46-929Web Technologies Carnegie Mellon University

Lab 2 Due Tuesday , February 11, 2003

The Web For Programs
In this homework you will work with an XML parser and the Document Object Model to write a client that visits web sites and schedules meetings.

Assume that following schedule (schedule.xml) and the following Document Type Definition are available on the internet.

File: schedule.xml located at http://localhost:8080/MccarthysSchedule/schedule.xml

<?xml version="1.0" encoding = "utf-8"?>

<!DOCTYPE Schedule SYSTEM "Schedule.dtd">

<Schedule>

 <Monday>

 <openSlot>A</openSlot>

 <openSlot>B</openSlot>

 </Monday>

 <Tuesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Tuesday>

 <Wednesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Wednesday>

 <Thursday>

 <openSlot>A</openSlot>

 </Thursday>

 <Friday>

 <openSlot>A</openSlot>

 <openSlot>C</openSlot>

 </Friday>

 <Saturday>

 <openSlot>A</openSlot>

 <openSlot>C</openSlot>

 </Saturday>

 <Sunday><openSlot>A</openSlot>

 </Sunday>

</Schedule>

Figure 2.1

File: schedule.dtd located at http://localhost:8080/MccarthysSchedule/Schedule.dtd

<!ELEMENT Schedule (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday)>

<!ELEMENT Monday (openSlot*)>

<!ELEMENT Tuesday (openSlot*)>

<!ELEMENT Wednesday (openSlot*)>

<!ELEMENT Thursday (openSlot*)>

<!ELEMENT Friday (openSlot*)>

<!ELEMENT Saturday (openSlot*)>

<!ELEMENT Sunday (openSlot*)>

<!ELEMENT openSlot (#PCDATA)> Figure 2.2

Let’s also assume that the following schedule and DTD are available locally:

Located in the client’s directory and called schedule.xml

<?xml version="1.0" encoding = "utf-8"?>

<!DOCTYPE Schedule SYSTEM "Schedule.dtd">

<Schedule>

 <Monday>

 <openSlot>C</openSlot>

 <openSlot>D</openSlot>

 </Monday>

 <Tuesday>

 <openSlot>A</openSlot>

 <openSlot>D</openSlot>

 </Tuesday>

 <Wednesday>

 <openSlot>B</openSlot>

 <openSlot>C</openSlot>

 </Wednesday>

 <Thursday>

 <openSlot>B</openSlot>

 </Thursday>

 <Friday>

 <openSlot>B</openSlot>

 <openSlot>D</openSlot>

 </Friday>

 <Saturday>

 <openSlot>B</openSlot>

 <openSlot>D</openSlot>

 </Saturday>

 <Sunday><openSlot>A</openSlot>

 </Sunday>

</Schedule>

Figure 2.3

Located in the client’s directory and called Schedule.dtd

<!ELEMENT Schedule (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday)>

<!ELEMENT Monday (openSlot*)>

<!ELEMENT Tuesday (openSlot*)>

<!ELEMENT Wednesday (openSlot*)>

<!ELEMENT Thursday (openSlot*)>

<!ELEMENT Friday (openSlot*)>

<!ELEMENT Saturday (openSlot*)>

<!ELEMENT Sunday (openSlot*)>

<!ELEMENT openSlot (#PCDATA)>

Figure 2.4

In addition, the client will need to make use of an XML document containing URL’s of schedules. This document and its DTD appear next:

Located in the client’s directory and called urlList.xml

<?xml version="1.0" encoding = "utf-8"?>

<!DOCTYPE URLList SYSTEM "urlList.dtd">

<URLList>

 <URL>schedule.xml</URL>

 <URL>http://localhost:8080/MccarthysSchedule/schedule.xml</URL>

</URLList>

Figure 2.5

Located in the client’s directory and called urlList.dtd

<!ELEMENT URLList (URL*)>

<!ELEMENT URL (#PCDATA)>

Figure 2.6

Consider a Java client that reads the list of n URL’s contained in the urlList.xml file. The program then fetches the schedule documents at those URL’s and displays a list of meeting times.

The output of my solution looks like the following:

D:\McCarthy\www\95-733\examples\scheduleOnTheWeb\clientcode>java Scheduler

Processing 2 schedules

Got 2 schedules

Available meeting times

Schedule meeting for Wednesday at B

Schedule meeting for Wednesday at C

Schedule meeting for Sunday at A

Figure 2.7

There are two document types that we are working with in this lab. The first is the document type that contains schedule data. The second is the document type that contains a list of URL’s. It is important that we write Java code that allows us to read these documents and select various fields and values. Below is a Java class that processes the urlList.xml file. It will be your responsibility to write the code that handles the schedule.xml document type.

/** URLListDoc.java Wraps urlList.xml documents

 Provide an InputSource class to initialize the objects of this class

 An InputSource class may be created with a StringReader containing an XML

 Document, a String containing a file path or URL.

 This class passes the InputSource object to the parser and the document

 is loaded.

 The individual URL strings are returned by calling

 public String getURL(int i). The integer i must be in the range

 1 <= i <= getNumURLs(). the method int getNumURLs returns an int

 representing the number of URLs in InputSource.

*/

import java.io.File;

import java.io.ByteArrayOutputStream;

import java.io.OutputStreamWriter;

import java.io.PrintWriter;

import org.w3c.dom.*;

import javax.xml.parsers.DocumentBuilderFactory;

import org.xml.sax.InputSource;

import javax.xml.parsers.DocumentBuilder;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

public class URLListDoc

{

 public final static String ROOT = "URLList";

public final static String URL = "URL";

 private Document dom;

/** The constructor takes an InputSource object as input. It passes the InputSource object

 * to the parser and builds a DOM tree.

 */

 public URLListDoc(InputSource is)

 {

 try {

 DocumentBuilderFactory docBuilderFactory =

 DocumentBuilderFactory.newInstance();

 DocumentBuilder docBuilder =

 docBuilderFactory.newDocumentBuilder();

 dom = docBuilder.parse(is);

 }

 catch(SAXParseException err) {

 System.out.println("Parsing error" +

 ", line " + err.getLineNumber() +

 ", URI " + err.getSystemId());

 System.out.println(" " + err.getMessage());

 }

 catch(SAXException e) {

 Exception x = e.getException();

 ((x == null) ? e : x).printStackTrace();

 }

 catch (Throwable t) {

 t.printStackTrace();

 }

}

 /** getNumURLs takes no arguments. It simply returns the number of URLs

 * read from the InputSource.

 *

@return int >= 0 representing the number of URL's available.

 */

public int getNumURLs() throws Exception

 {

 try

 {

 NodeList nl = dom.getElementsByTagName(URL);

 return nl.getLength();

}

 catch(Exception ex)

 {

 ex.printStackTrace(System.err);

 throw new Exception("Problems with reading URL data");

 }

 }

public String getURL(int i) throws Exception

 {

 try

 {

 NodeList nl = dom.getElementsByTagName(URL);

Node urlNode = (Node)nl.item(i-1);

Text text = (Text)urlNode.getFirstChild();

 return (String)text.getNodeValue();

}

 catch(Exception ex)

 {

 ex.printStackTrace(System.err);

 throw new Exception("Problems with getURL");

 }

 }

 /** main is for testing.

 */

public static void main(String args[]) throws Exception {

InputSource is = new InputSource("urlList.xml");

 URLListDoc urlDoc = new URLListDoc(is);

for(int k = 1; k <= urlDoc.getNumURLs(); k++){

 System.out.println("URL " + k + " = " + urlDoc.getURL(k));

}

}

}

Figure 2.8

Homework 2

Please use the same names as mentioned below for your files and classes so that I can provide you with help. We will be able to speak about the program and its parts.

Write a Java program called Scheduler.java that reads a list of URL’s and visits sites associated with those URL’s to retrieve schedules. Scheduler.java then computes and displays available meeting times.

Scheduler.java will make use of two types of documents and so you will provide two Java classes that wrap document instances.

URLListDoc.java

Public Constructor : public URLListDoc(InputSource is)

 Public Methods: public int getNumURLs() throws Exception

 public String getURL(int i) throws Exception

ScheduleDoc.java

Public constructor : public ScheduleDoc(InputSource is)

 Public method: public boolean getAvailable(String day, String slot) throws Exception

Scheduler.java

Reads a url list data by creating an InputSource object and passing it to URLList constructor

For each URL listed (there may be many)

Create an InputSource object with that URL and passes it to a ScheduleDoc.java constructor

Work from the n schedules to display every possible meeting time when all participants can

be present.

Demonstrate that your program works.

(1) (10 Points) Paste a DOS screen shot showing your program running using the schedules in Figures 2.1 and 2.3. Figure 2.1 must be available on the internet and must be stored as a Web Application on Tomcat. Figure 2.3 should be a local file stored in the same directory as the client. This all happens on your machine.

(2) (20 Points) Paste a screen shot showing your program running using the schedules in Figures 2.1 and 2.3 as well as a schedule available on my server. You will find a schedule at http://dewdney.heinz.cmu.edu:8080/HempelsSchedule/schedule.xml.

 Paste a copy of your updated urlList.xml file here.

Paste a copy of the DOS screen showing your client run with these three schedules here.

 (3) (20 Points) This is the same problem as 1 but with one less schedule. Paste a screen shot showing your program running using the schedules in Figures 2.1 and a schedule available on my server. You will find a schedule
at http://dewdney.heinz.cmu.edu:8080/HempelsSchedule/schedule.xml.

 Paste a copy of your updated urlList.xml file here.

Paste a copy of the DOS screen showing your client run with these two schedules here.

(4) (50 Points) Paste a copy of URLListDoc.java , ScheduleDoc.java, and Scheduler.java here. For full credit these programs must have names as specified above and be clean and well documented.

Please paste this document containing answers to the digital drop box.

PAGE
1

