95-702 Organizational Communication & Distributed Object Technologies Carnegie Mellon University

Exam 2 November 22, 2005 Name KEY
Part I. 25 points

This exam has 12 pages.
You may detach the figures but turn all pages in.
For true or false questions circle the best option.

(1) Consider Figures 1 and 2. Figure 1 is run before Figure 2 and no errors occur. What is the exact output on the server side if the client is run with the command “java UDPClient 1 + 2”? wfr
 Gr 1 + 2
 atsr
 ga
 wfr
(2) Figures 1 and 2 make use of the Request-reply-acknowledge reply protocol. True False

(3) Figures 1 and 2 make use of TCP/IP. True False
(4) The Request-reply-acknowledge reply protocol is used when the server’s operations are idempotent. True False
(5) The Request-reply-acknowledge reply protocol is useful when the server must clear its history of previous replies. True False
(6) Figures 1 and 2 illustrate asynchronous callbacks. True False
(7) Figures 1 and 2 are using XML messages. True False
(8) Since the arithmetic service performed by the server in Figure 1 is idempotent the Request-reply-acknowledge reply protocol is required. True False

(9) Figure 3 is using HTTP/TCP/IP. True False

(10) Microsoft provides a Wsdl command that is able to generate C# code. True False

(11) The goals of both CORBA and Web Services include interoperability. True False
(12) CORBA primarily uses WSDL as its IDL. True False
(13) A servant is an instance of a class which provides the body of a remote object. True False
(14) Typically, both proxies and skeletons have the same method signatures as the servant. True False
(15) There is usually one skeleton on the client that communicates with several proxies on the server. True False

(16) Distributed event-based systems allow objects to subscribe to events occurring at remote objects of interest and in turn to receive notifications when such events occur. True False

(17) Middleware is software that provides a programming model above the basic building blocks of message passing. True False

(18) The rmiregistry and CORBA naming service are both examples of name servers or binders. True False

(19) For message passing, CORBA and .NET Remoting usually use XML. True False
(20) CORBA makes no provision to support callbacks or event notification. True False
(21) A server has one dispatcher and skeleton for each class representing a remote object. True False
(22) CORBA requires that the application programmer write the skeleton code for each remote object class. True False
(23) In the distributed whiteboard system described in chapter 5, the rmiregistry was used initially to get access to the ShapeList object. The registry was also consulted every time the client programmer needed to get remote access to a Shape object. True False

(24) In the distributed whiteboard system described in chapter 5, the ShapeList object provided a method called allShapes that returned a Java Vector to the caller. This vector contained remote references. True False

(25) In the distributed whiteboard system described in chapter 5, the ShapeList object provided a method called allShapes that returned a Java Vector to the caller. This vector contained serialized Shape objects that were copied to the client from the server. True False
Part II. 75 Points
For multiple choice questions circle the best choice.

(26) Which of the following statements best characterizes the SOAP middleware part of homework 3? This question is referring to the programming exercise where you were asked to implement a database and an arithmetic service using servlets and XML.

(a) The servlet programmer focused on writing UDP sockets.
(b) The servlet programmer focused on writing TCP sockets.
(c) The servlet programmer used the Class class to dynamically load the appropriate handler.

(d) The client used a proxy generated from WSDL.

(e) The client used a proxy generated from a CORBA IDL.

(27) In homework 3 we built a SOAP-like web service that performed large integer arithmetic using XML. The requests and responses were

(a) encoded using XML.
(b) encoded using Java serialization.

(c) encoded using .NET serialization.

(d) encoded using CORBA’s CDR.

(e) Marked up in HTML.
(28) In homework 3 we built two SOAP-like web services that performed large integer arithmetic and database access using XML. For both services we used
(a) the same WSDL document to generate both proxies.
(b) the SAX API rather than the DOM API.
(c) Java RMI.
(d) the same outermost XML tags to identify the specific service.
(e) .NET remoting.
(29) In order to add additional services to the SOAP-like example in Homework 3, you would:

(a) Make major modifications to HttpServiceClient

(b) Make major modifications to HttpServiceHandler

(c) Replace DBServiceClient and DBHandler with classes that used and implemented the new service

(d) Create new XML documents and wrappers for the request and reply messages.

(e) Both (c) and (d).

(30) Consider Figure 4. Where would we find this method defined in the Java RMI white board application that we reviewed in class?

(a) In the ShapeListClient class.

(b) In the ShapeListServer class.

(c) In the ShapeListServant class.

(d) In the ShapeServant class.

(e) In the Shape interface.

(31) When using RMI or CORBA for distributed event notification we use callbacks. In Java RMI a callback interface might be written as Figure 5. The idea is for this interface to work within the distributed whiteboard application. Choose one statement from the following list.

(a) The method body associated with this interface would be implemented on the whiteboard server.

(b) The method body associated with this interface would be implemented on the whiteboard client.

(c) There would be register and deregister methods implemented on the whiteboard client.

(d) There would be register and deregister methods implemented on the whiteboard server.

(e) Both (b) and (d) are correct.

(32) The difference between a CORBA Naming Service and CORBA Trading service is:

(a) The Trading Service works well with HTTP and SOAP.

(b) The Trading service is a directory service allowing users to search by service attribute.

(c) The Naming service is interoperable with the Java RMI registry.

(d) The Naming service is a directory service allowing users to search by service attribute.

(e) The Trading service is interoperable with the Java RMI registry.

(33) The CORBA Transaction service:

(a) allows a user to register a transaction document with the CORBA service.

(b) authenticates users before a transaction begins.

(c) Allows CORBA clients to begin, commit or rollback a series of remote method invocations.

(d) Performs in the same way as JAXM.

(e) Both (c) and (d) are correct.
(34) The name used to refer to middleware that is designed to enable the sharing of resources such as files, computers, software, data and sensors on a very large scale is

(a) Bluetooth

(b) RPC

(c) RMI

(d) Grid

(e) Kerberos

(35) Figure 6 contains client and server code that

implements a small version of Java RMI. There is no rmiregistry (the object is available on port 9000). There is no need for rmic because the code was written by hand. There are two missing lines from PersonServer.java. What are these two missing lines?

Person_Skeleton ps = new Person_Skeleton(p);
ps.serve();

(36) In Figure 6 there are several lines missing from PersonClient.java. Complete PersonClient.java so that it reads and displays the name and age of the person represented by the object on the server. Place the missing lines here as they would appear in the main routine of PersonClient.java.

 Person p = new Person_Stub();
 int a = p.getAge();

 String s = p.getName();
 System.out.println(a + s);

(37) In .NET Remoting, server activated objects are published as either singlecall or singleton. A singleton object
(a) is associated with exactly one single client and usually maintains state associated with that client.

(b) is associated with exactly one single database connection and exactly one single row in a table.

(c) is created once by the server and is available to many clients.

(d) is created and destroyed on each call.

(e) is copied in serialized form back to the client process on each call.

(38) In .NET Remoting, server activated objects are published as either singlecall or singleton. A singlecall object

(a) is associated with exactly one single client and usually

 maintains state associated with that client.

(b) is associated with exactly one single database connection and one single row in a table.

(c) is created once by the server and is available to many clients.

(d) is created and destroyed on each call.

(e) is copied in serialized form back to the client process on each call.

(39) In .NET Remoting, each client activated object

(a) is created and destroyed on each call.

(b) has a lease with a client controlled expiration time.

(c) is garbage collected only when the server is brought down.

(d) is usually associated with multiple client objects.

(e) is serialized back to the client on each call.

(40) The main advantage that web services enjoy over CORBA is probably

(a) ease of use

(b) interoperability

(c) transaction handling

(d) security

(e) scalibility

Figure 1.

import java.net.*;

import java.io.*;

import java.util.*;

public class UDPServer {

 public static void main(String args[]) {

 DatagramSocket aSocket = null;

 try {

 aSocket = new DatagramSocket(6502);
 byte buffer[] = new byte[40];

 while(true) {

 DatagramPacket request =
 new DatagramPacket(buffer,buffer.length);

 System.out.println("Waiting for request");

 aSocket.receive(request);

 System.out.println(
 "Got request" + new String(request.getData()));

 String s =
 new String(request.getData(),0,request.getLength());

 StringTokenizer st = new StringTokenizer(s);

 String oper1 = st.nextToken();

 String operator = st.nextToken();

 String oper2 = st.nextToken();

 int op1 = (new Integer(oper1)).intValue();

 int op2 = (new Integer(oper2)).intValue();

 int op3 = 0;

 if(operator.equals("+")) op3 = op1 + op2;

 if(operator.equals("-")) op3 = op1 - op2;

 if(operator.equals("/")) op3 = op1 / op2;

 byte answer[] = (op3+"").getBytes();
 DatagramPacket reply = new DatagramPacket(
 answer,

 answer.length,

 request.getAddress(),

 request.getPort());

 System.out.println("About to send reply");

 aSocket.send(reply);
 DatagramPacket ack = new
 DatagramPacket(buffer,buffer.length);

 aSocket.receive(ack);

 System.out.println("Got ACK");

 }

 }

 catch(SocketException e) {

 System.out.println("Socket: " + e.getMessage());

 }

 catch(IOException e) {

 System.out.println("IO: " + e.getMessage());

 }

 finally {

 if(aSocket != null) aSocket.close();

 }

 }

}
Figure 2
import java.net.*;

import java.io.*;

public class UDPClient {

 public static void main(String args[]) {

 if(args.length != 3) {

 System.out.println("usage:java UDPClient operand

 operator operand");

 System.exit(0);

 }

 DatagramSocket aSocket = null;

 try {

 aSocket = new DatagramSocket();

 byte m[] = (args[0] +" " + args[1] + " " +

 args[2]).getBytes();

 InetAddress aHost =

 InetAddress.getByName("localhost");

 int serverPort = 6502;

 DatagramPacket request = new DatagramPacket(

 m, m.length, aHost,

 serverPort);

 aSocket.send(request);

 byte buffer[] = new byte[40];

 DatagramPacket reply = new

 DatagramPacket(buffer,buffer.length);

 aSocket.receive(reply);

 byte m2[] = ("Got reply").getBytes();

 DatagramPacket ack = new DatagramPacket(

 m2, m2.length, aHost,

 serverPort);

 aSocket.send(ack);

 System.out.println(new String(reply.getData()));

 }

 catch(SocketException e) {

 System.out.println("Socket: " + e.getMessage());

 }

 catch(IOException e) {

 System.out.println("IO: " + e.getMessage());

 }

 finally {

 if(aSocket != null) aSocket.close();

 }

 }

}
Figure 3 Snarf.cs
using System;

using System.IO;

using System.Net;

using System.Text;

class Snarf {

 static void Main(String[] args) {

 WebRequest req = WebRequest.Create(args[0]);

 WebResponse resp = req.GetResponse();

 Stream s = resp.GetResponseStream();

 StreamReader sr = new StreamReader(s,Encoding.ASCII);

 String doc = sr.ReadToEnd();

 Console.WriteLine(doc);

 }

}

Figure 4
 public Shape newShape(GraphicalObject g) throws

 RemoteException{

 version++;

Shape s = new ShapeServant(g, version);

 theList.addElement(s);

 return s;

 }

Figure 5

 public interface WhiteBoardCallBack implements Remote {

 void callback(int version) throws RemoteException;

 };

Figure 6

// file: Interface.java on both the client and server side

public interface Person {

 public int getAge() throws Throwable;

 public String getName() throws Throwable;

}
// file: Person_Stub.java proxy code
import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.net.Socket;

public class Person_Stub implements Person {

 Socket socket;

 ObjectOutputStream o;

 ObjectInputStream i;

 public Person_Stub() throws Throwable {}

 public int getAge() throws Throwable {

 socket = new Socket("localhost",9000);

 o = new ObjectOutputStream(socket.getOutputStream());

 o.writeObject("age");

 o.flush();

 i = new ObjectInputStream(socket.getInputStream());

 int ret = i.readInt();

 socket.close();

 return ret;
 }

 public String getName() throws Throwable {

 socket = new Socket("localhost",9000);

 o = new ObjectOutputStream(socket.getOutputStream());

 o.writeObject("name");

 o.flush();

 i = new ObjectInputStream(socket.getInputStream());

 String ret = (String)(i.readObject());

 socket.close();

 return (String)ret;

 }

}
Figure 6 Continued
// file: Person_Skeleton.java
import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.net.Socket;

import java.net.ServerSocket;

public class Person_Skeleton {

 Person myServer;

 public Person_Skeleton(Person s) {

 myServer = s;

 }

 public void serve() {

 try {

 ServerSocket s = new ServerSocket(9000);

 while(true) {

 Socket socket = s.accept();

 ObjectInputStream i = new
 ObjectInputStream(socket.getInputStream());

 String method = (String)i.readObject();

 if(method.equals("age")) {

 int a = myServer.getAge();

 ObjectOutputStream o = new

 ObjectOutputStream(socket.getOutputStream());

 o.writeInt(a);

 o.flush();

 }

 else if(method.equals("name")) {

 String n = myServer.getName();

 ObjectOutputStream o = new

 ObjectOutputStream(socket.getOutputStream());

 o.writeObject(n);

 o.flush();

 }

 }

 }

 catch(Throwable t) {

 System.out.println("Error " + t);

 System.exit(0);

 }

 }

}
Figure 6 Continued
// file: Person_Servant.java
public class Person_Servant implements Person {

 int age;

 String name;

 public Person_Servant(String n, int a) {

 name = n;

 age = a;

 }

 public int getAge() {

 return age;

 }

 public String getName() {

 return name;

 }

 }
// file: PersonServer.java
public class PersonServer {

 public static void main(String args[]) {

 // create and object representing a person

 // and server it to clients

 Person p = new Person_Servant("Mike",23);

 // two lines of missing code

 }

}
// file: PersonClient.java exists only on the client side

public class PersonClient {

 public static void main(String args[]) {

 try {

 // read and display the name and the age of the person
 // represented

 // by the remote object

 //
 // about five lines of missing code – depending

 // on how it is

 // written
 }

 catch(Throwable t) {

 t.printStackTrace();

 System.exit(0);

 }

 }

PAGE
7
95-702 Organizational Communication & Distributed Object Technologies Exam II

