Web Technologies Carnegie Mellon University

Lab 3 Validation Due Wednesday, February 20

Validating a document is like checking a program for syntax errors. Only after a program is checked can the compiler perform its main job of generating code. And only after a document is validated can a program easily process the data within it. An XSLT programmer, for example, relies heavily upon the fact that an input document is of a certain structure.

In this lab you will experiment with Document Type Definitions (DTD’s) and XML Schemas. DTD’s are about 30 years old and XML Schema is a recent W3C Recommendation. XML Schema is expressed in an XML language called XSDL (XML Schema Definition Language.)

We will be working with the Xerces parser that you installed in an earlier lab. This parser is able to validate documents using either DTD’s or XSDL The program below, Validate.java in Figure 3.1, is a fairly minimal program that we can use to test whether or not a particular XML document instance conforms to its DTD or its XSDL document. The program is run by typing the command “java Validate somefile.xml”. The “somefile.xml” file will contain a reference to its DTD or XSDL document and the parser will perform validation.

You must have completed Lab 1 and Lab 2 before beginning this lab. That is, it will be assumed that all of the necessary software has been installed and that the classpath and path variables have been set.

// Validate.java using Xerces

// Program written by Kunal Kaviraj

import java.io.*;

import org.xml.sax.ErrorHandler;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import org.xml.sax.XMLReader;

import org.xml.sax.InputSource;

import org.xml.sax.helpers.XMLReaderFactory;

import org.xml.sax.helpers.DefaultHandler;

public class Validate

{

 public static boolean valid = true;

 public static void main (String argv [])

 {

 if (argv.length != 1) {

 System.err.println ("Usage: java Validate filename.xml");

 System.exit (1);

 }

 try {

 // get a parser

 XMLReader reader = XMLReaderFactory.createXMLReader("org.apache.xerces.parsers.SAXParser");

 // request validation

 reader.setFeature("http://xml.org/sax/features/validation", true);

 reader.setFeature("http://apache.org/xml/features/validation/schema",true);

 reader.setErrorHandler(new MyErrorHandler());

 // associate an InputSource object with the file name

 InputSource inputSource = new InputSource(argv[0]);

 // go ahead and parse

 reader.parse(inputSource);

 }

 catch(org.xml.sax.SAXException e) {

System.out.println("Error in parsing: " + e);

 valid = false;

 }

 catch(java.io.IOException e) {

 System.out.println("Error in I/O " + e);

 System.exit(0);

 }

 System.out.println("Valid Document is " + valid);

 }

}

 Figure 3.1 Part A

class MyErrorHandler implements ErrorHandler

{

public void warning(SAXParseException exception) throws SAXException{

throw exception;

}

public void error(SAXParseException exception) throws SAXException{

throw exception;

}

public void fatalError(SAXParseException exception) throws SAXException{

throw exception;

}

}

 Figure 3.1 Part B.

Part I. An XSDL Example

Figure 3.2 shows a simple purchase order in XML. There are several things to note about this document. The root tag, “purchaseOrder”, holds several attributes and attribute values. The first is the date of the order. The next defines the default namespace for this document. In other words, the purchaseOrder tag and the tags enclosed in the purchaseOrderTag that do not have prefixes attached are considered to be in the “http://www.cds-r-us.com” namespace. The next line associates the xsi prefix with the URL “http://www.w3.org/2001/XMLSchema-instance”. This namespace will be known by the Xerces parser. So, the attribute name “xsi:schemaLocation” is also known by Xerces. The attribute value “http://www.cds-r-us.com po.xsd” (note the whitespace) tells Xerces that there is a namespace called “http://www.cds-r-us.com” defined in the file “po.xsd".

<?xml version="1.0" encoding="UTF-8"?> <!-- po.xml -->

<purchaseOrder orderDate="07.23.2001"

 xmlns="http://www.cds-r-us.com"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.cds-r-us.com

 po.xsd"

>

 <recipient country="USA">

 <name>Dennis Scannel</name>

 <street>175 Perry Lea Side Road</street>

 <city>Waterbury</city>

 <state>VT</state>

 <postalCode>15216</postalCode>

 </recipient>

 <order>

 <cd artist="Brooks Williams" title="Little Lion" />

 <cd artist="David Wilcox" title="What you whispered" />

 </order>

</purchaseOrder>

 Figure 3.2

Figure 3.3 shows the contents of the file called “po.xsd”. Several things should be noted.

The first tag in the file “po.xsd” has an “xs” prefix which is associated (on the second line within this tag) with the XMLSchema namespace. This namespace is well known to Xerces and it will treat the tag <xs:schema> as special. This is similar to the way Xalan treats <xsl:apply-templates> as special.

XSDL documents declare and define components for one namespace. This namespace is called its target namespace. The default and target namespaces in this document are both “http://www.cds-r-us.com”. Thus, by the rules of XSDL, names such as “purchaseOrder” and “recipient” will be associated with this namespace and instances documents may refer to these names. Also, by the rules of XSDL, elements called purchaseOrder or recipient that are in this namespace must conform to the structure and type specified here.

<?xml version="1.0" encoding="utf-8"?> <!-- po.xsd -->

<xs:schema

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.cds-r-us.com"

 targetNamespace="http://www.cds-r-us.com"

 >

 <xs:element name="purchaseOrder">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="recipient" />

 <xs:element ref="order" />

 </xs:sequence>

 <xs:attribute name="orderDate" type="xs:string" />

 </xs:complexType>

 </xs:element>

 <xs:element name = "recipient">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="name" />

 <xs:element ref="street" />

 <xs:element ref="city" />

 <xs:element ref="state" />

 <xs:element ref="postalCode" />

 </xs:sequence>

 <xs:attribute name="country" type="xs:string" />

 </xs:complexType>

 </xs:element>

 <xs:element name = "name" type="xs:string" />

 <xs:element name = "street" type="xs:string" />

 <xs:element name = "city" type="xs:string" />

 <xs:element name = "state" type="xs:string" />

 <xs:element name = "postalCode" type="xs:short" />

 <xs:element name = "order">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="cd" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="cd">

 <xs:complexType>

 <xs:attribute name="artist" type="xs:string" />

 <xs:attribute name="title" type="xs:string" />

 </xs:complexType>

 </xs:element>

</xs:schema> Figure 3.3
Part II. A DTD Example

The purchase order from Figure 3.2 is shown again in Figure 3.4 but the document has been modified to conform to the DTD shown in Figure 3.5. Note the addition of a “<!DOCTYPE>” tag and the removal of namespaces.

<?xml version="1.0" encoding="UTF-8"?> <!-- po.xml -->

<!DOCTYPE purchaseOrder SYSTEM "po.dtd">

<purchaseOrder orderDate="07.23.2001" >

 <recipient country="USA">

 <name>Dennis Scannel</name>

 <street>175 Perry Lea Side Road</street>

 <city>Waterbury</city>

 <state>VT</state>

 <postalCode>15216</postalCode>

 </recipient>

 <order>

 <cd artist="Brooks Williams" title="Little Lion" />

 <cd artist="David Wilcox" title="What you whispered" />

 </order>

</purchaseOrder> Figure 3.4

<?xml version="1.0" encoding="UTF-8"?>

<!-- po.dtd -->

<!-- Document Structure -->

<!ELEMENT purchaseOrder (recipient,order)>

<!ELEMENT recipient (name,street,city,state,postalCode)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT postalCode (#PCDATA)>

<!ELEMENT order (cd)+>

<!ELEMENT cd EMPTY>

<!-- Attributes -->

<!ATTLIST purchaseOrder

 orderDate CDATA #REQUIRED >

<!ATTLIST recipient

 country CDATA #REQUIRED >

<!ATTLIST cd artist CDATA #REQUIRED

 title CDATA #REQUIRED> Figure 3.5

Lab 3 Activities Sheet

Directions: Complete the activities listed on this sheet and type or paste your answers directly in the space provided. The completed Activities Sheet (Lab3Submission.doc) must be zipped and posted to the digital drop box on blackboard. Please give this the blackboard title of Homework3. Each question is worth 20 points.

Document Type Definitions and XSDL

(1) Write a DTD that can be used to validate the books.xml file found in Lab 2 Figure 2.1. The DTD must be contained within the same file as the document body. That is, this will be an internal DTD.

(a) Paste the modified books.xml file here. This will include the DTD.

(b) Execute Validate.java (Figure 3.1) and paste a screen shot of a DOS window here showing that the document is valid.

(2)
Write an XSDL document that can be used to validate the books.xml file found in Lab 2 Figure 2.1. You need to add namespaces to books.xml and should remove any DOCTYPE references and the internal DTD. (DTD’s and XML Schemas can work together but we’ll not attempt that here.)

(a) Paste the modified books.xml file here.

(b) Paste the XSDL document here.

(c) Execute Validate.java (Figure 3.1) and paste a screen shot of a DOS window here showing that the document is valid.

(3)
Write an XSDL document that can be used to validate the Course_Descriptions.xml file found in Lab 2. You will need to modify the header of the Course_Descriptions.xml file so that Xerces knows where to find its namespace. For additional help on XSDL, you might want to look over the documentation at www.w3c.org.

(a) Paste the new Course_Descriptions.xml file here. This will show the namespaces that must be added.

(b) Paste the XSDL document here.

(c) Execute Validate.java (Figure 3.1) and paste a screen shot of a DOS window here. This should show that the document is valid.

(4)
Create a new language called SylML that your instructor can use to validate the syllabus for this course. The syllabus is labeled as “Course Information” and is found at ~mm6/95-733/syllabus.htm.You will need to create at least two files (Syllabus.xml and SylML.dtd) and these files must be tested with Validate.java. The file SylML.dtd will contain the Document Type Definition for SylML conforming documents. Six points of this 20 point problem will be allocated for breaking up the DTD into several files using external parameter entities and external parameter entity references.

(a) Paste a copy of the Syllabus.xml file here.

(b) Paste a copy of SylML.dtd (and any other .dtd files) here.

(c) Execute Validate.java (Figure 3.1) and paste a screen shot of a DOS window here showing that the document is valid.

(5) Write an XSLT program (called Syllabus.xsl) that converts the Syllabus.xml document to HTML format. Your HTML document should look reasonably close (when processed by a browser) to the current syllabus on the web site. However, the links can be broken links. That is, you don’t need to provide target documents (such as Schedule.html and Course_Description.html). You must, however, provide the link elements themselves. Test your program using the command line version of Xalan.

(a) Paste a copy of the Syllabus.xsl file here.

(b) Paste a copy of the output file, Syllabus.htm, here.

(c) Paste a copy of the browser screen here.

PAGE
2

