95-702 Organizational Communication & Distributed Object Technologies Carnegie Mellon University

Exam 1 Key
Fall 2007

Name _______________________

No books, notes, or computers may be used when taking the exam.

Part I. 3 Points Each

1. Certain classes of problems are associated with the execution of a distributed system. These problems are not normally associated with the execution of a non-distributed system. Name at least three of these problems or concerns:

Network failure

Independent failure

Heterogeneity

Other answers are possible

2. The World Wide Web is based on three main technological components. Name these three technological components:

HTTP

HTML

URL

3. With respect to distributed systems, heterogeneity applies to all of the following:

Operating Systems

Networks

Programming Languages

Programmers as well as others

4. The Coulouris text discusses distributed system scalability. The text argues that for a system to be scalable the loss in performance should be proportional to Log n as n, the number of users, increases.

5. The Coulouris text discusses distributed system scalability. The text argues that for a system to be scalable the quantity of physical resources should be proportional to n as n, the number of users, increases.

6. Middleware is defined as a layer of software whose purpose is to mask heterogeneity in distributed systems and to provide a convenient programming model to application programmers.

7. The aim of peer to peer architecture is to exploit the resources (both data and hardware) in a large number of participating computers for the fulfillment of a given task or activity. In this architecture, each machine is behaving in a similar manner.

8. A asynchronous distributed system is a distributed system where there are no bounds on process execution speed, message transmission delays or clock drift rates.

9. A specification of the sequence of messages that must be exchanged along with the specification of the format of the data in the messages is called a protocol.

10. Adaptive routing is a type of routing where the best route for communication between two points in the network is re-evaluated periodically, taking into account the current traffic in the network and any faults such as broken connections or routers.

11. Recall the routing algorithm in Figure 9. Suppose that router A receives a routing table from router B. Suppose too that router A finds that a remote row’s destination is not in A’s local table. What will router A do with the remote row? Add it to its own table.

12. IP provides a uniform internetwork addressing scheme that enables packets to be addressed to any host connected to any subnet.

13. IP provides a protocol defining the format of internetwork packets and giving rules according to which they are handled.

14. DNS is used to translate names such as www.cnn.com into IP addresses.

15. NAT routers maintain an address translation table and exploit the source and destination port number fields in the UDP and TCP packets to assign each incoming reply message to the internal computer that sent the corresponding request message.

16. DHCP protocol enables a newly connected computer to dynamically acquire an IP address in the address range of the local subnet and discover the addresses of local resources such as a DNS.

17. Mobile IP enables a newly connected computer to act as a server in a new subnet. It’s an example of IP tunneling.

18. An Ethernet switch performs a routing function but at the Ethernet level.

19. The ARP protocol is responsible for converting Internet addresses to network addresses for a specific underlying network. For example, it maps IP addresses to Ethernet addresses.

20. WiFi or some wireless name is in many ways similar to Ethernet but adds RTS and CTS frames.
Part II. 5 Points

21. Consider Figures 1 and 2. Figure 2 is run before Figure 1 and no errors occur. What is the exact output on the client and server side if the client is run with the command “java AnotherUDPClient?

 Client Side Server Side

 ----------- -----------

 Reply 0 Sent 0

 Reply 2 Sent 2

 Reply 4 Sent 4

 Reply 6 Sent 6

Part III. 1 Point Each Please Circle True or False

22. Figures 1 and 2 make use of the Request-reply-acknowledge reply protocol.

False

23. Figures 1 and 2 make use of TCP/IP.

False
24. The server in Figure 2 is idempotent.

True
25. The Request-reply-acknowledge reply protocol is used when the server’s operations are idempotent.

False

26. The Request-reply-acknowledge reply protocol is useful when the server must clear its history of previous replies. True
27. Figures 1 and 2 illustrate synchronous execution.

True

28. A servant is an instance of a class which provides the body of a remote object.

True
29. Typically, both proxies and skeletons have the same method signatures as the servant.

True
30. There is usually one skeleton on the client that communicates with several proxies on the server.

False

31. Distributed event-based systems allow objects to subscribe to events occurring at remote objects of interest and in turn to receive notifications when such events occur. This is an example of synchronous message passing.

False

32. Middleware is software that provides a programming model above the basic building blocks of message passing. Business application programmers typically write it.

False

33.The rmiregistry and CORBA naming service are both examples of name servers or binders.

True
34. For message passing, CORBA and Java RMI both use a binary serialization.

True
35. In the distributed whiteboard system described in chapter 5, the rmiregistry was used initially to get access to the ShapeList object. The registry was also consulted every time the client programmer needed to get remote access to a Shape object.

False

36.In the distributed whiteboard system described in chapter 5, the ShapeList object provided a method called allShapes that returned a Java Vector to the caller. This vector was written to the wire in XML.

False

37.In the distributed whiteboard system described in chapter 5, the ShapeList object provided a method called allShapes that returned a Java Vector to the caller. This vector contained serialized Shape objects that were copied to the client from the server.

False

38.“Maybe semantics” is useful only for applications in which occasional failed invocations are acceptable.

True

39. Figures 1 and 2 implement the “publish-subscribe” paradigm.

False.

Part IV. 6 Points Each

40. Professor Noitall wrote the code in Figures 3 – 8 and he asks you to test it for him. You break the program into two directories (with all of the interfaces properly arranged) and everything compiles without error. (That Professor Noitall is pretty sharp!) You execute the server and then run the client and all seems well. Everything runs! But then you notice a major problem. What is the major problem that you notice?

 On the first visit it reports "No device found".

41. Describe what you would do to fix the major problem in Professor Noitall’s code.

 He should swap the following two lines:

 String result = mcc.getDevice(name);

 name = (String)i.readObject();

Part V. 3 Points Each

42. The End-to-End Argument is best characterized by which of the following statements?

a. Low-level protocols should implement features that may also need to be implemented at the application layer.

b. Encryption should be performed at each layer.

c. Low-level protocols should check for delivery acknowledgement.

d. Low-level protocols should avoid implementing features that need to be implemented again at the application layer.
e. TCP is less reliable than UDP

43. With respect to distributed systems, the so called fundamental models focus on:

a. thread handling and semaphores

b. client-server interactions

c. correctness, reliability, and security

d. peer process interactions

e. timing, CPU speed, and synchronization

44. Two divisions of the Pepperland army, ‘Apple’ and ‘Orange’, are encamped at the top of two nearby hills. Further along the valley below are the invading Blue Meanies. Suppose that Apple and Orange, while undefeated, send regular asynchronous messages to each other to report their status. Explain why it is impossible for Orange to know if Apple has been defeated using this asynchronous system.

 While waiting for a message, Orange does not know

if a delay is due to the defeat of Apple or a delayed

trip across the hills.

45. Consider the network and routing tables below. Suppose node C receives a packet destined for router A. Suppose too that the routing tables are as shown. List each link that will be traversed by a packet traveling from router C to A.

C -- D -- B -- A

46. Consider again the network and routing tables shown below. Suppose that router B sends its routing table to router C. How will router C’s routing table change according to the RIP algorithm in Figure 9? Make any changes directly to the tables below.

[image: image1]
A B
 C D

To On In To On In To On In To On In

=========== ============ ============ =============

A Loc 0 B Loc 0 C Loc 0 A 3 2

B 1 1 A 1 1 B 2 1 B 3 1

C 1 2 C 2 1 A 2 2 C 4 1

D 1 3 D 3 1 D 4 1 D Loc 0

Figure 1.
import java.net.*;

import java.io.*;

public class AnotherUDPClient {

 public static void main(String args[]) {

 DatagramSocket aSocket = null;

 try {

 aSocket = new DatagramSocket();

 DatagramPacket reply = null;

 InetAddress aHost = InetAddress.getByName("localhost");

 int serverPort = 6502;

 for(int t = 0; t < 4; t++) {

 byte m[] = (""+t).getBytes();

 DatagramPacket request = new DatagramPacket(

 m, m.length, aHost, serverPort);

 aSocket.send(request);

 byte buffer[] = new byte[1000];

 reply = new DatagramPacket(buffer,buffer.length);

 aSocket.receive(reply);

 System.out.println("Reply:" + new

String(reply.getData()));

 }

 }

 catch(SocketException e) {

 System.out.println("Socket: " + e.getMessage());

 }

 catch(IOException e) {

 System.out.println("IO: " + e.getMessage());

 }

 finally {

 if(aSocket != null) aSocket.close();

 }

 }

}

Figure 2
import java.net.*;

import java.io.*;

import java.util.*;

public class AnotherUDPServer {

 public static void main(String args[]) {

 DatagramSocket aSocket = null;

 try {

 aSocket = new DatagramSocket(6502);

 byte buffer[] = new byte[1000];

 while(true) {

 DatagramPacket request = new
 DatagramPacket(buffer,buffer.length);

 aSocket.receive(request);

 String s = new
 String(request.getData(),0,request.getLength());

 StringTokenizer st = new StringTokenizer(s);

 String v = st.nextToken();

 int i = new Integer(v).intValue();

 i = i * 2;

 byte answer[] = (i+"").getBytes();

 DatagramPacket reply = new DatagramPacket(answer,

 answer.length,

 request.getAddress(),

 request.getPort());

 aSocket.send(reply);

 System.out.println("Sent " + i);

 }

 }

 catch(SocketException e) {

 System.out.println("Socket: " + e.getMessage());

 }

 catch(IOException e) {

 System.out.println("IO: " + e.getMessage());

 }

 finally {

 if(aSocket != null) aSocket.close();

 }

 }

}

Figure 3

public interface MyCoolClass {

public String getDevice(String name) throws Exception;

}
Figure 4
 public class CoolClient {

 public static void main(String args[]) {

 try {

 MyCoolClass p = new CoolClass_Stub();
 System.out.println(p.getDevice(args[0]));

 }

 catch(Throwable t) {

 t.printStackTrace();

 System.exit(0);

 }

 }
 }
Figure 5

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.net.Socket;

public class CoolClass_Stub implements MyCoolClass {

Socket socket;

ObjectOutputStream o;

ObjectInputStream i;

public String getDevice(String name) throws Exception {

socket = new Socket("localhost",9000);

o = new
 ObjectOutputStream(socket.getOutputStream());

 o.writeObject(name);

 o.flush();

 i = new
 ObjectInputStream(socket.getInputStream());
 String ret = (String)(i.readObject());

 socket.close();

 return ret;

 }

 }
Figure 6
 public class CoolClassServer {

 public static void main(String args[]) {

 System.out.println("Main");

 MyCool_Skeleton cs = new MyCool_Skeleton(new

 MyCoolClass_Servant());

 cs.serve();

 }
 }
Figure 7
public class MyCoolClass_Servant implements MyCoolClass {

 private String n[] = {"printer","stereo","TV","ipod","pda"};

 private String a[] =
 {"HP200XT","Kenwood200","Panasonic","Apple","Palm"};

 public String getDevice(String name) {

 for(int i = 0; i < n.length; i++) {

 if(n[i].equals(name)) return a[i];

 }

 return "No device found";

 }

 }
Figure 8

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.net.Socket;

import java.net.ServerSocket;

public class MyCool_Skeleton {

 MyCoolClass mcc;

 String name = "";

 public MyCool_Skeleton(MyCoolClass p) {

 mcc = p;

 }

 public void serve() {

 try {
 ServerSocket s = new ServerSocket(9000);

 while(true) {

 Socket socket = s.accept();

 ObjectInputStream i = new

 ObjectInputStream(socket.getInputStream());

 String result = mcc.getDevice(name);

 name = (String)i.readObject();

 ObjectOutputStream o = new

 ObjectOutputStream
 (socket.getOutputStream());

 o.writeObject(result);

 o.flush();

 }

 }

 catch(Throwable t) {

 System.out.println("Error " + t);

 System.exit(0);

 }

 }

 }

Figure 9

The Router Information Protocol Routing Algorithm

Fault on n discovered: set cost to inf for each destination using that link and execute a send

Send: Each t seconds or when Tl changes, send Tl on each non-faulty outgoing link.

Receive: Whenever a routing table Tr is received on link n:

for all rows Rr in Tr {

if (Rr.link <> n) {

Rr.cost = Rr.cost + 1;

Rr.link = n;

if (Rr.destination is not in Tl) add Rr to Tl;

 else

 for all rows Rl in Tl {

 if (Rr.destination = Rl.destination and

 (Rr.cost < Rl.cost or Rl.link = n)) Rl = Rr;
 }

5

4

3

 D

2

1

A

C

B

PAGE
7

