Web Technologies                                                       Carnegie Mellon University 


Lab 4 Due Monday, March 4, 2002

Figure 4.1 shows a Java program that opens up a socket to a servlet. It then sends a series of HTTP headers followed by a simple XML document

// MiniClient.java makes a socket connection to an HTTP server and

// calls the MiniHandleXMLRPC servlet. It passes an XML docuement to the

// servlet. The document is <?xml version = "1.0" ?><a>Hello World</a>.

import java.net.*;         

import java.util.*;

import java.io.*;

import org.w3c.dom.*;

import javax.xml.parsers.*;

import org.xml.sax.*;

public class MiniClient {

    public static void main(String a[]) {

          try {

                // Establish a socket to Tomcat

                Socket soket = new Socket ("localhost", 8080);

                // Get readers and printers to the socket

                PrintWriter out = new PrintWriter (soket.getOutputStream ());

                BufferedReader in = new BufferedReader (

                new InputStreamReader (soket.getInputStream ()));

                // Build the xml document

                String x = "<?xml version = \"1.0\" ?><a>Hello World</a>";

                // send http POST headers to server and address the servlet

                out.print ("POST" + " " + "/mini/MiniHandleXMLRPC" +

                 " HTTP/" + "1.0" + "\r\n");

                out.print ("HOST" + ": " + "localhost" + "\r\n");

                out.print ("Content-Type" + ": " +

                   "text/xml" + "\r\n");

                out.print ("Content-Length" + ":"+ 

                    x.length() + "\r\n");

                out.print ("\r\n");

                out.print (x);

                out.print ("\r\n\r\n");

                out.flush ();             

          }

          catch (MalformedURLException e) {

                System.out.println("err:not an understood URL");

          }

          catch(IOException e) {

                System.out.println(e);

          }

     }

}

                                                        Figure 4.1

Figure 4.2 demonstrates a servlet that reads the XML document, builds a DOM tree, displays the name of the root tag and the text contained within it.

// This file is in Tomcat's webapp/mini/WEB-INF/classes directory.

// It reads an xml document from the client and builds a DOM tree.

// The input document (from MiniClient.java ) is <?xml version="1.0"?><a>Hello World</a>

// The output of the servlet is the name of the root element along with 

// "Hello World" written to Tomcat's console.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

import org.xml.sax.*;

import org.w3c.dom.*;

import javax.xml.parsers.*;

public class MiniHandleXMLRPC extends HttpServlet {

     public void doPost(HttpServletRequest req, HttpServletResponse res) 

                       throws ServletException, IOException { 

        try{

            InputSource is = new InputSource(req.getInputStream());

            DocumentBuilderFactory docBuilderFactory =

                                        DocumentBuilderFactory.newInstance();

            docBuilderFactory.setValidating(false);

            docBuilderFactory.setNamespaceAware(true);      

            DocumentBuilder docBuilder =

                                        docBuilderFactory.newDocumentBuilder();

             Document doc = docBuilder.parse(is);

             Element root = doc.getDocumentElement();

             System.out.println("Root element:" + root.getTagName());

             NodeList nl = root.getChildNodes();

             Node cur;

             for(int i = 0; i < nl.getLength(); i++) {

                     cur = nl.item(i);

                     if(cur.getNodeType() == Node.TEXT_NODE) 

                         System.out.println(cur.getNodeValue());

             }

       }

       catch(ParserConfigurationException e) {}

       catch(SAXException e) {}

     }            

}

                                                                  Figure 4.2

 Working with the XML DOM and XML RPC

(1) In this exercise you will write a Java client (Client.java) that uses a Socket object to connect to a Java servlet (HandleXMLRPC.java) running under Tomcat. Client.java will be interactive and will request two  (possibly very large) integers from the user. Client.java will also ask the user if he or she would like to add or multiply these two integers. Client.java will package these integers into an XML document that holds the two integers and the requested operation. Client.java will then establish a connection to HandleXMLRPC.java and pass the XML over HTTP. HandleXMLRPC.java will carry out the  request by using BigInteger arithmetic and return an XML document that contains the BigInteger result. This result will then be displayed (by Client.java) to the user. You will need to design two XML languages that describe the inputs and outputs to this BigInteger web service 

Client.java will read from the socket using the BufferedReader as defined in Figure 4.1. The trick is to read the socket until the HTTP headers have all been read. Then, a blank line will be encountered followed by the XML response. The XML will be read by using an InputSource object to build a DOM tree. The DOM tree will then be traversed to find the result (in a text node).




  

(2) In this exercise you will modify Client.java so that it too is a servlet. The idea is to create an HTML interface to Client.java and collect the two BigIntegers using an HTTP get request. Client.java will still package the operation and the BigInteger parameters into an XML document and send the document to HandleXMLRPC.java for processing. In this case the result will be returned as HTML in the browser.





Submission Guide

     First Part of Assignment

(1) Paste a copy of Client.java here.  20 Points 

(2) Paste a copy of HandleXMLRPC.java (servlet ) here. 20 Points

(3) Pastes a DOS screen shot that shows Client.java running and shows two very large integers being added. You must show the interaction with the user.  10 Points

(4)  Pastes a DOS screen shot that shows Client.java running and shows two very large integers being mulitplied. You must show the interaction with the user. 5 Points

Second Part of Assignment

(5) Paste a copy of the HTML used to gather the two integers here. 10 Points

(6) Paste a screen shot showing a browser collecting the two big integers here. Make sure that the browser screen allows the user to select between multiplication and addition. 10 Points

       (7)   Paste a screen shot of the browser showing the result of the calculation (shown in question 6) here. 5 Points

(8) Paste a copy of the Client.java servlet here. The grader will look to see if this servlet generates the appropriate XML for addition and multiplication. 20  Points











































































































HandleXMLRPC.java








Client.java


Servlet





HTTP Get





Browser


Program





HTML





User





HandleXMLRPC.java 


servlet





Client.java


Application


program





XML over HTTP





XML over HTTP








PAGE  
1

