributes that are not

shaded in Figure 12.3).

> client module will make calls on these operations and so wil
>ctory service act as a client of the flat file service. Unique Fils
ntifiers (UFID’s) are passed in on all operations except create(

CIVICE dlCllIteClure

Client computer

\pplication Application
program program

Client module

ScelielhiC VistuiDuled rie oysle

Server computer

Directory service

read(FilelD,..
write(FilelD.,,...
fileID crgtiegervice
delete(FilelD.,...
getAttributes(FileID

LOTY S€CI'VICE OpPEeldliOls

vokup(Dir, Name) -> Fileld
- throws NotFound

ddName(Dir, Name, Fileld)
- throws NameDuplicate

nName(Dir, Name)
- throws NotFound

etNames(Dir, Pattern) -> NameSeq

Locates the text name in the directory and returns the
relevant UFID. If Name is not in the directory, throws an
exception.

If Name is not in the directory, adds (Name, File) to the
directory and updates the file’ s attribute record.
If Name is already in the directory: throws an exception.

If Name is in the directory: the entry containing Name is
removed from the directory.
If Name 1s not in the directory: throws an exception.

Returns all the text names in the directory that match the
regular expression Pattern.

Primary purpose: translate text names to UFID’s. Each directo
s stored as a conventional file and so this 1s a client of the flat

service.

Once a flat file service and directory service 1s in place, it

elIVICe alClliteClure ScelielhiC VistuiDuled rie oysle

Client computer Server computer
fileID lookUp(dir,name
\pplication Application]Brec 09 S"}V.']‘E(’ :
program program addName(dlr,name ,ﬁle_
unNamelID(dir,name)

getNames(dir, pattern)

Flat file service

Client module

= = =

1ave seen this pattern before.

CIVICE AalClIIeCLlUre ScliceliCc Uisuipuled rlie oSysle

Client computer Server computer

namec

file D

operationr fileID

data or status

|: Be unsurprising and look like a UNIX FS.

I: Implement full POSIX API. The Portable Operating
System Interface is an IEEE family of standards
that describe how Unix like Operating Systems should
behave.

I Your files are available from any machine.

|: Distribute the files and we will not have to implement n
protocols.

-has been a major success.

-was originally based on UDP and was stateless.
"added later.

daliClriectuurce

INIX

Client computer

Application Application
program

program

m calls

kerne| =—

Server computer

=

NFS uses RPC over TCP or UDP.

External requests are translated into
DDl ~alla ~Aev thAas catvyrave TTHhA xr1ef13a 1

UNIX kernel =—
Virtual file system Virtual file system
yLocal ¥ y Remote | Y
5

e 3 || NFs NFS e

e o @ lI client | server e
system || S @ system

O w NFS
protocol

sclrvel Opelalllis (shTipined) — |

up(dirfh, name) -> fh, attr

te(dirfh, name, attr) ->
newfh, attr

e(dirfh, name) status

r(fh) -> attr

r(fh, attr) -> attr

fh, offset, count) -> attr, data
fh, offset, count, data) -> attr
we(dirfh, name, todirfh, toname)

-> status

ewdirfh, newname, dirfh, name)
-> status

Returns file handle and attributes for the file name in the directory
dirfh.

Creates a new file name in directory dirfh with attributes attr and
returns the new file handle and attributes.

Removes file name from directory dirfh.

Returns file attributes of file fh. (Similar to the UNIX stat system
call.)

Sets the attributes (mode, user id, group id, size, access time and
modify time of a file). Setting the size to O truncates the file.

Returns up to count bytes of data from a file starting at offset.
Also returns the latest attributes of the file.

Writes count bytes of data to a file starting at offset. Returns the
attributes of the file after the write has taken place.

Changes the name of file name in directory dirfh to toname in
directory to rodirth

Creates an entry newname 1in the directory newdirfh which refers to
file name in the directory dirfh.

Sclvel OpelalOlls (sSHTIPNHNed) — £

ink(newdirfh, newname, string)
-> status

link(fh) -> string
r(dirfh, name, attr) ->
newfh, attr

r(dirfh, name) -> status

dir(dirfh, cookie, count) ->
entries

s(fh) -> fsstats

Creates an entry newname in the directory newdirfh of type
symbolic link with the value string. The server does not interpre
the string but makes a symbolic link file to hold it.

Returns the string that is associated with the symbolic link file
identified by fh.

Creates a new directory name with attributes attr and returns the
new file handle and attributes.

Removes the empty directory name from the parent directory di
Fails if the directory is not empty.

Returns up to count bytes of directory entries from the directory
dirfh. Each entry contains a file name, a file handle, and an opac
pointer to the next directory entry, called a cookie. The cookie is
used in subsequent readdir calls to start reading from the follow
entry. If the value of cookie is 0, reads from the first entry in the
directory.

Returns file system information (such as block size, number of
free blocks and so on) for the file system containing a file fh.

| AU ITCITIOE THE SYSICITIS dCLEeSSIDIC Ofl dll NFO ClHICerL

Server 1 Client Server 2
/ root) / (root) [(roc
V V\
1 \ / //
export . vrry ’ \ \
Remote 1 Remote /
people students = x ' staff users
// \\ mount mount // \\\
g jon bob ... jim ann jane jo

te: The file system mounted at /usr/students in the client 1s actually the sub-tree loc
vnort/npeonle 1n Server 1: the file svstem mounted at /usr/staff in the client 1S actual

mnovy 1 11V \J)’DLUIII

ke NFS, the most important design goal is

alability.

achieve scalability, whole files are cached in cli
ydes. Why does this help with scalability?

reduce client server interactions.

lent cache would

typically hold several hundrec

files most recently used on that computer.

' cache Is permar

en the client oper

ent, surviving reboots.
s a file, the cache is examine

/d used if the file is available there.

W FHe oyslelT - 1 ypiCal oscelndario — viodined 1roirmn LOuUlOUrns

' client code tries to open a file the client cache is tried fi
ot there, a server is located and the server is called for t

copy Is stored on the client side and is opened.
equent reads and writes hit the copy on the client.

N the client closes the file - if the files has changed it is
1t back to the server. The client side copy is retained for
3sible more use.

sider UNIX commands and libraries copied to the client.
ider files only used by a single user.

e last two cases represent the vast majority of cases.

. Your files are available from any workstation.

- N AR ¥ 1) o Y o B o U A ' _» v _

DULOIl O ProCessces I e ANdIrew riie oSyslelll

Workstations

<l User Venuss__
program

UNIX kernel

=

E'User Venuss__
program

~ UNIX kernel

==

Venus
~User ™~

program

UNIX kernel

=

Network

Servers

Vice

UNIX kernel

= & &=

Vice

UNIX kernel

= = =

IAdlTIC sPadle Secll DY Cliels O Arro

Local Shared
/ (root)
y/bm\\ . Vvmunix //Cmu\\

bin

7NN\
”

Symbolic
links

21T Cdll INercepuorl i Aro

Workstation
User Venus
rogram
UNIX file Non-local file
system calls operations
UNIX kernel

UNIX file system

Local
disk

ATICTNAlOnN Of THEe SYysSlelll Cdlls I AFO

1t
1d the

anged

> makes
|s on all

ents to
1C

User process UNIX kernel Venus Net Vice
open(FileName, If FileName refers to a
mode) g;‘;’s“t’hsehf;gﬁef;ﬁgpace’ 1Check list of files in
ocal cache. If not
Venus. present or there is no
valid callback promise,
send a request for the
file to the Vice server
that is custodian of the
volume containing the T—®{Transfer a copy of the
file. file and a callback
promiseto the
workstation. Log the
Place the copy of the 4@]callback promise.
file in the local file
Open the local file and | system, enter its local
return the file name in the local cache
descriptor to the list and return the local
application. name to UNIX.
read(FileDescriptor, |Perform a normal
Buffer, length) | UNIX read operation
on the local copy.
write(FileDescriptor, | Perform a normal
Buffer, length) | UNIX write operation
on the local copy.
close(FileDescriptor) | Close the local copy
and notify Venus that If the local h
the file has been closed.| 1 the local copy has

been changed, send a
copy to the Vice server

that is the custodian of
the file.

Replace the file
contents and send a

—®1callback to all other

clients holding callback]

lnromices on the file

A call
promi
token
with t
cache
either
Or car

In the
that t
client
write
then ¢
The I
writel

Tidalrl COMpOorierits Ol e vice seiviCe inerace

h(fid) -> attr, data
(fid, attr, data)

te() -> fid
ove(fid)
ock(fid, mode)

nselLock(fid)
oveCallback(fid)

kCallback(fid)

Returns the attributes (status) and, optionally, the contents of fil
identified by the fid and records a callback promise on it.

Updates the attributes and (optionally) the contents of a specifie
file.

Creates a new file and records a callback promise on it.
Deletes the specified file.

Sets a lock on the specified file or directory. The mode of the
lock may be shared or exclusive. Locks that are not removed
expire after 30 minutes.

Unlocks the specified file or directory.

Informs server that a Venus process has flushed a file from its
cache.

This call is made by a Vice server to a Venus process. It cancels
the callback promise on the relevant file.

nruro)

Vhat is Hadoop?

ort of the opposite of virtual machines where o
nachine may act like many. Instead, with Hadoc
nany machines act as one.

ladoop is an open source implementation of GF
Aicrosoft has Dryad with similar goals.

\t its core, an operating system (like Hadoop) i
|| about:

3) storing files
0) running applications on top of files

NZalor Ol re ©S00Jgice pliysiCdl HirastruCuure

Racks

Cluster

Switches

Racks

Switches

Racks

Cluster

Cluster

&

Data centre architecture

To other data centres and the Internet

QY e AN

DN e

e AN e

_— ™ NN Y WY PN\ P~

4UIIUIIIUIILO \ ¥ 4 \JUUHIU 1 i UYOLUIII \\JI U/

' reliably with component failures.

/e problems that Google needs solved — not a
assive number of files but massively large files
e common.

ess Is dominated by long sequential streaming
ads and sequential appends. No need for cachi
| the client.

oughput more important than latency.

1k of very large files each holding a very large
iImber of HTML documents scanned from the w
1ese need read and analyzed.

u 1 I i | Bl I | 1 1 fF"1]
- I [P B - PR =

h file is mapped to a set of fixed size chunks.
h chunk is 64Mb In size.

h cluster has a single master and muiltiple
sually hundreds) of chunk servers.

h chunk is replicated on three different chunk
rvers.

' master knows the locations of chunk replicas.

' chunk servers know what replicas they have a
e polled by the master on startup.

Al alCriectiure Ol Oro

Each GFS cluster he

ient control flow master.
GFS clieTt » GFS master Manag
library | g metadata metads
4
=
=
E » GFS chunkserver GFS chunks
BN NN N NN NN N NN NN W MmN da{acﬁuﬂks dafaC/)[jﬂk,

aata flow
Hundreds of chunkservers

Data is replicated on three independent chur
Locations known by master.
With log files, the master is restorable after |

I\UU\JIII& A 1\ \JU\»'UUIILIUII'Y

pose a client wants to perform a sequential rea
ocessing a very large file from a particular byte
fset.

The client can compute the chunk index from th
byte offset.

Client calls master with file name and chunk
ndex.

Master returns chunk identifier and the location:
of replicas.

Client makes call on a chunk server for the chul
and it Is processed sequentially with no caching

~NAav, el fAar nnA raran/ase ecoviaral AL Ik

IVIiAWGARINVL UVUI CARIVIL W

pose a client wants to perform sequential write:
the end of a file.

The client can compute the chunk index from tr
byte offset. This is the chunk holding End Of Fil

Client calls master with file name and chunk
ndex.

Master returns chunk identifier and the location:
of replicas. One is designated as the primary.

The client sends all data to all replicas. The
primary coordinates with replicas to update files

] u
AAI‘AIALAI‘LI" AN . BN R R R “AIAIIAAA

rJI N NAUVUVUW | NIV Vil 1] IU\J\JVV

'rovide a clean abstraction on top of parallelization and f:
blerance.

asy to program. The parallelization and fault tolerance i
utomatic.

rogrammer implements two interfaces: one for mappers
nd one for reducers.

lap takes records from source in the form of key value
airs.

lap produces one or more intermediate values along wit
n output key from the input.

Vhen Map is complete, all of the intermediate values for
iven output key are combined into a list. The combiners

'Yy N LI‘A AAAAAAAAAAA IAIIAAA

rJI ANV AT R A A

Juce combines the intermediate values into one
ore final values for the same output key (usually
e final value per key)

' master tries to place the mapper on the same
achines as the data or nearby.

rJI ANV AT R A A I I\NJI1TD G I\ VUUHIU I urJ\n

), written by the user, takes an input pair and
oduces a set of output key/value pairs.

' MapReduce library groups together all
lermediate values associated with the key | and
1sses them to the reduce function.

' Reduce function, also written by the user,
cepts an intermediate key | and a set of values
r that key. It merges together these values to fo
possibly smaller set of values. Typically, just ze
‘one output value is produced per Reduce
vocation.

rJI ANV AT R A A I I\NJI1TD G I\ VUUHI\J I UVUI

) (k1,v1) --> list(k2,v2)

luce (k2, list(v2)) --> list(v2)

> EXdITIPIES O e Use O1 ViapReUucle

ction

; count\

"his
heavily

)
4

wediate

ted

Initial step

Partition data
into fixed-size
chunks for

processing

[

{

Map phase

For each occurrence of
word in data partition,
emit <word, 1>

Output a line if it
matches a given pattern

For each entry in the
input data, output the
key-value pairs to be
sorted

Parse the associated
documents and output
a <word, document
ID> pair wherever that
word exists

>

)

Intermediate step

Merge/sort all
key-value keys
according to their
intermediary key

|

Reduce ph

For each wo
the intermed
set, count th
number of 1

Null

Null

For each wo
produce a lis
(sorted)

document IL

yveldll eXeCuliorn O1 a vidpReauce progrdairil

put data

P b X
v Intermediary results <
K M
—p
//' \
\ /
i /
—»(Worker >

B 1
. Map | Reduce
1%

|

>

Results
(written t

L —»

111 EXeCUlion Of IvidpReduce

rs run on the input data scattered over n machines:

n Disk 1 =>(key,value) => map,

n Disk 2 => (key,value) => map,

n Disk n => (key,value) => map,
ap tasks produce (key, value) pairs:
> (key 1, value)

key 2, value

()
> (key 1, value)
(key 2, value)
(key 3, value)

)

(key 1, value

Maps run in parallel.
Reducers run in parallel.
Map phase must be comg
finished before the reduce
phase can begin.

The combiner phase 1s ru
mapper nodes after map i
This 1s a mini-reduce

on local map output.

tput of each map task is collected and sorted on the key. These key, value pairs

ssed to the reducers:
, value list) => reducer1 => list(value)

, value list) => reducer2 => list(value)

For complex activities, b

AR T Y Y A,

\educe 10 LOUurmnt vvora vccurrerices I iially DoCulmneris

=> (Document name,Document) => map, On machine near disk 1
=> (Document name,Document) => map, On machine near disk 2

=> (Document name, Document) => map,

> (ball, 1)
(game, 1)
> (ball, 1)
(team, 1)
(ball, 1)
‘map output and sort by key. Send these pairs to reducers.

,1,1) =>reducer => (ball, 3)
, 1) =>reducer =>(game, 1)
1) =>reducer => (team, 1)

1IN\ IVIGPI ANWAV AU AV W EE S VANT L B IPIUO

Count the number of occurrences of each word
a large collection of documents.

Distributed GREP: Count the number of lines w
a particular pattern.

From a web server log, determine URL access
frequency.

Reverse a web link graph. For a given URL, fin
URL'’s of pages pointing to it.

For each word, create list of documents
containing it. (Same as 4.)

n:ALlﬁ:IAI ILAAI AAI‘L A: Yy 9 IAL A: l‘AAAI‘AIA lll:LI‘ IIA‘ N

VI ANVAV LU AV LW I_I\GIIIPIU \ I/

Int the number of occurrences of each word In ¢

e collection of documents. Docl
[(K1,V1) = List(K2,V2) bell
Doc2

1ap(String key, String value) car
key: document name

value: document contents

or each word w in value (C&I’,l),(b@ll,l),(C&I‘,li

emitintermediate(w,”1”)

[(K2, List(V2)) - List(V2) (bell,[1]), (car,[1,1])
educe(String key, lterator values)

/ key: a word

/ values: a list of counts

esult=0

VI ANWAV AU LAV VW ER S VANE I B IPIU \L,

ributed GREP: Count the number of lines with
icular pattern. Suppose searchString is “th”.

V1) > List(K2,V2)
(fileOffset, lineFromFile) (0, the line) (8, a line) (14, the

if searchString in lineFromFile (22, the line)
emitintermediate(lineFromFile, 1)

(the line, 1), (the store, 1), (the

), List(V2)) = List(V2) | .
ce (K2, iterator values) (the line, [1,1]), (the store,[1]

, = sum up values

mit (sum,k2)

(2 the line),(1 the store)

VI ANWAV AU LAV VW ER S VANE I B IPIU \\Jl

uency.

age request log:
vas visited
vas visted
vas visted

yvas visted

/1) - List(K2,V2)
ffset, url)
itintermediate(url,1)

|ist(V2)) - List(V2)
(url, values)

n values into total

m a web server log, determine URL access

(0,URLI),45,URL1),(90,URL2),(135,L

(URL1,1),(URLT,1),(URL2,1),(URLI1,1

(URLI1, [1,1,1]), (URL2,[1])

(URL1, 3),(URL2,1)

VI ANWAV AU LAV VW ER S VANE I B IPIU _I',

everse a web link graph. For a given URL, find
JRL’s of pages pointing to it.
(URLI1, {P1,P2,P3}) (URL2,{

/1) > List(K2,V2)
>tring SourceDocURL, sourceDoc)

for each target in the document (P1,URL1), (P2,URL1), (P3, 1
emitintermediate(target, SourceDocURL) (Pl) URLZ), (P3, URL?

List(V2)) > List(V2) (P1, (URL1, URL2)), (P2, (URLI

e(target, listOfSourceURL's) (P3 (URL1,URL2))
mit(target, listOfSourceURL’s) , ’

VI ANWAV AU LAV VW ER S VANE I B IPIU \U/

)istributed sort of a lot of records with keys.

V1) > List(K2,V2) (0, k2, data), (20, k1, data), (30, k3, data)

‘offset, record)

sk = find sort key in record
emitintermediate(sk, record) (k2,data),(k1,data),(k3,data)

List(V2)) = List(V2)
(k1,data),(k2,data),(k3,data)
e emits records unchanged

(Al I_I\GIIIPIU 1 VVUINU \JUUILIL

Int the number of occurrences of each word In ¢

e collection of documents. Docl
[(K1,V1) = List(K2,V2) bell
Doc2

1ap(String key, String value) car
key: document name

value: document contents

or each word w in value (C&I’,l),(b@ll,l),(C&I‘,li

emitintermediate(w,”1”)

[(K2, List(V2)) - List(V2) (bell,[1]), (car,[1,1])
educe(String key, lterator values)

/ key: a word

/ values: a list of counts

esult=0

lic static class MapClass extends MapReduceBase
iplements Mapper<LongWritable, Text, Text, IntWritable> {

ivate final static IntWritable one = new IntWritable(1);
1vate Text word = new Text();

1blic void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {

tring line = value.toString();

tringTokenizer itr = new StringTokenizer(line);

vhile (itr.hasMoreTokens()) {

word.set(1tr.nextToken());

output.collect(word, one);

d Counting in Java - Reducer

]lic static class Reduce extends MapReduceBase
mplements Reducer<Text, IntWritable, Text, IntWritable> {

ublic void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

)
output.collect(key, new IntWritable(sum));

uting i

ou think of an embarrassingly parallel approact
yproximating the value of 1 ?

00 monkeys to each throw one thousand darts
00 square 1 X 1 boards, all with inscribed
es.

- the number of darts landing inside the circles
those landing outside. Compute the area A =
ling inside)/(landing inside + landing outside).
know that A=1rr2 =1 (1/2) 2=V, .

= 4A. l |

