
95-702 OCT
1Master of Information System

Management

Distributed Systems

Lecture 10: Distributed
Objects & Event Notification

95-702 OCT
2Master of Information System

Management

Middleware layers

Applications

Middleware
layers Request reply protocol

External data representation

Operating System

RMI, RPC and events

95-702 OCT
3Master of Information System

Management

Traditional Interfaces

•  Interfaces promote modularity.
• Recall the use of c header files.
• One module may access another

module without concern over
implementation details.

• Method signatures are specified.
• The compiler need only consider

signatures when compiling the
caller.

95-702 OCT
4Master of Information System

Management

Interface Definition Language

• Definition: An interface definition
language (IDL) provides a notation
for defining interfaces in which each
of the parameters of a method may
be described as for input or output in
addition to having its type specified.

• These may be used to allow objects
written in different languages to
invoke one another.

95-702 OCT
5Master of Information System

Management

Interface Definition Language

•  A language independent IDL can be used bridge
 the gap between programming languages.
• Examples include:

 Corba IDL (Object-oriented syntax)
 OSF’s Distributed Computing Environment
 DCE (C like syntax)
 DCOM IDL based on OSF’s DCE and used

 by Microsoft’s DCOM
 Sun XDR (An IDL for RPC)
 Web Services WSDL

•  In the case of Web Services, how is WSDL different
 from XSDL?

95-702 OCT
6Master of Information System

Management

CORBA IDL example
// In file Person.idl
struct Person {

string name;
string place;
long year;

} ;
interface PersonList {

readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

};

How does this compare with WSDL?

95-702 OCT
7Master of Information System

Management

File interface in Sun XDR (Originally External
Data Representation but now an IDL) for RPC

const MAX = 1000;
typedef int FileIdentifier;
typedef int FilePointer;
typedef int Length;
struct Data {

int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

};

struct readargs {
FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
 version VERSION {

void WRITE(writeargs)=1; // procedure
Data READ(readargs)=2; // numbers

 }=2; // version number
} = 9999; // program number
// numbers passed in request message
// rpcgen is the interface compiler

95-702 OCT
8Master of Information System

Management

Traditional Object Model

•  Each object is a set of data and a set of methods.
•  Object references are assigned to variables.
•  Interfaces define an object’s methods.
•  Actions are initiated by invoking methods.
•  Exceptions may be thrown for unexpected or illegal
 conditions.
•  Garbage collection may be handled by the developer
 (C++) or by the runtime (.NET and Java)

95-702 OCT
9Master of Information System

Management

Distributed Object Model
•  Having client and server objects in different processes
 enforces encapsulation. You must call a method to
 change its state.
•  Methods may be synchronized to protect against
 conflicting access by multiple clients.
•  Objects are accessed remotely (by message passing) or
 objects are copied to the local machine (if the object’s
 class is available locally) and used locally.
•  Remote object references are analogous to local ones
 in that:
 1. The invoker uses the remote object reference to
 identify the object and
 2. The remote object reference may be passed as an
 argument to or return value from a local or remote
 method.

95-702 OCT
10Master of Information System

Management

Remote and Local Method
Invocations

invocation invocation
remote

invocationremote
local

local

local
invocation

invocation
A B

C

D

E
F

95-702 OCT
11Master of Information System

Management

A Remote Object and its
Remote Interface

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods

95-702 OCT
12Master of Information System

Management

RMI Design Issues
•  RMI Invocation Semantics

 Local calls have Exactly Once semantics.
 Remote calls have Maybe, At Least Once
 or at Most Once semantics. Different semantics
 are due to the fault tolerance measures applied
 during the request reply protocol.

•  Level of Transparency

 Remote calls should have a syntax
 that is close to local calls.

 But it should probably be clear to the
 programmer that a remote call is being
 made.

95-702 OCT
13Master of Information System

Management

Invocation Semantics

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No
Yes

Yes

Not applicable
No

Yes

Not applicable
Re-execute procedure

Retransmit reply (history)At-most-once

At-least-once
Maybe

Duplicate filtering means removing duplicate request at the server.

95-702 OCT
14Master of Information System

Management

Invocation Semantics

•  Maybe semantics is useful only for
 applications in which occasional failed
 invocations are acceptable.
•  At-Least-Once semantics is appropriate
 for idempotent operations.
•  At-Most-Once semantics is the norm.

95-702 OCT
15Master of Information System

Management

Generic RMI Modules

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication
 module modulereference module module

for B’s class
& dispatcher

remoteclient server

95-702 OCT
16Master of Information System

Management

The Remote Reference Module

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication
 module modulereference module module

for B’s class
& dispatcher

remoteclient server

The remote reference module holds a table that records the correspondence
between local object references in that process and remote object references
(which are system wide).

95-702 OCT
17Master of Information System

Management

The Communication Module

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication
 module modulereference module module

for B’s class
& dispatcher

remoteclient server

Coordinate to provide a specified invocation semantics. The communication
module selects the dispatcher for the class of the object to be invoked,
passing on the remote object’s local reference.

95-702 OCT
18Master of Information System

Management

Proxies

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication
 module modulereference module module

for B’s class
& dispatcher

remoteclient server

The proxy makes the RMI transparent to the caller. It marshals and unmarshals
parameters. There is one proxy for each remote object. Proxies hold the remote
object reference.

95-702 OCT
19Master of Information System

Management

Dispatchers and Skeletons (1)

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication
 module modulereference module module

for B’s class
& dispatcher

remoteclient server

The server has one dispatcher and skeleton for each class representing a
remote object. A request message with a methodID is passed from the
communication module. The dispatcher calls the method in the skeleton
passing the request message. The skeleton implements the remote object’s
interface in much the same way that a proxy does. The remote reference
module may be asked for the local location associated with the remote reference.

95-702 OCT
20Master of Information System

Management

Dispatchers and Skeletons (2)

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication
 module modulereference module module

for B’s class
& dispatcher

remoteclient server

The communication module selects the dispatcher based upon the remote object
reference. The dispatcher selects the method to call in the skeleton. The skeleton
unmarshalls parameters and calls the method in the remote object.

95-702 OCT
21Master of Information System

Management

Generic RMI Summary

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication
 module modulereference module module

for B’s class
& dispatcher

remoteclient server

RMI software - between
application level objects
and communication and
remote reference modules

Proxy - makes RMI transparent to client. Class implements
remote interface. Marshals requests and unmarshals
results. Forwards request.

Dispatcher - gets request from communication module and
invokes method in skeleton (using methodID in message).

Skeleton - implements methods in remote interface.
Unmarshals requests and marshals results. Invokes
method in remote object. •

carries out Request-
reply protocol

translates between local and remote object
references and creates remote object
references. Uses remote object table

95-702 OCT
22Master of Information System

Management

Binders

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication
 module modulereference module module

for B’s class
& dispatcher

remoteclient server

Java uses the
rmiregistry

CORBA uses the
CORBA Naming Service

Binders allow an object to be named and registered.

95-702 OCT
23Master of Information System

Management

Local Events and Notifications
•  Examples of the local event model:

 (1) A keystroke causes an interrupt
 handler to execute, storing a key
 character in the keyboard buffer.

 (2) A mouse click causes an interrupt
 handler to call a registered listener to
 handle the mouse event.

95-702 OCT
24Master of Information System

Management

Distributed Event Based
System

•  Suppose a whiteboard server is willing
to make calls to all registered clients
when the drawing is changed by any
one client.

•  Clients may subscribe to this service
(register interest).

•  The whiteboard server publishes the
events that it will make available to
clients.

•  This is the publish-subscribe paradigm

95-702 OCT
25Master of Information System

Management

Two Characteristics of
Distributed Event Based

Systems

(1)  Heterogeneous
 -- event generators publish the types of
 events they offer
 -- other objects subscribe and provide
 callable methods
 -- components that were not designed
 to work together may interoperate

95-702 OCT
26Master of Information System

Management

Two Characteristics of
Distributed Event Based

Systems
(2) Asynchronous
 -- Publishers and subscribers are
 decoupled
 -- notifications of events are sent
 asynchronously to all subscribers

95-702 OCT
27Master of Information System

Management

Dealing room system
Dealer’s computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer
Dealer

Notification

Notification

Notification

Notification

Notification
Notification

Notification

Notification

Dealer’s computer

Dealer’s computerDealer’s computer
Notification Notification

95-702 OCT
28Master of Information System

Management

Architecture for distributed
event notification

subscriberobserverobject of interest

Event service
object of interest

object of interest observer

subscriber

subscriber

3.

1.

2. notification

notification

notification

notification

