
95-702 Distributed Systems 1

95-702 Distributed Systems

Lecture 12: RSA

95-702 Distributed Systems 2

 Plan for today:

• Introduce RSA and a toy example using small numbers.
 This is from Introduction to Algorithms by Cormen,
 Leiserson and Rivest

• Describe an interesting cryptographic protocol and its
 limitations.
 This is from Applied Cryptography by Bruce Schneier.
• Show how RSA cryptography can be done in Java.
 See the Java Cryptograhy API.

95-702 Distributed Systems 3

Privacy: to send encrypted messages over an
insecure channel.

Authentication: To digitally sign messages.

RSA was not the first public key approach.
Public key cryptography was first introduced by Diffie
and Hellman in 1976.

RSA was developed by Rivest, Shamir, and Aldeman in 1977.
It’s probably safe to call public key cryptography
revolutionary.

Purpose of RSA

95-702 Distributed Systems 4

The Cast of Characters

•  Eve - tries to view messages she should not
be viewing.

•  Mallory - tries to manipulate messages and
be disruptive .

•  Bob and Alice - try to communicate over
insecure channels.

95-702 Distributed Systems 5

1.  Select at random two large prime numbers p and q.
 These numbers would normally be about 500 digits
 in length.
2.  Compute n by the equation n = p X q.
3.  Compute φ(n) = (p –1) X (q –1)
4.  Select a small odd integer e that is relatively prime to
 φ(n)

The RSA Key Generation (1)

95-702 Distributed Systems 6

5. Compute d as the multiplicative inverse of e
 modulo φ(n). A theorem in number theory asserts
 that d exists and is uniquely defined.
6. Publish the pair P = (e,n) as the RSA public key.
7. Keep secret the pair S = (d,n) as the RSA secret key.

The RSA Key Generation (2)

95-702 Distributed Systems 7

8. To encrypt a message M compute
 C = Me (mod n)

9. To decrypt a message C compute
 M = Cd (mod n)

RSA Encryption and Decryption

95-702 Distributed Systems 8

Toy Example: Key Selection(1)

1.  Select at random two large prime numbers p and q.
 These numbers would normally be about 500 digits
 in length.

 p = 3 q = 11

2.  Compute n by the equation n = p X q.
 n = 33

3. Compute φ(n) = (p –1) X (q –1)
 φ(n) = (2) X (10) = 20

95-702 Distributed Systems 9

Toy Example: Key Selection(2)

4. Select a small odd integer e that is relatively prime to
 φ(n)

p = 3 q = 11 n = 33 φ(n) = 20

e = 3

95-702 Distributed Systems 10

Toy Example: Key Selection(3)

5. Compute d as the multiplicative inverse of e,
modulo φ(n). A theorem in number theory asserts
that d exists and is uniquely defined (since e and φ(n)
are relatively prime).

We need a d so that ed mod φ = 1

Let’s try 1.
3 X 1 mod 20 = 3 mod 20 = 3. Nope.

p = 3 q = 11 n = 33 φ(n) = 20 e = 3

95-702 Distributed Systems 11

Toy Example: Key Selection(4)

We need a d so that ed mod φ = 1

Let’s try 2.
3 X 2 mod 20 = 6 mod 20 = 6. Nope.

Let’s try 7.
3 X 7 mod 20 = 21 mod 20 = 1. We found it!

This approach is too slow. A fast approach exists.

p = 3 q = 11 n = 33 φ(n) = 20 e = 3

95-702 Distributed Systems 12

Toy Example: Publish The Public
Key

6. Publish the pair P = (e,n) as the RSA public key.

“Hey everyone, my key pair is 3 and 33”

7. Keep secret the pair S = (d,n) as the RSA secret key.

“I’m not telling anyone about 7 and 33!!”

p = 3 q = 11 n = 33 φ(n) = 20 e = 3 d = 7

95-702 Distributed Systems 13

Toy Example: Message encoding
phase

 e = 3 n = 33 Bob’s public keys are

Alice wants to send the letter ‘d’ to Bob.
Suppose that we have a public code where
‘a’ = 0 ‘b’ = 1 ‘c’ = 2 ‘d’ = 3 and so on…

Alice’s software knows that

 8. To encrypt a message M compute
 C = Me (mod n) = 33 mod 33 = 27 mod 33 = 27

95-702 Distributed Systems 14

Toy Example: Message decoding
phase

 d = 7 n = 33 Bob’s private keys are

Bob receives a 27 from Alice:

9. To decrypt a message C compute
 M = Cd (mod n)

= 277 mod 33 = 10460353203 mod 33
= 3 (which is ‘d’)

95-702 Distributed Systems 15

An Example - Secure Voting

We want to think about:

 Business Requirements
 Cryptographic protocols
 Threat models

95-702 Distributed Systems 16

Goals Of Secure Voting

•  Only Authorized Voters Can Vote
•  No one can vote more than once
•  No one can determine for whom anyone else voted
•  No one can duplicate anyone else’s vote
•  No one can change anyone else’s vote without

being discovered
•  Every voter can make sure that his vote has been

taken into account in the final tabulation.

95-702 Distributed Systems 17

First Attempt

•  Each voter encrypts his vote with the public key
of a Central Tabulating Facility (CTF)

•  Each voter send his vote in to the CTF
•  The CTF decrypts the votes, tabulates them, and

makes the results public
•  What are some problems with this protocol?

95-702 Distributed Systems 18

Second Attempt

•  Each voter signs his vote with his private key
•  Each voter encrypts his signed vote with the

CTF’s public key
•  Each voter send his vote to the CTF
•  The CTF decrypts the votes, checks the

signature, tabulates the votes and makes the
results public

•  What are some problems with this protocol?

How do we do RSA in Java?

95-702 Distributed Systems 19

RSA In Java(1)

•  How do I create RSA keys?
 Use the Biginteger class and do your own

calculations or
 Use Java’s keytool:
 keytool -genkey -alias mjm -keyalg RSA -keystore mjmkeystore

95-702 Distributed Systems 20

RSA In Java(2)

•  How do I read the RSA keys from a
keystore?

 String keyFileName = "coolkeys";
 String alias = "mjm";
 char[] passWord = "sesame".toCharArray();
 FileInputStream fis = new FileInputStream(keyFileName);
 KeyStore keyStore = KeyStore.getInstance("JKS");
 System.out.println("Load key store with file name and password");
 keyStore.load(fis, passWord);

95-702 Distributed Systems 21

RSA In Java(3)

•  How do I decrypt encrypted data with the
private key?

 RSAPrivateKey RSAKey =
(RSAPrivateKey)keyStore.getKey(alias,passWord);

 Cipher RSACipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
 RSACipher.init(Cipher.DECRYPT_MODE, RSAKey);
 byte decryptedKeyBytes[] = RSACipher.doFinal(encryptedBlowFishKey);

95-702 Distributed Systems 22

RSA In Java(4)

•  How do I generate a certificate?

 Use the keytool and the keystore:
 keytool -export -alias mjm -keystore mjmkeystore –file cool.cer

95-702 Distributed Systems 23

RSA In Java(5)

•  How do I read the public key from the
certificate?

 CertificateFactory certFactory = CertificateFactory.getInstance("X.509");
 FileInputStream fis = new FileInputStream("cool.cer");
 Certificate cert = certFactory.generateCertificate(fis);
 fis.close();
 PublicKey pub = cert.getPublicKey();

95-702 Distributed Systems 24

RSA In Java(6)

•  How do I encrypt with the public key?

 Cipher cipherPub = Cipher.getInstance("RSA/ECB/PKCS1Padding");
 cipherPub.init(Cipher.ENCRYPT_MODE, pub);
 byte encryptedBlowFish[] = cipherPub.doFinal(blowFishKeyBytes);

95-702 Distributed Systems 25

