
95-702 Distributed Systems Information
System Management 1

95-702 Distributed Systems

 Chapter 4: Inter-process
Communications

Objectives
•  Understand the purpose of middleware.
•  Understand how external data representations contribute to

interoperability.
•  Understand how external data representations contribute to speed.
•  Understand marshalling/unmarshalling
•  Understand CORBA’s CDR
•  Understand Java’s serialization
•  Understand XML and JSON
•  Understand how remote object references may be represented.
•  A UDP based request response protocol
•  Failure models
•  Discussion questions

95-702 Distributed Systems Information
System Management 2

95-702 Distributed Systems Information
System Management 3

Middleware layers

Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

This
chapter

RMI and RPC

Middleware provides a higher level programming abstraction for the
development of distributed systems. (Coulouris text).

95-702 Distributed Systems Information
System Management 4

Moving values around on a
network

Passing values over a network may be problematic. Why?
If both sides are the same (homogenous), no problem.
But if the two sides differ in the way they represent data then we
are faced with interoperability problems:
 1. Big-endian, little-endian byte ordering may differ
 2. Floating point representation may differ
 3. Character encodings (ASCII, UTF-8, Unicode, EBCDIC)
 may differ as well.
So, we must either:

 Have both sides agree on an external representation
 or
 transmit in the sender’s format along with an indication
 of the format used. The receiver converts to its form.
Quiz: Which one of these approaches are we using in class today?
Quiz: Which one of these approaches is used on WWW?

95-702 Distributed Systems Information
System Management 5

External Data Representation
and Marshalling

External data representation – an agreed standard for the
representation of data structures and primitive values

Marshalling – the process of taking a collection of data items
and assembling them into a form suitable for transmission in
a message

Unmarshalling – is the process of disassembling them on
arrival into an equivalent representation at the destination

The marshalling and unmarshalling are usually carried
out by the middleware layer

95-702 Distributed Systems Information
System Management 6

External Data Representation
and Marshalling

Quiz:

 Suppose we write a TCP server in C++.
 Could we open a Java TCP connection to the server?
 Suppose we write a client in Java that sends a Java
 object to the server.
 Would the content of the Java object be reconstructed
 into C++?

95-702 Distributed Systems Information
System Management 7

Interoperability concern:
Big/Little Endian

Consider int j = 3;

What does it look like in memory?
00000000000000000000000000000011

How could we write it to the wire?
Little-Endian approach Big-Endian Approach
Write 00000011 Write 0000000
Then 00000000 Then 0000000
Then 00000000 Then 0000000
Then 00000000 Then 0000011

The receiver had better know
which one we are using!

95-702 Distributed Systems Information
System Management 8

Interoperability concern: Binary vs.
Unicode

Consider int j = 3;
j holds a binary representation 00…011
We could also write it in Unicode.
The character ‘3’ is coded as 0000000000110011
CPU’s like binary for integer arithmetic.

The character ‘Ω’ is coded as 0000001110101001
The number 43 can be written as a 32 bit binary
integer or as two 16 bit Unicode characters

The receiver had better know
which one we are using!

95-702 Distributed Systems Information
System Management 9 95-702 Distributed Systems Information

System Management 9

Three Important Approaches to
external data representation

 CORBA’s CDR (Common Data Representation)
 binary data may be used by different programming
 languages.

 Java and .Net Remoting Object Serialization are both
 platform specific (that is, Java on both sides or .Net
 on both sides) and binary.

 XML is a textual format, verbose and slow when compared
 to binary but interoperable. JSON is like XML but more
 compact.

Three important approaches to
external data representation

•  CORBA’s Common Data Representation
 Both sides have the IDL beforehand. This is similar to
 Google’s protocol buffers.
 Quiz: What does an IDL buy us?
•  Java’s serialization
 Use Java serialization to marshal and
 un-marshal to a network or to storage. No IDL used.
•  Web Service use of XML or JSON. In the case of
 XML, XSDL or WSDL may act as an IDL.

95-702 Distributed Systems Information
System Management 10

CORBA in a Nutshell
•  From the Object Management Group (OMG) around since the late

80’s
•  OMG an international, open membership, not-for-profit technology

standards group
•  The CORBA effort was all about distributed objects on

heterogeneous platforms.
•  CORBA does a lot of things but central is the idea of passing around

objects by value and references to objects.
•  CORBA 2.0 uses CDR to represent all of the datatypes
 that may be passed as arguments to or return values from
 a method.

95-702 Distributed Systems Information
System Management 11

95-702 Distributed Systems Information
System Management 12

CORBA Common Data Representation
(CDR) for constructed types

T	
y	
p	
e	
 Re	
pr	
e	
s	
e	
n	
ta	
t	
i	
o	
n	

s	
e	
q	
ue	
n	
ce	
 l	
e	
n	
g	
th	
 	
(
u	
n	
si	
g	
n	
ed	
 	
l	
o	
n	
g	
) 	
fo	
ll	
ow	
ed 	
b	
y	
 	
el	
e	
m	
e	
nt	
s	
 	
i	
n 	
o	
r	
d	
e	
r	

s	
t	
ri	
n	
g	
 l	
e	
n	
g	
th	
 	
(
u	
n	
si	
g	
n	
ed	
 	
l	
o	
n	
g	
) 	
fo	
ll	
ow	
ed 	
b	
y	
 	
ch	
a	
ra	
c	
te	
rs 	
i	
n o	
r	
d	
e	
r	
 	
(
ca	
n	
 al	
so	

ca	
n	
 	
h	
av	
e 	
w	
i	
de	
 	
ch	
a	
ra	
c	
te	
rs)	

a	
r	
ra	
y	
 a	
rr	
ay 	
e	
le	
m	
e	
n	
t	
s i	
n	
 	
o	
r	
de	
r (
n	
o l	
en	
g	
t	
h s	
p	
e	
ci	
f	
ie	
d b	
eca	
us	
e 	
i	
t 	
is 	
f	
i	
x	
e	
d	
)	

s	
t	
ru	
ct	
 i	
n t	
he 	
or	
de	
r o	
f	
 	
de	
c	
la	
r	
at	
i	
o	
n o	
f 	
t	
he	
 	
co	
mp	
o	
n	
e	
n	
t	
s	

e	
n	
u	
m	
e	
r	
a	
t	
e	
d	
 u	
n	
s	
i	
g	
n	
e	
d	
 	
l	
o	
n	
g 	
(
t	
h	
e 	
v	
a	
l	
ue	
s a	
re	
 s	
pe	
c	
i	
f	
ie	
d 	
b	
y t	
he	
 	
o	
r	
de	
r d	
ec	
l	
ar	
e	
d	
)	

u	
ni	
o	
n	
 t	
y	
p	
e 	
ta	
g f	
o	
l	
l	
o	
we	
d b	
y 	
t	
h	
e s	
el	
e	
cte	
d m	
e	
mb	
er	

•  Can be used by a variety of programming languages.
•  The data is represented in binary form.
•  Values are transmitted in sender’s byte ordering which is
 specified in each message.
•  May be used for arguments or return values in RMI.

95-702 Distributed Systems Information
System Management 13

Example CORBA CDR
message

 struct with value: {‘Smith’, ‘London’, 1934}

0–3	

4–7	

8–11	

12–15	

16–19	

20-23	

24–27	

5	

"Smit"	

"h___"	

 6	

"Lond"	

"on__"	

1934	

index in 	

sequence of bytes	
 4 bytes	

notes 	

on representation	

length of string	

‘Smith’	

length of string	

‘London’	

unsigned long	

In CORBA, it is assumed that the sender and receiver have common
knowledge of the order and types of the data items to be transmitted
in a message.

95-702 Distributed Systems Information
System Management 14

CORBA

CORBA Interface Definition Language (IDL)

struct Person {
 string name;
 string place;
 long year;
};

CORBA Interface Compiler

Appropriate marshalling
and unmarshalling operations

generates

One can easily include the
proxy code and make calls
to its methods.

95-702 Distributed Systems Information
System Management 15

Another approach: Java
Serialization

public class Person implements Serializable {
 private String name;
 private String place;
 private int year;
 public Person(String nm, place, year) {
 nm = name; this.place = place; this.year =

year;
 }
 // more methods
}

95-702 Distributed Systems Information
System Management 16

Java Serialization
 - Serialization refers to the activity of flattening an object
 or even a connected set of objects

 - May be used to store an object to disk
 - May be used to transmit an object as an

 argument or return value in Java RMI
 - The serialized object holds Class

 information as well as object instance data
 - There is enough class information passed to
 allow Java to load the appropriate class at
 runtime.
 - It may not know before hand what type of object to
 expect

95-702 Distributed Systems Information
System Management 17

Java Serialized Form

- The true serialized form contains additional type markers; h0 and h1
 are handles are references to other locations within the serialized form
- The above is a binary representation of {‘Smith’, ‘London’, 1934}

Serialized values	

Person	

3	

1934	

 8-byte version number	

int year	

5 Smith	

java.lang.String	

name:	

6 London	

h0	

java.lang.String	

place:	

h1	

Explanation	

class name, version number	

number, type and name of 	

instance variables 	

values of instance variables	

95-702 Distributed Systems Information
System Management 18

Web Service use of XML
<p:person xmlns:p=“http://www.andrew.cmu.edu/~mm6”>
 <p:name>Smith</p:name>
 <p:place>London</p:place>
 <p:year>1934</p:year>
</p:person>

•  How does the web work? (Text or binary?) (Compact messages?)
• Textual representation is readable by editors like Notepad or Textedit. We still
 need an agreement on what character encoding to use, e.g., an HTTP header
 might say Content-Type: text/xml; charset:ISO-8859-1;
•  But can represent any information found in binary messages.
•  How? Binary data (e.g. pictures and encrypted elements) may be represented
 in Base64 notation.
•  Messages may be constrained by a grammar written in XSDL.
•  An XSDL document may be used to describes the structure and type of the data.
•  Interoperable! A wide variety of languages and platforms support
 the marshalling and un-marshalling of XML messages. (Compare with CORBA or
 Java serialization.)
•  Verbose and slow
•  Standards and tools still under development in a wide range of domains.

95-702 Distributed Systems Information
System Management 19

Web Service use of JSON
{ “person” : { “name” : “Smith”
 “place”:”London”
 “year”:”1934”}
}

•  Textual representation is readable by editors like Notepad or Textedit. UTF-8
 is the standard encoding.
•  But can represent any information found in binary messages.
•  How? Binary data (e.g. pictures and encrypted elements) may be represented
 in Base64 notation.
•  Messages are constrained by a general grammar, see www.JSON.org
•  Interoperable! A wide variety of languages and platforms support
 the marshalling and un-marshalling of JSON messages.
•  The de-facto standard in many RESTful applications.

In distributed OOP, we need to
pass pointers…

95-702 Distributed Systems Information
System Management 20

•  In stand alone OOP, we use pointers all the time.
 BigInteger x = new BigInteger();

•  We are pointing to objects that live on the heap.

•  In systems such as Java RMI or CORBA or .NET remoting, we need a
 way to pass pointers to remote objects.
 We want x to point to an object living on some distant machine

•  Quiz: Why is it not enough to pass along a heap address?

•  Note: With web services we may make good use of URL’s - BUT
 we are not trying to build distributed OOP.

95-702 Distributed Systems Information
System Management 21

Representation of a Remote
Object Reference

Internet address	
 port number	
 time	
 object number	
 interface of 	

remote object	

32 bits	
 32 bits	
 32 bits	
 32 bits	

A remote object reference is an identifier for a remote object.
May be returned by or passed to a remote method in Java RMI.

How do these references differ from local references?

A Request Reply Protocol

95-702 Distributed Systems Information
System Management 22

OK, we know how to pass messages and addresses of objects.
But how does the middleware carry out the communication?

95-702 Distributed Systems Information
System Management 23

A UDP Style Request-Reply Is
Possible

Request

Server Client

doOperation

(wait)

(continuation)
Reply
message

getRequest

execute
method

message
select object

sendReply

95-702 Distributed Systems Information
System Management 24

UDP Based Request-Reply
Protocol

Client side:	

	

 public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)	

sends a request message to the remote object and returns the reply. 	

The arguments specify the remote object, the method to be invoked and the
arguments of that method.	

	

Server side:	

	

 public byte[] getRequest ();	

acquires a client request via the server port.	

 	

 public void sendReply (byte[] reply, InetAddress clientHost, int clientPort); 	

sends the reply message reply to the client at its Internet address and port.	

Server side:

 b=getRequest()
 coolOperation
 sendReply(re,ch,cp)

Client side
 b = doOperation(r,2,b)

95-702 Distributed Systems Information
System Management 25

Failure Model of UDP Request
Reply Protocol

A UDP style doOperation may timeout while waiting.
What should it do?
 -- return to caller passing an error message
 -- but perhaps the request was received and the
 response was lost, so, we might write the
 client to try and try until convinced that the
 receiver is down
In the case where we retransmit messages the server may

receive duplicates

Client side
 b = doOperation

Server side:

 b=getRequest()
 operate
 sendReply()

95-702 Distributed Systems Information
System Management 26

Failure Model for Handling
Duplicates

•  Suppose the server receives a duplicate messages.
•  The protocol may be designed so that either
 (a) it re-computes the reply (in the case of idempotent

operations) or
 (b) it returns a duplicate reply from its history of previous

replies
•  An acknowledgement from the client may be used to

clear the history

95-702 Distributed Systems Information
System Management 27

Request-Reply Message Structure

messageType	

requestId	

objectReference	

methodId	

arguments	

int (0=Request, 1= Reply)	

int	

RemoteObjectRef	

int or Method	

array of bytes	

95-702 Distributed Systems Information
System Management 28

RPC Exchange Protocols
Identified by Spector[1982]

N	
a	
m	
e	
 	
M	
es	
sag	
es 	
s	
e	
nt b	
y	

C	
li	
e	
nt	
 S	
e	
r	
ve	
r	
 C	
li	
e	
nt	

R	
 R	
e	
qu	
es	
t	

R	
R	
 R	
e	
qu	
es	
t	
 R	
e	
pl	
y	

R	
R	
A	
 R	
e	
qu	
es	
t	
 R	
e	
pl	
y	
 A	
ck	
no	
w	
ledg	
e re	
ply	

R = no response is needed and the client requires
 no confirmation
RR= a server’s reply message is regarded as an
 acknowledgement
RRA= Server may discard entries from its history

95-702 Distributed Systems Information
System Management 29

Discussion

Compare and contrast web services with distributed object approaches
in terms of the following:

- Marshalling and external data representation
- Interoperability
- Security
- Reliability
- Performance
- Remote references
- Full OOP
- Describe how the protocols of the internet allow for heterogeneity.
- Describe how middleware allows for heterogeneity.

